From: "H. Peter Anvin" See Kconfig help for usage details. --- drivers/md/Kconfig | 33 drivers/md/Makefile | 30 drivers/md/md.c | 14 drivers/md/mktables.c | 125 ++ drivers/md/raid6.h | 144 +++ drivers/md/raid6algos.c | 140 ++ drivers/md/raid6int.uc | 66 + drivers/md/raid6main.c | 1973 ++++++++++++++++++++++++++++++++++++++++++ drivers/md/raid6mmx.c | 150 +++ drivers/md/raid6recov.c | 133 ++ drivers/md/raid6sse1.c | 171 +++ drivers/md/raid6sse2.c | 270 +++++ drivers/md/raid6test/Makefile | 56 + drivers/md/raid6test/test.c | 98 ++ drivers/md/raid6x86.h | 242 +++++ drivers/md/unroll.pl | 24 include/linux/raid/md_k.h | 5 17 files changed, 3668 insertions(+), 6 deletions(-) diff -puN drivers/md/Kconfig~raid6-20040107 drivers/md/Kconfig --- 25/drivers/md/Kconfig~raid6-20040107 2004-01-08 00:26:29.000000000 -0800 +++ 25-akpm/drivers/md/Kconfig 2004-01-08 00:26:29.000000000 -0800 @@ -107,6 +107,39 @@ config MD_RAID5 If unsure, say Y. +config MD_RAID6 + tristate "RAID-6 mode (EXPERIMENTAL)" + depends on BLK_DEV_MD && EXPERIMENTAL + ---help--- + WARNING: RAID-6 is currently highly experimental. If you + use it, there is no guarantee whatsoever that it won't + destroy your data, eat your disk drives, insult your mother, + or re-appoint George W. Bush. + + A RAID-6 set of N drives with a capacity of C MB per drive + provides the capacity of C * (N - 2) MB, and protects + against a failure of any two drives. For a given sector + (row) number, (N - 2) drives contain data sectors, and two + drives contains two independent redundancy syndromes. Like + RAID-5, RAID-6 distributes the syndromes across the drives + in one of the available parity distribution methods. + + RAID-6 currently requires a specially patched version of + mdadm; the patch is available at: + + ftp://ftp.kernel.org/pub/linux/kernel/people/hpa/ + + ... and the mdadm source code at ... + + ftp://ftp.kernel.org/pub/linux/utils/raid/mdadm/ + + If you want to use such a RAID-6 set, say Y. To compile + this code as a module, choose M here: the module will be + called raid6. + + + If unsure, say N. + config MD_MULTIPATH tristate "Multipath I/O support" depends on BLK_DEV_MD diff -puN drivers/md/Makefile~raid6-20040107 drivers/md/Makefile --- 25/drivers/md/Makefile~raid6-20040107 2004-01-08 00:26:29.000000000 -0800 +++ 25-akpm/drivers/md/Makefile 2004-01-08 00:26:29.000000000 -0800 @@ -4,6 +4,11 @@ dm-mod-objs := dm.o dm-table.o dm-target.o dm-linear.o dm-stripe.o \ dm-ioctl.o +raid6-objs := raid6main.o raid6algos.o raid6recov.o raid6tables.o \ + raid6int1.o raid6int2.o raid6int4.o \ + raid6int8.o raid6int16.o raid6int32.o \ + raid6mmx.o raid6sse1.o raid6sse2.o +host-progs := mktables # Note: link order is important. All raid personalities # and xor.o must come before md.o, as they each initialise @@ -14,6 +19,31 @@ obj-$(CONFIG_MD_LINEAR) += linear.o obj-$(CONFIG_MD_RAID0) += raid0.o obj-$(CONFIG_MD_RAID1) += raid1.o obj-$(CONFIG_MD_RAID5) += raid5.o xor.o +obj-$(CONFIG_MD_RAID6) += raid6.o xor.o obj-$(CONFIG_MD_MULTIPATH) += multipath.o obj-$(CONFIG_BLK_DEV_MD) += md.o obj-$(CONFIG_BLK_DEV_DM) += dm-mod.o + +# Files generated that shall be removed upon make clean +clean-files := raid6int*.c raid6tables.c mktables + +$(obj)/raid6int1.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 1 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6int2.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 2 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6int4.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 4 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6int8.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 8 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6int16.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 16 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6int32.c: $(src)/raid6int.uc $(src)/unroll.pl + $(PERL) $(src)/unroll.pl 32 < $< > $@ || ( rm -f $@ && exit 1 ) + +$(obj)/raid6tables.c: $(obj)/mktables + $(obj)/mktables > $@ || ( rm -f $@ && exit 1 ) diff -puN drivers/md/md.c~raid6-20040107 drivers/md/md.c --- 25/drivers/md/md.c~raid6-20040107 2004-01-08 00:26:29.000000000 -0800 +++ 25-akpm/drivers/md/md.c 2004-01-08 00:26:29.000000000 -0800 @@ -7,6 +7,7 @@ Changes: - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar + - RAID-6 extensions by H. Peter Anvin - boot support for linear and striped mode by Harald Hoyer - kerneld support by Boris Tobotras - kmod support by: Cyrus Durgin @@ -1435,11 +1436,12 @@ static int analyze_sbs(mddev_t * mddev) goto abort; } - if ((mddev->recovery_cp != MaxSector) && ((mddev->level == 1) || - (mddev->level == 4) || (mddev->level == 5))) + if ((mddev->recovery_cp != MaxSector) && + ((mddev->level == 1) || + ((mddev->level >= 4) && (mddev->level <= 6)))) printk(KERN_ERR "md: md%d: raid array is not clean" - " -- starting background reconstruction\n", - mdidx(mddev)); + " -- starting background reconstruction\n", + mdidx(mddev)); return 0; abort: @@ -3014,7 +3016,9 @@ static struct file_operations md_seq_fop int register_md_personality(int pnum, mdk_personality_t *p) { if (pnum >= MAX_PERSONALITY) { - MD_BUG(); + printk(KERN_ERR + "md: tried to install personality %s as nr %d, but max is %lu\n", + p->name, pnum, MAX_PERSONALITY-1); return -EINVAL; } diff -puN /dev/null drivers/md/mktables.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/mktables.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,125 @@ +#ident "$Id: mktables.c,v 1.2 2002/12/12 22:41:27 hpa Exp $" +/* ----------------------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * mktables.c + * + * Make RAID-6 tables. This is a host user space program to be run at + * compile time. + */ + +#include +#include +#include +#include +#include + +static uint8_t gfmul(uint8_t a, uint8_t b) +{ + uint8_t v = 0; + + while ( b ) { + if ( b & 1 ) v ^= a; + a = (a << 1) ^ (a & 0x80 ? 0x1d : 0); + b >>= 1; + } + return v; +} + +static uint8_t gfpow(uint8_t a, int b) +{ + uint8_t v = 1; + + b %= 255; + if ( b < 0 ) + b += 255; + + while ( b ) { + if ( b & 1 ) v = gfmul(v,a); + a = gfmul(a,a); + b >>= 1; + } + return v; +} + +int main(int argc, char *argv[]) +{ + int i, j, k; + uint8_t v; + uint8_t exptbl[256], invtbl[256]; + + printf("#include \"raid6.h\"\n"); + + /* Compute multiplication table */ + printf("\nconst u8 __attribute__((aligned(256)))\n" + "raid6_gfmul[256][256] =\n" + "{\n"); + for ( i = 0 ; i < 256 ; i++ ) { + printf("\t{\n"); + for ( j = 0 ; j < 256 ; j += 8 ) { + printf("\t\t"); + for ( k = 0 ; k < 8 ; k++ ) { + printf("0x%02x, ", gfmul(i,j+k)); + } + printf("\n"); + } + printf("\t},\n"); + } + printf("};\n"); + + /* Compute power-of-2 table (exponent) */ + v = 1; + printf("\nconst u8 __attribute__((aligned(256)))\n" + "raid6_gfexp[256] =\n" + "{\n"); + for ( i = 0 ; i < 256 ; i += 8 ) { + printf("\t"); + for ( j = 0 ; j < 8 ; j++ ) { + exptbl[i+j] = v; + printf("0x%02x, ", v); + v = gfmul(v,2); + if ( v == 1 ) v = 0; /* For entry 255, not a real entry */ + } + printf("\n"); + } + printf("};\n"); + + /* Compute inverse table x^-1 == x^254 */ + printf("\nconst u8 __attribute__((aligned(256)))\n" + "raid6_gfinv[256] =\n" + "{\n"); + for ( i = 0 ; i < 256 ; i += 8 ) { + printf("\t"); + for ( j = 0 ; j < 8 ; j++ ) { + invtbl[i+j] = v = gfpow(i+j,254); + printf("0x%02x, ", v); + } + printf("\n"); + } + printf("};\n"); + + /* Compute inv(2^x + 1) (exponent-xor-inverse) table */ + printf("\nconst u8 __attribute__((aligned(256)))\n" + "raid6_gfexi[256] =\n" + "{\n"); + for ( i = 0 ; i < 256 ; i += 8 ) { + printf("\t"); + for ( j = 0 ; j < 8 ; j++ ) { + printf("0x%02x, ", invtbl[exptbl[i+j]^1]); + } + printf("\n"); + } + printf("};\n\n"); + + return 0; +} diff -puN /dev/null drivers/md/raid6algos.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6algos.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,140 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6algos.c + * + * Algorithm list and algorithm selection for RAID-6 + */ + +#include "raid6.h" +#ifndef __KERNEL__ +#include +#endif + +struct raid6_calls raid6_call; + +/* Various routine sets */ +extern const struct raid6_calls raid6_intx1; +extern const struct raid6_calls raid6_intx2; +extern const struct raid6_calls raid6_intx4; +extern const struct raid6_calls raid6_intx8; +extern const struct raid6_calls raid6_intx16; +extern const struct raid6_calls raid6_mmxx1; +extern const struct raid6_calls raid6_mmxx2; +extern const struct raid6_calls raid6_sse1x1; +extern const struct raid6_calls raid6_sse1x2; +extern const struct raid6_calls raid6_sse2x1; +extern const struct raid6_calls raid6_sse2x2; +extern const struct raid6_calls raid6_sse2x4; + +const struct raid6_calls * const raid6_algos[] = { + &raid6_intx1, + &raid6_intx2, + &raid6_intx4, + &raid6_intx8, +#if defined(__ia64__) + &raid6_intx16, + &raid6_intx32, +#endif +#if defined(__i386__) || defined(__x86_64__) + &raid6_mmxx1, + &raid6_mmxx2, + &raid6_sse1x1, + &raid6_sse1x2, + &raid6_sse2x1, + &raid6_sse2x2, +#endif +#if defined(__x86_64__) + &raid6_sse2x4; +#endif + NULL +}; + +#ifdef __KERNEL__ +#define RAID6_TIME_JIFFIES_LG2 4 +#else +/* Need more time to be stable in userspace */ +#define RAID6_TIME_JIFFIES_LG2 9 +#endif + +/* Try to pick the best algorithm */ +/* This code uses the gfmul table as convenient data set to abuse */ + +int __init raid6_select_algo(void) +{ + const struct raid6_calls * const * algo; + const struct raid6_calls * best; + char *syndromes; + void *dptrs[(65536/PAGE_SIZE)+2]; + int i, disks; + unsigned long perf, bestperf; + int bestprefer; + unsigned long j0, j1; + + disks = (65536/PAGE_SIZE)+2; + for ( i = 0 ; i < disks-2 ; i++ ) { + dptrs[i] = ((char *)raid6_gfmul) + PAGE_SIZE*i; + } + + /* Normal code - use a 2-page allocation to avoid D$ conflict */ + syndromes = (void *) __get_free_pages(GFP_KERNEL, 1); + + if ( !syndromes ) { + printk("raid6: Yikes! No memory available.\n"); + return -ENOMEM; + } + + dptrs[disks-2] = syndromes; + dptrs[disks-1] = syndromes + PAGE_SIZE; + + bestperf = 0; bestprefer = 0; best = NULL; + + for ( algo = raid6_algos ; *algo ; algo++ ) { + if ( !(*algo)->valid || (*algo)->valid() ) { + perf = 0; + + preempt_disable(); + j0 = jiffies; + while ( (j1 = jiffies) == j0 ) + cpu_relax(); + while ( (jiffies-j1) < (1 << RAID6_TIME_JIFFIES_LG2) ) { + (*algo)->gen_syndrome(disks, PAGE_SIZE, dptrs); + perf++; + } + preempt_enable(); + + if ( (*algo)->prefer > bestprefer || + ((*algo)->prefer == bestprefer && + perf > bestperf) ) { + best = *algo; + bestprefer = best->prefer; + bestperf = perf; + } + printk("raid6: %-8s %5ld MB/s\n", (*algo)->name, + (perf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2)); + } + } + + if ( best ) + printk("raid6: using algorithm %s (%ld MB/s)\n", + best->name, + (bestperf*HZ) >> (20-16+RAID6_TIME_JIFFIES_LG2)); + else + printk("raid6: Yikes! No algorithm found!\n"); + + raid6_call = *best; + + free_pages((unsigned long)syndromes, 1); + + return best ? 0 : -EINVAL; +} diff -puN /dev/null drivers/md/raid6.h --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6.h 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,144 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2003 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +#ifndef LINUX_RAID_RAID6_H +#define LINUX_RAID_RAID6_H + +#ifdef __KERNEL__ + +/* Set to 1 to use kernel-wide empty_zero_page */ +#define RAID6_USE_EMPTY_ZERO_PAGE 0 + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +typedef raid5_conf_t raid6_conf_t; /* Same configuration */ + +/* Additional compute_parity mode -- updates the parity w/o LOCKING */ +#define UPDATE_PARITY 4 + +/* We need a pre-zeroed page... if we don't want to use the kernel-provided + one define it here */ +#if RAID6_USE_EMPTY_ZERO_PAGE +# define raid6_empty_zero_page empty_zero_page +#else +extern const char raid6_empty_zero_page[PAGE_SIZE]; +#endif + +#else /* ! __KERNEL__ */ +/* Used for testing in user space */ + +#include +#include +#include +#include +#include + +typedef uint8_t u8; +typedef uint16_t u16; +typedef uint32_t u32; +typedef uint64_t u64; + +#ifndef PAGE_SIZE +# define PAGE_SIZE 4096 +#endif +extern const char raid6_empty_zero_page[PAGE_SIZE]; + +#define __init +#define __exit + +#define preempt_enable() +#define preempt_disable() + +#endif /* __KERNEL__ */ + +/* Change this from BITS_PER_LONG if there is something better... */ +#if BITS_PER_LONG == 64 +# define NBYTES(x) ((x) * 0x0101010101010101UL) +# define NSIZE 8 +# define NSHIFT 3 +# define NSTRING "64" +typedef u64 unative_t; +#else +# define NBYTES(x) ((x) * 0x01010101U) +# define NSIZE 4 +# define NSHIFT 2 +# define NSTRING "32" +typedef u32 unative_t; +#endif + +/* Routine choices */ +struct raid6_calls { + void (*gen_syndrome)(int, size_t, void **); + int (*valid)(void); /* Returns 1 if this routine set is usable */ + const char *name; /* Name of this routine set */ + int prefer; /* Has special performance attribute */ +}; + +/* Selected algorithm */ +extern struct raid6_calls raid6_call; + +/* Algorithm list */ +extern const struct raid6_calls * const raid6_algos[]; +int raid6_select_algo(void); + +/* Return values from chk_syndrome */ +#define RAID6_OK 0 +#define RAID6_P_BAD 1 +#define RAID6_Q_BAD 2 +#define RAID6_PQ_BAD 3 + +/* Galois field tables */ +extern const u8 raid6_gfmul[256][256] __attribute__((aligned(256))); +extern const u8 raid6_gfexp[256] __attribute__((aligned(256))); +extern const u8 raid6_gfinv[256] __attribute__((aligned(256))); +extern const u8 raid6_gfexi[256] __attribute__((aligned(256))); + +/* Recovery routines */ +void raid6_2data_recov(int disks, size_t bytes, int faila, int failb, void **ptrs); +void raid6_datap_recov(int disks, size_t bytes, int faila, void **ptrs); +void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, void **ptrs); + +/* Some definitions to allow code to be compiled for testing in userspace */ +#ifndef __KERNEL__ + +# define jiffies raid6_jiffies() +# define printk printf +# define GFP_KERNEL 0 +# define __get_free_pages(x,y) ((unsigned long)mmap(NULL, PAGE_SIZE << (y), PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0)) +# define free_pages(x,y) munmap((void *)(x), (y)*PAGE_SIZE) + +static inline void cpu_relax(void) +{ + /* Nothing */ +} + +#undef HZ +#define HZ 1000 +static inline uint32_t raid6_jiffies(void) +{ + struct timeval tv; + gettimeofday(&tv, NULL); + return tv.tv_sec*1000 + tv.tv_usec/1000; +} + +#endif /* ! __KERNEL__ */ + +#endif /* LINUX_RAID_RAID6_H */ diff -puN /dev/null drivers/md/raid6int.uc --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6int.uc 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,66 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6int$#.c + * + * $#-way unrolled portable integer math RAID-6 instruction set + * + * This file is postprocessed using unroller.pl + */ + +#include "raid6.h" + +/* + * IA-64 wants insane amounts of unrolling. On other architectures that + * is just a waste of space. + */ + +#if ($# <= 8) || defined(_ia64__) + +static void raid6_int$#_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + + unative_t wd$$, wq$$, wp$$, w1$$, w2$$; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + for ( d = 0 ; d < bytes ; d += NSIZE*$# ) { + wq$$ = wp$$ = *(unative_t *)&dptr[z0][d+$$*NSIZE]; + for ( z = z0-1 ; z >= 0 ; z-- ) { + wd$$ = *(unative_t *)&dptr[z][d+$$*NSIZE]; + wp$$ ^= wd$$; + w2$$ = wq$$ & NBYTES(0x80); + w1$$ = (wq$$ << 1) & NBYTES(0xfe); + w2$$ = (w2$$ << 1) - (w2$$ >> 7); + w2$$ &= NBYTES(0x1d); + w1$$ ^= w2$$; + wq$$ = w1$$ ^ wd$$; + } + *(unative_t *)&p[d+NSIZE*$$] = wp$$; + *(unative_t *)&q[d+NSIZE*$$] = wq$$; + } +} + +const struct raid6_calls raid6_intx$# = { + raid6_int$#_gen_syndrome, + NULL, /* always valid */ + "int" NSTRING "x$#", + 0 +}; + +#endif diff -puN /dev/null drivers/md/raid6main.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6main.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,1973 @@ +/* + * raid6main.c : Multiple Devices driver for Linux + * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman + * Copyright (C) 1999, 2000 Ingo Molnar + * Copyright (C) 2002, 2003 H. Peter Anvin + * + * RAID-6 management functions. This code is derived from raid5.c. + * Last merge from raid5.c bkcvs version 1.78. + * + * Thanks to Penguin Computing for making the RAID-6 development possible + * by donating a test server! + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * You should have received a copy of the GNU General Public License + * (for example /usr/src/linux/COPYING); if not, write to the Free + * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + + +#include +#include +#include +#include +#include +#include +#include "raid6.h" + +/* + * Stripe cache + */ + +#define NR_STRIPES 256 +#define STRIPE_SIZE PAGE_SIZE +#define STRIPE_SHIFT (PAGE_SHIFT - 9) +#define STRIPE_SECTORS (STRIPE_SIZE>>9) +#define IO_THRESHOLD 1 +#define HASH_PAGES 1 +#define HASH_PAGES_ORDER 0 +#define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) +#define HASH_MASK (NR_HASH - 1) + +#define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]) + +/* bio's attached to a stripe+device for I/O are linked together in bi_sector + * order without overlap. There may be several bio's per stripe+device, and + * a bio could span several devices. + * When walking this list for a particular stripe+device, we must never proceed + * beyond a bio that extends past this device, as the next bio might no longer + * be valid. + * This macro is used to determine the 'next' bio in the list, given the sector + * of the current stripe+device + */ +#define r5_next_bio(bio, sect) ( ( bio->bi_sector + (bio->bi_size>>9) < sect + STRIPE_SECTORS) ? bio->bi_next : NULL) +/* + * The following can be used to debug the driver + */ +#define RAID6_DEBUG 0 /* Extremely verbose printk */ +#define RAID6_PARANOIA 1 /* Check spinlocks */ +#define RAID6_DUMPSTATE 0 /* Include stripe cache state in /proc/mdstat */ +#if RAID6_PARANOIA && CONFIG_SMP +# define CHECK_DEVLOCK() if (!spin_is_locked(&conf->device_lock)) BUG() +#else +# define CHECK_DEVLOCK() +#endif + +#define PRINTK(x...) ((void)(RAID6_DEBUG && printk(KERN_DEBUG x))) +#if RAID6_DEBUG +#undef inline +#undef __inline__ +#define inline +#define __inline__ +#endif + +#if !RAID6_USE_EMPTY_ZERO_PAGE +/* In .bss so it's zeroed */ +const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); +#endif + +static inline int raid6_next_disk(int disk, int raid_disks) +{ + disk++; + return (disk < raid_disks) ? disk : 0; +} + +static void print_raid6_conf (raid6_conf_t *conf); + +static inline void __release_stripe(raid6_conf_t *conf, struct stripe_head *sh) +{ + if (atomic_dec_and_test(&sh->count)) { + if (!list_empty(&sh->lru)) + BUG(); + if (atomic_read(&conf->active_stripes)==0) + BUG(); + if (test_bit(STRIPE_HANDLE, &sh->state)) { + if (test_bit(STRIPE_DELAYED, &sh->state)) + list_add_tail(&sh->lru, &conf->delayed_list); + else + list_add_tail(&sh->lru, &conf->handle_list); + md_wakeup_thread(conf->mddev->thread); + } else { + if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { + atomic_dec(&conf->preread_active_stripes); + if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } + list_add_tail(&sh->lru, &conf->inactive_list); + atomic_dec(&conf->active_stripes); + if (!conf->inactive_blocked || + atomic_read(&conf->active_stripes) < (NR_STRIPES*3/4)) + wake_up(&conf->wait_for_stripe); + } + } +} +static void release_stripe(struct stripe_head *sh) +{ + raid6_conf_t *conf = sh->raid_conf; + unsigned long flags; + + spin_lock_irqsave(&conf->device_lock, flags); + __release_stripe(conf, sh); + spin_unlock_irqrestore(&conf->device_lock, flags); +} + +static void remove_hash(struct stripe_head *sh) +{ + PRINTK("remove_hash(), stripe %llu\n", (unsigned long long)sh->sector); + + if (sh->hash_pprev) { + if (sh->hash_next) + sh->hash_next->hash_pprev = sh->hash_pprev; + *sh->hash_pprev = sh->hash_next; + sh->hash_pprev = NULL; + } +} + +static __inline__ void insert_hash(raid6_conf_t *conf, struct stripe_head *sh) +{ + struct stripe_head **shp = &stripe_hash(conf, sh->sector); + + PRINTK("insert_hash(), stripe %llu\n", (unsigned long long)sh->sector); + + CHECK_DEVLOCK(); + if ((sh->hash_next = *shp) != NULL) + (*shp)->hash_pprev = &sh->hash_next; + *shp = sh; + sh->hash_pprev = shp; +} + + +/* find an idle stripe, make sure it is unhashed, and return it. */ +static struct stripe_head *get_free_stripe(raid6_conf_t *conf) +{ + struct stripe_head *sh = NULL; + struct list_head *first; + + CHECK_DEVLOCK(); + if (list_empty(&conf->inactive_list)) + goto out; + first = conf->inactive_list.next; + sh = list_entry(first, struct stripe_head, lru); + list_del_init(first); + remove_hash(sh); + atomic_inc(&conf->active_stripes); +out: + return sh; +} + +static void shrink_buffers(struct stripe_head *sh, int num) +{ + struct page *p; + int i; + + for (i=0; idev[i].page; + if (!p) + continue; + sh->dev[i].page = NULL; + page_cache_release(p); + } +} + +static int grow_buffers(struct stripe_head *sh, int num) +{ + int i; + + for (i=0; idev[i].page = page; + } + return 0; +} + +static void raid6_build_block (struct stripe_head *sh, int i); + +static inline void init_stripe(struct stripe_head *sh, unsigned long sector, int pd_idx) +{ + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + + if (atomic_read(&sh->count) != 0) + BUG(); + if (test_bit(STRIPE_HANDLE, &sh->state)) + BUG(); + + CHECK_DEVLOCK(); + PRINTK("init_stripe called, stripe %llu\n", + (unsigned long long)sh->sector); + + remove_hash(sh); + + sh->sector = sector; + sh->pd_idx = pd_idx; + sh->state = 0; + + for (i=disks; i--; ) { + struct r5dev *dev = &sh->dev[i]; + + if (dev->toread || dev->towrite || dev->written || + test_bit(R5_LOCKED, &dev->flags)) { + PRINTK("sector=%llx i=%d %p %p %p %d\n", + (unsigned long long)sh->sector, i, dev->toread, + dev->towrite, dev->written, + test_bit(R5_LOCKED, &dev->flags)); + BUG(); + } + dev->flags = 0; + raid6_build_block(sh, i); + } + insert_hash(conf, sh); +} + +static struct stripe_head *__find_stripe(raid6_conf_t *conf, unsigned long sector) +{ + struct stripe_head *sh; + + CHECK_DEVLOCK(); + PRINTK("__find_stripe, sector %lu\n", sector); + for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) + if (sh->sector == sector) + return sh; + PRINTK("__stripe %lu not in cache\n", sector); + return NULL; +} + +static struct stripe_head *get_active_stripe(raid6_conf_t *conf, unsigned long sector, + int pd_idx, int noblock) +{ + struct stripe_head *sh; + + PRINTK("get_stripe, sector %lu\n", sector); + + spin_lock_irq(&conf->device_lock); + + do { + sh = __find_stripe(conf, sector); + if (!sh) { + if (!conf->inactive_blocked) + sh = get_free_stripe(conf); + if (noblock && sh == NULL) + break; + if (!sh) { + conf->inactive_blocked = 1; + wait_event_lock_irq(conf->wait_for_stripe, + !list_empty(&conf->inactive_list) && + (atomic_read(&conf->active_stripes) < (NR_STRIPES *3/4) + || !conf->inactive_blocked), + conf->device_lock); + conf->inactive_blocked = 0; + } else + init_stripe(sh, sector, pd_idx); + } else { + if (atomic_read(&sh->count)) { + if (!list_empty(&sh->lru)) + BUG(); + } else { + if (!test_bit(STRIPE_HANDLE, &sh->state)) + atomic_inc(&conf->active_stripes); + if (list_empty(&sh->lru)) + BUG(); + list_del_init(&sh->lru); + } + } + } while (sh == NULL); + + if (sh) + atomic_inc(&sh->count); + + spin_unlock_irq(&conf->device_lock); + return sh; +} + +static int grow_stripes(raid6_conf_t *conf, int num) +{ + struct stripe_head *sh; + kmem_cache_t *sc; + int devs = conf->raid_disks; + + sprintf(conf->cache_name, "md/raid6-%d", conf->mddev->__minor); + + sc = kmem_cache_create(conf->cache_name, + sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev), + 0, 0, NULL, NULL); + if (!sc) + return 1; + conf->slab_cache = sc; + while (num--) { + sh = kmem_cache_alloc(sc, GFP_KERNEL); + if (!sh) + return 1; + memset(sh, 0, sizeof(*sh) + (devs-1)*sizeof(struct r5dev)); + sh->raid_conf = conf; + sh->lock = SPIN_LOCK_UNLOCKED; + + if (grow_buffers(sh, conf->raid_disks)) { + shrink_buffers(sh, conf->raid_disks); + kmem_cache_free(sc, sh); + return 1; + } + /* we just created an active stripe so... */ + atomic_set(&sh->count, 1); + atomic_inc(&conf->active_stripes); + INIT_LIST_HEAD(&sh->lru); + release_stripe(sh); + } + return 0; +} + +static void shrink_stripes(raid6_conf_t *conf) +{ + struct stripe_head *sh; + + while (1) { + spin_lock_irq(&conf->device_lock); + sh = get_free_stripe(conf); + spin_unlock_irq(&conf->device_lock); + if (!sh) + break; + if (atomic_read(&sh->count)) + BUG(); + shrink_buffers(sh, conf->raid_disks); + kmem_cache_free(conf->slab_cache, sh); + atomic_dec(&conf->active_stripes); + } + kmem_cache_destroy(conf->slab_cache); + conf->slab_cache = NULL; +} + +static int raid6_end_read_request (struct bio * bi, unsigned int bytes_done, + int error) +{ + struct stripe_head *sh = bi->bi_private; + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); + + if (bi->bi_size) + return 1; + + for (i=0 ; idev[i].req) + break; + + PRINTK("end_read_request %llu/%d, count: %d, uptodate %d.\n", + (unsigned long long)sh->sector, i, atomic_read(&sh->count), + uptodate); + if (i == disks) { + BUG(); + return 0; + } + + if (uptodate) { +#if 0 + struct bio *bio; + unsigned long flags; + spin_lock_irqsave(&conf->device_lock, flags); + /* we can return a buffer if we bypassed the cache or + * if the top buffer is not in highmem. If there are + * multiple buffers, leave the extra work to + * handle_stripe + */ + buffer = sh->bh_read[i]; + if (buffer && + (!PageHighMem(buffer->b_page) + || buffer->b_page == bh->b_page ) + ) { + sh->bh_read[i] = buffer->b_reqnext; + buffer->b_reqnext = NULL; + } else + buffer = NULL; + spin_unlock_irqrestore(&conf->device_lock, flags); + if (sh->bh_page[i]==bh->b_page) + set_buffer_uptodate(bh); + if (buffer) { + if (buffer->b_page != bh->b_page) + memcpy(buffer->b_data, bh->b_data, bh->b_size); + buffer->b_end_io(buffer, 1); + } +#else + set_bit(R5_UPTODATE, &sh->dev[i].flags); +#endif + } else { + md_error(conf->mddev, conf->disks[i].rdev); + clear_bit(R5_UPTODATE, &sh->dev[i].flags); + } + atomic_dec(&conf->disks[i].rdev->nr_pending); +#if 0 + /* must restore b_page before unlocking buffer... */ + if (sh->bh_page[i] != bh->b_page) { + bh->b_page = sh->bh_page[i]; + bh->b_data = page_address(bh->b_page); + clear_buffer_uptodate(bh); + } +#endif + clear_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(STRIPE_HANDLE, &sh->state); + release_stripe(sh); + return 0; +} + +static int raid6_end_write_request (struct bio *bi, unsigned int bytes_done, + int error) +{ + struct stripe_head *sh = bi->bi_private; + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks, i; + unsigned long flags; + int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags); + + if (bi->bi_size) + return 1; + + for (i=0 ; idev[i].req) + break; + + PRINTK("end_write_request %llu/%d, count %d, uptodate: %d.\n", + (unsigned long long)sh->sector, i, atomic_read(&sh->count), + uptodate); + if (i == disks) { + BUG(); + return 0; + } + + spin_lock_irqsave(&conf->device_lock, flags); + if (!uptodate) + md_error(conf->mddev, conf->disks[i].rdev); + + atomic_dec(&conf->disks[i].rdev->nr_pending); + + clear_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(STRIPE_HANDLE, &sh->state); + __release_stripe(conf, sh); + spin_unlock_irqrestore(&conf->device_lock, flags); + return 0; +} + + +static sector_t compute_blocknr(struct stripe_head *sh, int i); + +static void raid6_build_block (struct stripe_head *sh, int i) +{ + struct r5dev *dev = &sh->dev[i]; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, sh->raid_conf->raid_disks); + + bio_init(&dev->req); + dev->req.bi_io_vec = &dev->vec; + dev->req.bi_vcnt++; + dev->vec.bv_page = dev->page; + dev->vec.bv_len = STRIPE_SIZE; + dev->vec.bv_offset = 0; + + dev->req.bi_sector = sh->sector; + dev->req.bi_private = sh; + + dev->flags = 0; + if (i != pd_idx && i != qd_idx) + dev->sector = compute_blocknr(sh, i); +} + +static void error(mddev_t *mddev, mdk_rdev_t *rdev) +{ + char b[BDEVNAME_SIZE]; + raid6_conf_t *conf = (raid6_conf_t *) mddev->private; + PRINTK("raid6: error called\n"); + + if (!rdev->faulty) { + mddev->sb_dirty = 1; + conf->working_disks--; + if (rdev->in_sync) { + mddev->degraded++; + conf->failed_disks++; + rdev->in_sync = 0; + /* + * if recovery was running, make sure it aborts. + */ + set_bit(MD_RECOVERY_ERR, &mddev->recovery); + } + rdev->faulty = 1; + printk (KERN_ALERT + "raid6: Disk failure on %s, disabling device." + " Operation continuing on %d devices\n", + bdevname(rdev->bdev,b), conf->working_disks); + } +} + +/* + * Input: a 'big' sector number, + * Output: index of the data and parity disk, and the sector # in them. + */ +static unsigned long raid6_compute_sector(sector_t r_sector, unsigned int raid_disks, + unsigned int data_disks, unsigned int * dd_idx, + unsigned int * pd_idx, raid6_conf_t *conf) +{ + long stripe; + unsigned long chunk_number; + unsigned int chunk_offset; + sector_t new_sector; + int sectors_per_chunk = conf->chunk_size >> 9; + + /* First compute the information on this sector */ + + /* + * Compute the chunk number and the sector offset inside the chunk + */ + chunk_offset = sector_div(r_sector, sectors_per_chunk); + chunk_number = r_sector; + if ( r_sector != chunk_number ) { + printk(KERN_CRIT "raid6: ERROR: r_sector = %llu, chunk_number = %lu\n", + (unsigned long long)r_sector, (unsigned long)chunk_number); + BUG(); + } + + /* + * Compute the stripe number + */ + stripe = chunk_number / data_disks; + + /* + * Compute the data disk and parity disk indexes inside the stripe + */ + *dd_idx = chunk_number % data_disks; + + /* + * Select the parity disk based on the user selected algorithm. + */ + + /**** FIX THIS ****/ + switch (conf->algorithm) { + case ALGORITHM_LEFT_ASYMMETRIC: + *pd_idx = raid_disks - 1 - (stripe % raid_disks); + if (*pd_idx == raid_disks-1) + (*dd_idx)++; /* Q D D D P */ + else if (*dd_idx >= *pd_idx) + (*dd_idx) += 2; /* D D P Q D */ + break; + case ALGORITHM_RIGHT_ASYMMETRIC: + *pd_idx = stripe % raid_disks; + if (*pd_idx == raid_disks-1) + (*dd_idx)++; /* Q D D D P */ + else if (*dd_idx >= *pd_idx) + (*dd_idx) += 2; /* D D P Q D */ + break; + case ALGORITHM_LEFT_SYMMETRIC: + *pd_idx = raid_disks - 1 - (stripe % raid_disks); + *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; + break; + case ALGORITHM_RIGHT_SYMMETRIC: + *pd_idx = stripe % raid_disks; + *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks; + break; + default: + printk (KERN_CRIT "raid6: unsupported algorithm %d\n", + conf->algorithm); + } + + PRINTK("raid6: chunk_number = %lu, pd_idx = %u, dd_idx = %u\n", + chunk_number, *pd_idx, *dd_idx); + + /* + * Finally, compute the new sector number + */ + new_sector = stripe * sectors_per_chunk + chunk_offset; + return new_sector; +} + + +static sector_t compute_blocknr(struct stripe_head *sh, int i) +{ + raid6_conf_t *conf = sh->raid_conf; + int raid_disks = conf->raid_disks, data_disks = raid_disks - 2; + sector_t new_sector = sh->sector, check; + int sectors_per_chunk = conf->chunk_size >> 9; + long stripe; + int chunk_offset; + int chunk_number, dummy1, dummy2, dd_idx = i; + sector_t r_sector; + int i0 = i; + + chunk_offset = sector_div(new_sector, sectors_per_chunk); + stripe = new_sector; + if ( new_sector != stripe ) { + printk(KERN_CRIT "raid6: ERROR: new_sector = %llu, stripe = %lu\n", + (unsigned long long)new_sector, (unsigned long)stripe); + BUG(); + } + + switch (conf->algorithm) { + case ALGORITHM_LEFT_ASYMMETRIC: + case ALGORITHM_RIGHT_ASYMMETRIC: + if (sh->pd_idx == raid_disks-1) + i--; /* Q D D D P */ + else if (i > sh->pd_idx) + i -= 2; /* D D P Q D */ + break; + case ALGORITHM_LEFT_SYMMETRIC: + case ALGORITHM_RIGHT_SYMMETRIC: + if (sh->pd_idx == raid_disks-1) + i--; /* Q D D D P */ + else { + /* D D P Q D */ + if (i < sh->pd_idx) + i += raid_disks; + i -= (sh->pd_idx + 2); + } + break; + default: + printk (KERN_CRIT "raid6: unsupported algorithm %d\n", + conf->algorithm); + } + + PRINTK("raid6: compute_blocknr: pd_idx = %u, i0 = %u, i = %u\n", sh->pd_idx, i0, i); + + chunk_number = stripe * data_disks + i; + r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset; + + check = raid6_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); + if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { + printk(KERN_CRIT "raid6: compute_blocknr: map not correct\n"); + return 0; + } + return r_sector; +} + + + +/* + * Copy data between a page in the stripe cache, and one or more bion + * The page could align with the middle of the bio, or there could be + * several bion, each with several bio_vecs, which cover part of the page + * Multiple bion are linked together on bi_next. There may be extras + * at the end of this list. We ignore them. + */ +static void copy_data(int frombio, struct bio *bio, + struct page *page, + sector_t sector) +{ + char *pa = page_address(page); + struct bio_vec *bvl; + int i; + + for (;bio && bio->bi_sector < sector+STRIPE_SECTORS; + bio = r5_next_bio(bio, sector) ) { + int page_offset; + if (bio->bi_sector >= sector) + page_offset = (signed)(bio->bi_sector - sector) * 512; + else + page_offset = (signed)(sector - bio->bi_sector) * -512; + bio_for_each_segment(bvl, bio, i) { + int len = bio_iovec_idx(bio,i)->bv_len; + int clen; + int b_offset = 0; + + if (page_offset < 0) { + b_offset = -page_offset; + page_offset += b_offset; + len -= b_offset; + } + + if (len > 0 && page_offset + len > STRIPE_SIZE) + clen = STRIPE_SIZE - page_offset; + else clen = len; + + if (clen > 0) { + char *ba = __bio_kmap_atomic(bio, i, KM_USER0); + if (frombio) + memcpy(pa+page_offset, ba+b_offset, clen); + else + memcpy(ba+b_offset, pa+page_offset, clen); + __bio_kunmap_atomic(ba, KM_USER0); + } + if (clen < len) /* hit end of page */ + break; + page_offset += len; + } + } +} + +#define check_xor() do { \ + if (count == MAX_XOR_BLOCKS) { \ + xor_block(count, STRIPE_SIZE, ptr); \ + count = 1; \ + } \ + } while(0) + +/* Compute P and Q syndromes */ +static void compute_parity(struct stripe_head *sh, int method) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = conf->raid_disks, count; + struct bio *chosen; + /**** FIX THIS: This could be very bad if disks is close to 256 ****/ + void *ptrs[disks]; + + qd_idx = raid6_next_disk(pd_idx, disks); + d0_idx = raid6_next_disk(qd_idx, disks); + + PRINTK("compute_parity, stripe %llu, method %d\n", + (unsigned long long)sh->sector, method); + + switch(method) { + case READ_MODIFY_WRITE: + BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */ + case RECONSTRUCT_WRITE: + case UPDATE_PARITY: /* Is this right? */ + for (i= disks; i-- ;) + if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) { + chosen = sh->dev[i].towrite; + sh->dev[i].towrite = NULL; + if (sh->dev[i].written) BUG(); + sh->dev[i].written = chosen; + } + break; + case CHECK_PARITY: + BUG(); /* Not implemented yet */ + } + + for (i = disks; i--;) + if (sh->dev[i].written) { + sector_t sector = sh->dev[i].sector; + struct bio *wbi = sh->dev[i].written; + while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) { + copy_data(1, wbi, sh->dev[i].page, sector); + wbi = r5_next_bio(wbi, sector); + } + + set_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(R5_UPTODATE, &sh->dev[i].flags); + } + +// switch(method) { +// case RECONSTRUCT_WRITE: +// case CHECK_PARITY: +// case UPDATE_PARITY: + /* Note that unlike RAID-5, the ordering of the disks matters greatly. */ + /* FIX: Is this ordering of drives even remotely optimal? */ + count = 0; + i = d0_idx; + do { + ptrs[count++] = page_address(sh->dev[i].page); + + i = raid6_next_disk(i, disks); + } while ( i != d0_idx ); +// break; +// } + + raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs); + + switch(method) { + case RECONSTRUCT_WRITE: + set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); + set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); + set_bit(R5_LOCKED, &sh->dev[pd_idx].flags); + set_bit(R5_LOCKED, &sh->dev[qd_idx].flags); + break; + case UPDATE_PARITY: + set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags); + set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags); + break; + } +} + +/* Compute one missing block */ +static void compute_block_1(struct stripe_head *sh, int dd_idx) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, count, disks = conf->raid_disks; + void *ptr[MAX_XOR_BLOCKS], *p; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + + PRINTK("compute_block_1, stripe %llu, idx %d\n", + (unsigned long long)sh->sector, dd_idx); + + if ( dd_idx == qd_idx ) { + /* We're actually computing the Q drive */ + compute_parity(sh, UPDATE_PARITY); + } else { + ptr[0] = page_address(sh->dev[dd_idx].page); + memset(ptr[0], 0, STRIPE_SIZE); + count = 1; + for (i = disks ; i--; ) { + if (i == dd_idx || i == qd_idx) + continue; + p = page_address(sh->dev[i].page); + if (test_bit(R5_UPTODATE, &sh->dev[i].flags)) + ptr[count++] = p; + else + PRINTK("compute_block() %d, stripe %llu, %d" + " not present\n", dd_idx, + (unsigned long long)sh->sector, i); + + check_xor(); + } + if (count != 1) + xor_block(count, STRIPE_SIZE, ptr); + set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags); + } +} + +/* Compute two missing blocks */ +static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2) +{ + raid6_conf_t *conf = sh->raid_conf; + int i, count, disks = conf->raid_disks; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + int d0_idx = raid6_next_disk(qd_idx, disks); + int faila, failb; + + /* faila and failb are disk numbers relative to d0_idx */ + /* pd_idx become disks-2 and qd_idx become disks-1 */ + faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx; + failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx; + + BUG_ON(faila == failb); + if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; } + + PRINTK("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n", + (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb); + + if ( failb == disks-1 ) { + /* Q disk is one of the missing disks */ + if ( faila == disks-2 ) { + /* Missing P+Q, just recompute */ + compute_parity(sh, UPDATE_PARITY); + return; + } else { + /* We're missing D+Q; recompute D from P */ + compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1); + compute_parity(sh, UPDATE_PARITY); /* Is this necessary? */ + return; + } + } + + /* We're missing D+P or D+D; build pointer table */ + { + /**** FIX THIS: This could be very bad if disks is close to 256 ****/ + void *ptrs[disks]; + + count = 0; + i = d0_idx; + do { + ptrs[count++] = page_address(sh->dev[i].page); + i = raid6_next_disk(i, disks); + } while ( i != d0_idx ); + + if ( failb == disks-2 ) { + /* We're missing D+P. */ + raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs); + } else { + /* We're missing D+D. */ + raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs); + } + + /* Both the above update both missing blocks */ + set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags); + set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags); + } +} + + +/* + * Each stripe/dev can have one or more bion attached. + * toread/towrite point to the first in a chain. + * The bi_next chain must be in order. + */ +static void add_stripe_bio (struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite) +{ + struct bio **bip; + raid6_conf_t *conf = sh->raid_conf; + + PRINTK("adding bh b#%llu to stripe s#%llu\n", + (unsigned long long)bi->bi_sector, + (unsigned long long)sh->sector); + + + spin_lock(&sh->lock); + spin_lock_irq(&conf->device_lock); + if (forwrite) + bip = &sh->dev[dd_idx].towrite; + else + bip = &sh->dev[dd_idx].toread; + while (*bip && (*bip)->bi_sector < bi->bi_sector) { + BUG_ON((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector); + bip = & (*bip)->bi_next; + } +/* FIXME do I need to worry about overlapping bion */ + if (*bip && bi->bi_next && (*bip) != bi->bi_next) + BUG(); + if (*bip) + bi->bi_next = *bip; + *bip = bi; + bi->bi_phys_segments ++; + spin_unlock_irq(&conf->device_lock); + spin_unlock(&sh->lock); + + PRINTK("added bi b#%llu to stripe s#%llu, disk %d.\n", + (unsigned long long)bi->bi_sector, + (unsigned long long)sh->sector, dd_idx); + + if (forwrite) { + /* check if page is coverred */ + sector_t sector = sh->dev[dd_idx].sector; + for (bi=sh->dev[dd_idx].towrite; + sector < sh->dev[dd_idx].sector + STRIPE_SECTORS && + bi && bi->bi_sector <= sector; + bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) { + if (bi->bi_sector + (bi->bi_size>>9) >= sector) + sector = bi->bi_sector + (bi->bi_size>>9); + } + if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS) + set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags); + } +} + + +/* + * handle_stripe - do things to a stripe. + * + * We lock the stripe and then examine the state of various bits + * to see what needs to be done. + * Possible results: + * return some read request which now have data + * return some write requests which are safely on disc + * schedule a read on some buffers + * schedule a write of some buffers + * return confirmation of parity correctness + * + * Parity calculations are done inside the stripe lock + * buffers are taken off read_list or write_list, and bh_cache buffers + * get BH_Lock set before the stripe lock is released. + * + */ + +static void handle_stripe(struct stripe_head *sh) +{ + raid6_conf_t *conf = sh->raid_conf; + int disks = conf->raid_disks; + struct bio *return_bi= NULL; + struct bio *bi; + int i; + int syncing; + int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; + int non_overwrite = 0; + int failed_num[2] = {0, 0}; + struct r5dev *dev, *pdev, *qdev; + int pd_idx = sh->pd_idx; + int qd_idx = raid6_next_disk(pd_idx, disks); + int p_failed, q_failed; + + PRINTK("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d, qd_idx=%d\n", + (unsigned long long)sh->sector, sh->state, atomic_read(&sh->count), + pd_idx, qd_idx); + + spin_lock(&sh->lock); + clear_bit(STRIPE_HANDLE, &sh->state); + clear_bit(STRIPE_DELAYED, &sh->state); + + syncing = test_bit(STRIPE_SYNCING, &sh->state); + /* Now to look around and see what can be done */ + + for (i=disks; i--; ) { + mdk_rdev_t *rdev; + dev = &sh->dev[i]; + clear_bit(R5_Insync, &dev->flags); + clear_bit(R5_Syncio, &dev->flags); + + PRINTK("check %d: state 0x%lx read %p write %p written %p\n", + i, dev->flags, dev->toread, dev->towrite, dev->written); + /* maybe we can reply to a read */ + if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) { + struct bio *rbi, *rbi2; + PRINTK("Return read for disc %d\n", i); + spin_lock_irq(&conf->device_lock); + rbi = dev->toread; + dev->toread = NULL; + spin_unlock_irq(&conf->device_lock); + while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) { + copy_data(0, rbi, dev->page, dev->sector); + rbi2 = r5_next_bio(rbi, dev->sector); + spin_lock_irq(&conf->device_lock); + if (--rbi->bi_phys_segments == 0) { + rbi->bi_next = return_bi; + return_bi = rbi; + } + spin_unlock_irq(&conf->device_lock); + rbi = rbi2; + } + } + + /* now count some things */ + if (test_bit(R5_LOCKED, &dev->flags)) locked++; + if (test_bit(R5_UPTODATE, &dev->flags)) uptodate++; + + + if (dev->toread) to_read++; + if (dev->towrite) { + to_write++; + if (!test_bit(R5_OVERWRITE, &dev->flags)) + non_overwrite++; + } + if (dev->written) written++; + rdev = conf->disks[i].rdev; /* FIXME, should I be looking rdev */ + if (!rdev || !rdev->in_sync) { + if ( failed < 2 ) + failed_num[failed] = i; + failed++; + } else + set_bit(R5_Insync, &dev->flags); + } + PRINTK("locked=%d uptodate=%d to_read=%d" + " to_write=%d failed=%d failed_num=%d,%d\n", + locked, uptodate, to_read, to_write, failed, + failed_num[0], failed_num[1]); + /* check if the array has lost >2 devices and, if so, some requests might + * need to be failed + */ + if (failed > 2 && to_read+to_write+written) { + spin_lock_irq(&conf->device_lock); + for (i=disks; i--; ) { + /* fail all writes first */ + bi = sh->dev[i].towrite; + sh->dev[i].towrite = NULL; + if (bi) to_write--; + + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ + struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + md_write_end(conf->mddev); + bi->bi_next = return_bi; + return_bi = bi; + } + bi = nextbi; + } + /* and fail all 'written' */ + bi = sh->dev[i].written; + sh->dev[i].written = NULL; + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS) { + struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + md_write_end(conf->mddev); + bi->bi_next = return_bi; + return_bi = bi; + } + bi = bi2; + } + + /* fail any reads if this device is non-operational */ + if (!test_bit(R5_Insync, &sh->dev[i].flags)) { + bi = sh->dev[i].toread; + sh->dev[i].toread = NULL; + if (bi) to_read--; + while (bi && bi->bi_sector < sh->dev[i].sector + STRIPE_SECTORS){ + struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector); + clear_bit(BIO_UPTODATE, &bi->bi_flags); + if (--bi->bi_phys_segments == 0) { + bi->bi_next = return_bi; + return_bi = bi; + } + bi = nextbi; + } + } + } + spin_unlock_irq(&conf->device_lock); + } + if (failed > 2 && syncing) { + md_done_sync(conf->mddev, STRIPE_SECTORS,0); + clear_bit(STRIPE_SYNCING, &sh->state); + syncing = 0; + } + + /* + * might be able to return some write requests if the parity blocks + * are safe, or on a failed drive + */ + pdev = &sh->dev[pd_idx]; + p_failed = (failed >= 1 && failed_num[0] == pd_idx) + || (failed >= 2 && failed_num[1] == pd_idx); + qdev = &sh->dev[qd_idx]; + q_failed = (failed >= 1 && failed_num[0] == qd_idx) + || (failed >= 2 && failed_num[1] == qd_idx); + + if ( written && + ( p_failed || ((test_bit(R5_Insync, &pdev->flags) + && !test_bit(R5_LOCKED, &pdev->flags) + && test_bit(R5_UPTODATE, &pdev->flags))) ) && + ( q_failed || ((test_bit(R5_Insync, &qdev->flags) + && !test_bit(R5_LOCKED, &qdev->flags) + && test_bit(R5_UPTODATE, &qdev->flags))) ) ) { + /* any written block on an uptodate or failed drive can be + * returned. Note that if we 'wrote' to a failed drive, + * it will be UPTODATE, but never LOCKED, so we don't need + * to test 'failed' directly. + */ + for (i=disks; i--; ) + if (sh->dev[i].written) { + dev = &sh->dev[i]; + if (!test_bit(R5_LOCKED, &dev->flags) && + test_bit(R5_UPTODATE, &dev->flags) ) { + /* We can return any write requests */ + struct bio *wbi, *wbi2; + PRINTK("Return write for stripe %llu disc %d\n", + (unsigned long long)sh->sector, i); + spin_lock_irq(&conf->device_lock); + wbi = dev->written; + dev->written = NULL; + while (wbi && wbi->bi_sector < dev->sector + STRIPE_SECTORS) { + wbi2 = r5_next_bio(wbi, dev->sector); + if (--wbi->bi_phys_segments == 0) { + md_write_end(conf->mddev); + wbi->bi_next = return_bi; + return_bi = wbi; + } + wbi = wbi2; + } + spin_unlock_irq(&conf->device_lock); + } + } + } + + /* Now we might consider reading some blocks, either to check/generate + * parity, or to satisfy requests + * or to load a block that is being partially written. + */ + if (to_read || non_overwrite || (syncing && (uptodate+failed < disks))) { + for (i=disks; i--;) { + dev = &sh->dev[i]; + if (!test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && + (dev->toread || + (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) || + syncing || + (failed >= 1 && (sh->dev[failed_num[0]].toread || + (sh->dev[failed_num[0]].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num[0]].flags)))) || + (failed >= 2 && (sh->dev[failed_num[1]].toread || + (sh->dev[failed_num[1]].towrite && !test_bit(R5_OVERWRITE, &sh->dev[failed_num[1]].flags)))) + ) + ) { + /* we would like to get this block, possibly + * by computing it, but we might not be able to + */ + if (uptodate == disks-1) { + PRINTK("Computing stripe %llu block %d\n", + (unsigned long long)sh->sector, i); + compute_block_1(sh, i); + uptodate++; + } else if ( uptodate == disks-2 && failed >= 2 ) { + /* Computing 2-failure is *very* expensive; only do it if failed >= 2 */ + int other; + for (other=disks; other--;) { + if ( other == i ) + continue; + if ( !test_bit(R5_UPTODATE, &sh->dev[other].flags) ) + break; + } + BUG_ON(other < 0); + PRINTK("Computing stripe %llu blocks %d,%d\n", + (unsigned long long)sh->sector, i, other); + compute_block_2(sh, i, other); + uptodate += 2; + } else if (test_bit(R5_Insync, &dev->flags)) { + set_bit(R5_LOCKED, &dev->flags); + set_bit(R5_Wantread, &dev->flags); +#if 0 + /* if I am just reading this block and we don't have + a failed drive, or any pending writes then sidestep the cache */ + if (sh->bh_read[i] && !sh->bh_read[i]->b_reqnext && + ! syncing && !failed && !to_write) { + sh->bh_cache[i]->b_page = sh->bh_read[i]->b_page; + sh->bh_cache[i]->b_data = sh->bh_read[i]->b_data; + } +#endif + locked++; + PRINTK("Reading block %d (sync=%d)\n", + i, syncing); + if (syncing) + md_sync_acct(conf->disks[i].rdev, STRIPE_SECTORS); + } + } + } + set_bit(STRIPE_HANDLE, &sh->state); + } + + /* now to consider writing and what else, if anything should be read */ + if (to_write) { + int rcw=0, must_compute=0; + for (i=disks ; i--;) { + dev = &sh->dev[i]; + /* Would I have to read this buffer for reconstruct_write */ + if (!test_bit(R5_OVERWRITE, &dev->flags) + && i != pd_idx && i != qd_idx + && (!test_bit(R5_LOCKED, &dev->flags) +#if 0 + || sh->bh_page[i] != bh->b_page +#endif + ) && + !test_bit(R5_UPTODATE, &dev->flags)) { + if (test_bit(R5_Insync, &dev->flags)) rcw++; + else { + PRINTK("raid6: must_compute: disk %d flags=%#lx\n", i, dev->flags); + must_compute++; + } + } + } + PRINTK("for sector %llu, rcw=%d, must_compute=%d\n", + (unsigned long long)sh->sector, rcw, must_compute); + set_bit(STRIPE_HANDLE, &sh->state); + + if (rcw > 0) + /* want reconstruct write, but need to get some data */ + for (i=disks; i--;) { + dev = &sh->dev[i]; + if (!test_bit(R5_OVERWRITE, &dev->flags) + && !(failed == 0 && (i == pd_idx || i == qd_idx)) + && !test_bit(R5_LOCKED, &dev->flags) && !test_bit(R5_UPTODATE, &dev->flags) && + test_bit(R5_Insync, &dev->flags)) { + if (test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + { + PRINTK("Read_old stripe %llu block %d for Reconstruct\n", + (unsigned long long)sh->sector, i); + set_bit(R5_LOCKED, &dev->flags); + set_bit(R5_Wantread, &dev->flags); + locked++; + } else { + PRINTK("Request delayed stripe %llu block %d for Reconstruct\n", + (unsigned long long)sh->sector, i); + set_bit(STRIPE_DELAYED, &sh->state); + set_bit(STRIPE_HANDLE, &sh->state); + } + } + } + /* now if nothing is locked, and if we have enough data, we can start a write request */ + if (locked == 0 && rcw == 0) { + if ( must_compute > 0 ) { + /* We have failed blocks and need to compute them */ + switch ( failed ) { + case 0: BUG(); + case 1: compute_block_1(sh, failed_num[0]); break; + case 2: compute_block_2(sh, failed_num[0], failed_num[1]); break; + default: BUG(); /* This request should have been failed? */ + } + } + + PRINTK("Computing parity for stripe %llu\n", (unsigned long long)sh->sector); + compute_parity(sh, RECONSTRUCT_WRITE); + /* now every locked buffer is ready to be written */ + for (i=disks; i--;) + if (test_bit(R5_LOCKED, &sh->dev[i].flags)) { + PRINTK("Writing stripe %llu block %d\n", + (unsigned long long)sh->sector, i); + locked++; + set_bit(R5_Wantwrite, &sh->dev[i].flags); +#if 0 /**** FIX: I don't understand the logic here... ****/ + if (!test_bit(R5_Insync, &sh->dev[i].flags) + || ((i==pd_idx || i==qd_idx) && failed == 0)) /* FIX? */ + set_bit(STRIPE_INSYNC, &sh->state); +#endif + } + if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) { + atomic_dec(&conf->preread_active_stripes); + if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) + md_wakeup_thread(conf->mddev->thread); + } + } + } + + /* maybe we need to check and possibly fix the parity for this stripe + * Any reads will already have been scheduled, so we just see if enough data + * is available + */ + if (syncing && locked == 0 && + !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 2) { + set_bit(STRIPE_HANDLE, &sh->state); +#if 0 /* RAID-6: Don't support CHECK PARITY yet */ + if (failed == 0) { + char *pagea; + if (uptodate != disks) + BUG(); + compute_parity(sh, CHECK_PARITY); + uptodate--; + pagea = page_address(sh->dev[pd_idx].page); + if ((*(u32*)pagea) == 0 && + !memcmp(pagea, pagea+4, STRIPE_SIZE-4)) { + /* parity is correct (on disc, not in buffer any more) */ + set_bit(STRIPE_INSYNC, &sh->state); + } + } +#endif + if (!test_bit(STRIPE_INSYNC, &sh->state)) { + int failed_needupdate[2]; + struct r5dev *adev, *bdev; + + if ( failed < 1 ) + failed_num[0] = pd_idx; + if ( failed < 2 ) + failed_num[1] = (failed_num[0] == qd_idx) ? pd_idx : qd_idx; + + failed_needupdate[0] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[0]].flags); + failed_needupdate[1] = !test_bit(R5_UPTODATE, &sh->dev[failed_num[1]].flags); + + PRINTK("sync: failed=%d num=%d,%d fnu=%u%u\n", + failed, failed_num[0], failed_num[1], failed_needupdate[0], failed_needupdate[1]); + +#if 0 /* RAID-6: This code seems to require that CHECK_PARITY destroys the uptodateness of the parity */ + /* should be able to compute the missing block(s) and write to spare */ + if ( failed_needupdate[0] ^ failed_needupdate[1] ) { + if (uptodate+1 != disks) + BUG(); + compute_block_1(sh, failed_needupdate[0] ? failed_num[0] : failed_num[1]); + uptodate++; + } else if ( failed_needupdate[0] & failed_needupdate[1] ) { + if (uptodate+2 != disks) + BUG(); + compute_block_2(sh, failed_num[0], failed_num[1]); + uptodate += 2; + } +#else + compute_block_2(sh, failed_num[0], failed_num[1]); + uptodate += failed_needupdate[0] + failed_needupdate[1]; +#endif + + if (uptodate != disks) + BUG(); + + PRINTK("Marking for sync stripe %llu blocks %d,%d\n", + (unsigned long long)sh->sector, failed_num[0], failed_num[1]); + + /**** FIX: Should we really do both of these unconditionally? ****/ + adev = &sh->dev[failed_num[0]]; + locked += !test_bit(R5_LOCKED, &adev->flags); + set_bit(R5_LOCKED, &adev->flags); + set_bit(R5_Wantwrite, &adev->flags); + bdev = &sh->dev[failed_num[1]]; + locked += !test_bit(R5_LOCKED, &bdev->flags); + set_bit(R5_LOCKED, &bdev->flags); + set_bit(R5_Wantwrite, &bdev->flags); + + set_bit(STRIPE_INSYNC, &sh->state); + set_bit(R5_Syncio, &adev->flags); + set_bit(R5_Syncio, &bdev->flags); + } + } + if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { + md_done_sync(conf->mddev, STRIPE_SECTORS,1); + clear_bit(STRIPE_SYNCING, &sh->state); + } + + spin_unlock(&sh->lock); + + while ((bi=return_bi)) { + int bytes = bi->bi_size; + + return_bi = bi->bi_next; + bi->bi_next = NULL; + bi->bi_size = 0; + bi->bi_end_io(bi, bytes, 0); + } + for (i=disks; i-- ;) { + int rw; + struct bio *bi; + mdk_rdev_t *rdev; + if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) + rw = 1; + else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags)) + rw = 0; + else + continue; + + bi = &sh->dev[i].req; + + bi->bi_rw = rw; + if (rw) + bi->bi_end_io = raid6_end_write_request; + else + bi->bi_end_io = raid6_end_read_request; + + spin_lock_irq(&conf->device_lock); + rdev = conf->disks[i].rdev; + if (rdev && rdev->faulty) + rdev = NULL; + if (rdev) + atomic_inc(&rdev->nr_pending); + spin_unlock_irq(&conf->device_lock); + + if (rdev) { + if (test_bit(R5_Syncio, &sh->dev[i].flags)) + md_sync_acct(rdev, STRIPE_SECTORS); + + bi->bi_bdev = rdev->bdev; + PRINTK("for %llu schedule op %ld on disc %d\n", + (unsigned long long)sh->sector, bi->bi_rw, i); + atomic_inc(&sh->count); + bi->bi_sector = sh->sector + rdev->data_offset; + bi->bi_flags = 1 << BIO_UPTODATE; + bi->bi_vcnt = 1; + bi->bi_idx = 0; + bi->bi_io_vec = &sh->dev[i].vec; + bi->bi_io_vec[0].bv_len = STRIPE_SIZE; + bi->bi_io_vec[0].bv_offset = 0; + bi->bi_size = STRIPE_SIZE; + bi->bi_next = NULL; + generic_make_request(bi); + } else { + PRINTK("skip op %ld on disc %d for sector %llu\n", + bi->bi_rw, i, (unsigned long long)sh->sector); + clear_bit(R5_LOCKED, &sh->dev[i].flags); + set_bit(STRIPE_HANDLE, &sh->state); + } + } +} + +static inline void raid6_activate_delayed(raid6_conf_t *conf) +{ + if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) { + while (!list_empty(&conf->delayed_list)) { + struct list_head *l = conf->delayed_list.next; + struct stripe_head *sh; + sh = list_entry(l, struct stripe_head, lru); + list_del_init(l); + clear_bit(STRIPE_DELAYED, &sh->state); + if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) + atomic_inc(&conf->preread_active_stripes); + list_add_tail(&sh->lru, &conf->handle_list); + } + } +} +static void raid6_unplug_device(void *data) +{ + request_queue_t *q = data; + mddev_t *mddev = q->queuedata; + raid6_conf_t *conf = mddev_to_conf(mddev); + unsigned long flags; + + spin_lock_irqsave(&conf->device_lock, flags); + + if (blk_remove_plug(q)) + raid6_activate_delayed(conf); + md_wakeup_thread(mddev->thread); + + spin_unlock_irqrestore(&conf->device_lock, flags); +} + +static inline void raid6_plug_device(raid6_conf_t *conf) +{ + spin_lock_irq(&conf->device_lock); + blk_plug_device(conf->mddev->queue); + spin_unlock_irq(&conf->device_lock); +} + +static int make_request (request_queue_t *q, struct bio * bi) +{ + mddev_t *mddev = q->queuedata; + raid6_conf_t *conf = mddev_to_conf(mddev); + const unsigned int raid_disks = conf->raid_disks; + const unsigned int data_disks = raid_disks - 2; + unsigned int dd_idx, pd_idx; + sector_t new_sector; + sector_t logical_sector, last_sector; + struct stripe_head *sh; + + logical_sector = bi->bi_sector & ~(STRIPE_SECTORS-1); + last_sector = bi->bi_sector + (bi->bi_size>>9); + + bi->bi_next = NULL; + bi->bi_phys_segments = 1; /* over-loaded to count active stripes */ + if ( bio_data_dir(bi) == WRITE ) + md_write_start(mddev); + for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) { + + new_sector = raid6_compute_sector(logical_sector, + raid_disks, data_disks, &dd_idx, &pd_idx, conf); + + PRINTK("raid6: make_request, sector %Lu logical %Lu\n", + (unsigned long long)new_sector, + (unsigned long long)logical_sector); + + sh = get_active_stripe(conf, new_sector, pd_idx, (bi->bi_rw&RWA_MASK)); + if (sh) { + + add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK)); + + raid6_plug_device(conf); + handle_stripe(sh); + release_stripe(sh); + } else { + /* cannot get stripe for read-ahead, just give-up */ + clear_bit(BIO_UPTODATE, &bi->bi_flags); + break; + } + + } + spin_lock_irq(&conf->device_lock); + if (--bi->bi_phys_segments == 0) { + int bytes = bi->bi_size; + + if ( bio_data_dir(bi) == WRITE ) + md_write_end(mddev); + bi->bi_size = 0; + bi->bi_end_io(bi, bytes, 0); + } + spin_unlock_irq(&conf->device_lock); + return 0; +} + +/* FIXME go_faster isn't used */ +static int sync_request (mddev_t *mddev, sector_t sector_nr, int go_faster) +{ + raid6_conf_t *conf = (raid6_conf_t *) mddev->private; + struct stripe_head *sh; + int sectors_per_chunk = conf->chunk_size >> 9; + sector_t x; + unsigned long stripe; + int chunk_offset; + int dd_idx, pd_idx; + unsigned long first_sector; + int raid_disks = conf->raid_disks; + int data_disks = raid_disks - 2; + + if (sector_nr >= mddev->size <<1) + /* just being told to finish up .. nothing to do */ + return 0; + + x = sector_nr; + chunk_offset = sector_div(x, sectors_per_chunk); + stripe = x; + BUG_ON(x != stripe); + + first_sector = raid6_compute_sector(stripe*data_disks*sectors_per_chunk + + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf); + sh = get_active_stripe(conf, sector_nr, pd_idx, 0); + spin_lock(&sh->lock); + set_bit(STRIPE_SYNCING, &sh->state); + clear_bit(STRIPE_INSYNC, &sh->state); + spin_unlock(&sh->lock); + + handle_stripe(sh); + release_stripe(sh); + + return STRIPE_SECTORS; +} + +/* + * This is our raid6 kernel thread. + * + * We scan the hash table for stripes which can be handled now. + * During the scan, completed stripes are saved for us by the interrupt + * handler, so that they will not have to wait for our next wakeup. + */ +static void raid6d (mddev_t *mddev) +{ + struct stripe_head *sh; + raid6_conf_t *conf = mddev_to_conf(mddev); + int handled; + + PRINTK("+++ raid6d active\n"); + + md_check_recovery(mddev); + md_handle_safemode(mddev); + + handled = 0; + spin_lock_irq(&conf->device_lock); + while (1) { + struct list_head *first; + + if (list_empty(&conf->handle_list) && + atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD && + !blk_queue_plugged(mddev->queue) && + !list_empty(&conf->delayed_list)) + raid6_activate_delayed(conf); + + if (list_empty(&conf->handle_list)) + break; + + first = conf->handle_list.next; + sh = list_entry(first, struct stripe_head, lru); + + list_del_init(first); + atomic_inc(&sh->count); + if (atomic_read(&sh->count)!= 1) + BUG(); + spin_unlock_irq(&conf->device_lock); + + handled++; + handle_stripe(sh); + release_stripe(sh); + + spin_lock_irq(&conf->device_lock); + } + PRINTK("%d stripes handled\n", handled); + + spin_unlock_irq(&conf->device_lock); + + PRINTK("--- raid6d inactive\n"); +} + +static int run (mddev_t *mddev) +{ + raid6_conf_t *conf; + int raid_disk, memory; + mdk_rdev_t *rdev; + struct disk_info *disk; + struct list_head *tmp; + + if (mddev->level != 6) { + PRINTK("raid6: md%d: raid level not set to 6 (%d)\n", mdidx(mddev), mddev->level); + return -EIO; + } + + mddev->private = kmalloc (sizeof (raid6_conf_t) + + mddev->raid_disks * sizeof(struct disk_info), + GFP_KERNEL); + if ((conf = mddev->private) == NULL) + goto abort; + memset (conf, 0, sizeof (*conf) + mddev->raid_disks * sizeof(struct disk_info) ); + conf->mddev = mddev; + + if ((conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) + goto abort; + memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); + + conf->device_lock = SPIN_LOCK_UNLOCKED; + init_waitqueue_head(&conf->wait_for_stripe); + INIT_LIST_HEAD(&conf->handle_list); + INIT_LIST_HEAD(&conf->delayed_list); + INIT_LIST_HEAD(&conf->inactive_list); + atomic_set(&conf->active_stripes, 0); + atomic_set(&conf->preread_active_stripes, 0); + + mddev->queue->unplug_fn = raid6_unplug_device; + + PRINTK("raid6: run(md%d) called.\n", mdidx(mddev)); + + ITERATE_RDEV(mddev,rdev,tmp) { + raid_disk = rdev->raid_disk; + if (raid_disk >= mddev->raid_disks + || raid_disk < 0) + continue; + disk = conf->disks + raid_disk; + + disk->rdev = rdev; + + if (rdev->in_sync) { + char b[BDEVNAME_SIZE]; + printk(KERN_INFO "raid6: device %s operational as raid" + " disk %d\n", bdevname(rdev->bdev,b), + raid_disk); + conf->working_disks++; + } + } + + conf->raid_disks = mddev->raid_disks; + + /* + * 0 for a fully functional array, 1 or 2 for a degraded array. + */ + mddev->degraded = conf->failed_disks = conf->raid_disks - conf->working_disks; + conf->mddev = mddev; + conf->chunk_size = mddev->chunk_size; + conf->level = mddev->level; + conf->algorithm = mddev->layout; + conf->max_nr_stripes = NR_STRIPES; + + if (conf->raid_disks < 4) { + printk(KERN_ERR "raid6: not enough configured devices for md%d (%d, minimum 4)\n", + mdidx(mddev), conf->raid_disks); + goto abort; + } + if (!conf->chunk_size || conf->chunk_size % 4) { + printk(KERN_ERR "raid6: invalid chunk size %d for md%d\n", + conf->chunk_size, mdidx(mddev)); + goto abort; + } + if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { + printk(KERN_ERR + "raid6: unsupported parity algorithm %d for md%d\n", + conf->algorithm, mdidx(mddev)); + goto abort; + } + if (mddev->degraded > 2) { + printk(KERN_ERR "raid6: not enough operational devices for md%d" + " (%d/%d failed)\n", + mdidx(mddev), conf->failed_disks, conf->raid_disks); + goto abort; + } + +#if 0 /* FIX: For now */ + if (mddev->degraded > 0 && + mddev->recovery_cp != MaxSector) { + printk(KERN_ERR "raid6: cannot start dirty degraded array for md%d\n", mdidx(mddev)); + goto abort; + } +#endif + + { + mddev->thread = md_register_thread(raid6d, mddev, "md%d_raid6"); + if (!mddev->thread) { + printk(KERN_ERR + "raid6: couldn't allocate thread for md%d\n", + mdidx(mddev)); + goto abort; + } + } + + memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + + conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024; + if (grow_stripes(conf, conf->max_nr_stripes)) { + printk(KERN_ERR + "raid6: couldn't allocate %dkB for buffers\n", memory); + shrink_stripes(conf); + md_unregister_thread(mddev->thread); + goto abort; + } else + printk(KERN_INFO "raid6: allocated %dkB for md%d\n", + memory, mdidx(mddev)); + + if (mddev->degraded == 0) + printk(KERN_INFO "raid6: raid level %d set md%d active with %d out of %d" + " devices, algorithm %d\n", conf->level, mdidx(mddev), + mddev->raid_disks-mddev->degraded, mddev->raid_disks, + conf->algorithm); + else + printk(KERN_ALERT "raid6: raid level %d set md%d active with %d" + " out of %d devices, algorithm %d\n", conf->level, + mdidx(mddev), mddev->raid_disks - mddev->degraded, + mddev->raid_disks, conf->algorithm); + + print_raid6_conf(conf); + + /* Ok, everything is just fine now */ + mddev->array_size = mddev->size * (mddev->raid_disks - 2); + return 0; +abort: + if (conf) { + print_raid6_conf(conf); + if (conf->stripe_hashtbl) + free_pages((unsigned long) conf->stripe_hashtbl, + HASH_PAGES_ORDER); + kfree(conf); + } + mddev->private = NULL; + printk(KERN_ALERT "raid6: failed to run raid set md%d\n", mdidx(mddev)); + return -EIO; +} + + + +static int stop (mddev_t *mddev) +{ + raid6_conf_t *conf = (raid6_conf_t *) mddev->private; + + md_unregister_thread(mddev->thread); + mddev->thread = NULL; + shrink_stripes(conf); + free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); + kfree(conf); + mddev->private = NULL; + return 0; +} + +#if RAID6_DUMPSTATE +static void print_sh (struct seq_file *seq, struct stripe_head *sh) +{ + int i; + + seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n", + (unsigned long long)sh->sector, sh->pd_idx, sh->state); + seq_printf(seq, "sh %llu, count %d.\n", + (unsigned long long)sh->sector, atomic_read(&sh->count)); + seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector); + for (i = 0; i < sh->raid_conf->raid_disks; i++) { + seq_printf(seq, "(cache%d: %p %ld) ", + i, sh->dev[i].page, sh->dev[i].flags); + } + seq_printf(seq, "\n"); +} + +static void printall (struct seq_file *seq, raid6_conf_t *conf) +{ + struct stripe_head *sh; + int i; + + spin_lock_irq(&conf->device_lock); + for (i = 0; i < NR_HASH; i++) { + sh = conf->stripe_hashtbl[i]; + for (; sh; sh = sh->hash_next) { + if (sh->raid_conf != conf) + continue; + print_sh(seq, sh); + } + } + spin_unlock_irq(&conf->device_lock); +} +#endif + +static void status (struct seq_file *seq, mddev_t *mddev) +{ + raid6_conf_t *conf = (raid6_conf_t *) mddev->private; + int i; + + seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout); + seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->working_disks); + for (i = 0; i < conf->raid_disks; i++) + seq_printf (seq, "%s", + conf->disks[i].rdev && + conf->disks[i].rdev->in_sync ? "U" : "_"); + seq_printf (seq, "]"); +#if RAID6_DUMPSTATE + seq_printf (seq, "\n"); + printall(seq, conf); +#endif +} + +static void print_raid6_conf (raid6_conf_t *conf) +{ + int i; + struct disk_info *tmp; + + printk("RAID6 conf printout:\n"); + if (!conf) { + printk("(conf==NULL)\n"); + return; + } + printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, + conf->working_disks, conf->failed_disks); + + for (i = 0; i < conf->raid_disks; i++) { + char b[BDEVNAME_SIZE]; + tmp = conf->disks + i; + if (tmp->rdev) + printk(" disk %d, o:%d, dev:%s\n", + i, !tmp->rdev->faulty, + bdevname(tmp->rdev->bdev,b)); + } +} + +static int raid6_spare_active(mddev_t *mddev) +{ + int i; + raid6_conf_t *conf = mddev->private; + struct disk_info *tmp; + + spin_lock_irq(&conf->device_lock); + for (i = 0; i < conf->raid_disks; i++) { + tmp = conf->disks + i; + if (tmp->rdev + && !tmp->rdev->faulty + && !tmp->rdev->in_sync) { + mddev->degraded--; + conf->failed_disks--; + conf->working_disks++; + tmp->rdev->in_sync = 1; + } + } + spin_unlock_irq(&conf->device_lock); + print_raid6_conf(conf); + return 0; +} + +static int raid6_remove_disk(mddev_t *mddev, int number) +{ + raid6_conf_t *conf = mddev->private; + int err = 1; + struct disk_info *p = conf->disks + number; + + print_raid6_conf(conf); + spin_lock_irq(&conf->device_lock); + + if (p->rdev) { + if (p->rdev->in_sync || + atomic_read(&p->rdev->nr_pending)) { + err = -EBUSY; + goto abort; + } + p->rdev = NULL; + err = 0; + } + if (err) + MD_BUG(); +abort: + spin_unlock_irq(&conf->device_lock); + print_raid6_conf(conf); + return err; +} + +static int raid6_add_disk(mddev_t *mddev, mdk_rdev_t *rdev) +{ + raid6_conf_t *conf = mddev->private; + int found = 0; + int disk; + struct disk_info *p; + + spin_lock_irq(&conf->device_lock); + /* + * find the disk ... + */ + for (disk=0; disk < mddev->raid_disks; disk++) + if ((p=conf->disks + disk)->rdev == NULL) { + p->rdev = rdev; + rdev->in_sync = 0; + rdev->raid_disk = disk; + found = 1; + break; + } + spin_unlock_irq(&conf->device_lock); + print_raid6_conf(conf); + return found; +} + +static mdk_personality_t raid6_personality= +{ + .name = "raid6", + .owner = THIS_MODULE, + .make_request = make_request, + .run = run, + .stop = stop, + .status = status, + .error_handler = error, + .hot_add_disk = raid6_add_disk, + .hot_remove_disk= raid6_remove_disk, + .spare_active = raid6_spare_active, + .sync_request = sync_request, +}; + +static int __init raid6_init (void) +{ + int e; + + e = raid6_select_algo(); + if ( e ) + return e; + + return register_md_personality (RAID6, &raid6_personality); +} + +static void raid6_exit (void) +{ + unregister_md_personality (RAID6); +} + +module_init(raid6_init); +module_exit(raid6_exit); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("md-personality-8"); /* RAID6 */ diff -puN /dev/null drivers/md/raid6mmx.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6mmx.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,150 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6mmx.c + * + * MMX implementation of RAID-6 syndrome functions + */ + +#if defined(__i386__) || defined(__x86_64__) + +#include "raid6.h" +#include "raid6x86.h" + +/* Shared with raid6sse1.c */ +const struct raid6_mmx_constants { + u64 x1d; +} raid6_mmx_constants = { + 0x1d1d1d1d1d1d1d1dULL, +}; + +static int raid6_have_mmx(void) +{ +#ifdef __KERNEL__ + /* Not really "boot_cpu" but "all_cpus" */ + return boot_cpu_has(X86_FEATURE_MMX); +#else + /* User space test code */ + u32 features = cpuid_features(); + return ( (features & (1<<23)) == (1<<23) ); +#endif +} + +/* + * Plain MMX implementation + */ +static void raid6_mmx1_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_mmx_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_mmx(&sa); + + asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d)); + asm volatile("pxor %mm5,%mm5"); /* Zero temp */ + + for ( d = 0 ; d < bytes ; d += 8 ) { + asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("movq %mm2,%mm4"); /* Q[0] */ + for ( z = z0-1 ; z >= 0 ; z-- ) { + asm volatile("movq %0,%%mm6" : : "m" (dptr[z][d])); + asm volatile("pcmpgtb %mm4,%mm5"); + asm volatile("paddb %mm4,%mm4"); + asm volatile("pand %mm0,%mm5"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm5,%mm5"); + asm volatile("pxor %mm6,%mm2"); + asm volatile("pxor %mm6,%mm4"); + } + asm volatile("movq %%mm2,%0" : "=m" (p[d])); + asm volatile("pxor %mm2,%mm2"); + asm volatile("movq %%mm4,%0" : "=m" (q[d])); + asm volatile("pxor %mm4,%mm4"); + } + + raid6_after_mmx(&sa); +} + +const struct raid6_calls raid6_mmxx1 = { + raid6_mmx1_gen_syndrome, + raid6_have_mmx, + "mmxx1", + 0 +}; + +/* + * Unrolled-by-2 MMX implementation + */ +static void raid6_mmx2_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_mmx_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_mmx(&sa); + + asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d)); + asm volatile("pxor %mm5,%mm5"); /* Zero temp */ + asm volatile("pxor %mm7,%mm7"); /* Zero temp */ + + for ( d = 0 ; d < bytes ; d += 16 ) { + asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("movq %0,%%mm3" : : "m" (dptr[z0][d+8])); + asm volatile("movq %mm2,%mm4"); /* Q[0] */ + asm volatile("movq %mm3,%mm6"); /* Q[1] */ + for ( z = z0-1 ; z >= 0 ; z-- ) { + asm volatile("pcmpgtb %mm4,%mm5"); + asm volatile("pcmpgtb %mm6,%mm7"); + asm volatile("paddb %mm4,%mm4"); + asm volatile("paddb %mm6,%mm6"); + asm volatile("pand %mm0,%mm5"); + asm volatile("pand %mm0,%mm7"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm7,%mm6"); + asm volatile("movq %0,%%mm5" : : "m" (dptr[z][d])); + asm volatile("movq %0,%%mm7" : : "m" (dptr[z][d+8])); + asm volatile("pxor %mm5,%mm2"); + asm volatile("pxor %mm7,%mm3"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm7,%mm6"); + asm volatile("pxor %mm5,%mm5"); + asm volatile("pxor %mm7,%mm7"); + } + asm volatile("movq %%mm2,%0" : "=m" (p[d])); + asm volatile("movq %%mm3,%0" : "=m" (p[d+8])); + asm volatile("movq %%mm4,%0" : "=m" (q[d])); + asm volatile("movq %%mm6,%0" : "=m" (q[d+8])); + } + + raid6_after_mmx(&sa); +} + +const struct raid6_calls raid6_mmxx2 = { + raid6_mmx2_gen_syndrome, + raid6_have_mmx, + "mmxx2", + 0 +}; + +#endif diff -puN /dev/null drivers/md/raid6recov.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6recov.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,133 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6recov.c + * + * RAID-6 data recovery in dual failure mode. In single failure mode, + * use the RAID-5 algorithm (or, in the case of Q failure, just reconstruct + * the syndrome.) + */ + +#include "raid6.h" + +/* Recover two failed data blocks. */ +void raid6_2data_recov(int disks, size_t bytes, int faila, int failb, + void **ptrs) +{ + u8 *p, *q, *dp, *dq; + u8 px, qx, db; + const u8 *pbmul; /* P multiplier table for B data */ + const u8 *qmul; /* Q multiplier table (for both) */ + + p = (u8 *)ptrs[disks-2]; + q = (u8 *)ptrs[disks-1]; + + /* Compute syndrome with zero for the missing data pages + Use the dead data pages as temporary storage for + delta p and delta q */ + dp = (u8 *)ptrs[faila]; + ptrs[faila] = (void *)raid6_empty_zero_page; + ptrs[disks-2] = dp; + dq = (u8 *)ptrs[failb]; + ptrs[failb] = (void *)raid6_empty_zero_page; + ptrs[disks-1] = dq; + + raid6_call.gen_syndrome(disks, bytes, ptrs); + + /* Restore pointer table */ + ptrs[faila] = dp; + ptrs[failb] = dq; + ptrs[disks-2] = p; + ptrs[disks-1] = q; + + /* Now, pick the proper data tables */ + pbmul = raid6_gfmul[raid6_gfexi[failb-faila]]; + qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]^raid6_gfexp[failb]]]; + + /* Now do it... */ + while ( bytes-- ) { + px = *p ^ *dp; + qx = qmul[*q ^ *dq]; + *dq++ = db = pbmul[px] ^ qx; /* Reconstructed B */ + *dp++ = db ^ px; /* Reconstructed A */ + p++; q++; + } +} + + + + +/* Recover failure of one data block plus the P block */ +void raid6_datap_recov(int disks, size_t bytes, int faila, void **ptrs) +{ + u8 *p, *q, *dq; + const u8 *qmul; /* Q multiplier table */ + + p = (u8 *)ptrs[disks-2]; + q = (u8 *)ptrs[disks-1]; + + /* Compute syndrome with zero for the missing data page + Use the dead data page as temporary storage for delta q */ + dq = (u8 *)ptrs[faila]; + ptrs[faila] = (void *)raid6_empty_zero_page; + ptrs[disks-1] = dq; + + raid6_call.gen_syndrome(disks, bytes, ptrs); + + /* Restore pointer table */ + ptrs[faila] = dq; + ptrs[disks-1] = q; + + /* Now, pick the proper data tables */ + qmul = raid6_gfmul[raid6_gfinv[raid6_gfexp[faila]]]; + + /* Now do it... */ + while ( bytes-- ) { + *p++ ^= *dq = qmul[*q ^ *dq]; + q++; dq++; + } +} + + +#ifndef __KERNEL__ /* Testing only */ + +/* Recover two failed blocks. */ +void raid6_dual_recov(int disks, size_t bytes, int faila, int failb, void **ptrs) +{ + if ( faila > failb ) { + int tmp = faila; + faila = failb; + failb = tmp; + } + + if ( failb == disks-1 ) { + if ( faila == disks-2 ) { + /* P+Q failure. Just rebuild the syndrome. */ + raid6_call.gen_syndrome(disks, bytes, ptrs); + } else { + /* data+Q failure. Reconstruct data from P, + then rebuild syndrome. */ + /* FIX */ + } + } else { + if ( failb == disks-2 ) { + /* data+P failure. */ + raid6_datap_recov(disks, bytes, faila, ptrs); + } else { + /* data+data failure. */ + raid6_2data_recov(disks, bytes, faila, failb, ptrs); + } + } +} + +#endif diff -puN /dev/null drivers/md/raid6sse1.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6sse1.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,171 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6sse1.c + * + * SSE-1/MMXEXT implementation of RAID-6 syndrome functions + * + * This is really an MMX implementation, but it requires SSE-1 or + * AMD MMXEXT for prefetch support and a few other features. The + * support for nontemporal memory accesses is enough to make this + * worthwhile as a separate implementation. + */ + +#if defined(__i386__) || defined(__x86_64__) + +#include "raid6.h" +#include "raid6x86.h" + +/* Defined in raid6mmx.c */ +extern const struct raid6_mmx_constants { + u64 x1d; +} raid6_mmx_constants; + +static int raid6_have_sse1_or_mmxext(void) +{ +#ifdef __KERNEL__ + /* Not really boot_cpu but "all_cpus" */ + return boot_cpu_has(X86_FEATURE_MMX) && + (boot_cpu_has(X86_FEATURE_XMM) || + boot_cpu_has(X86_FEATURE_MMXEXT)); +#else + /* User space test code - this incorrectly breaks on some Athlons */ + u32 features = cpuid_features(); + return ( (features & (5<<23)) == (5<<23) ); +#endif +} + +/* + * Plain SSE1 implementation + */ +static void raid6_sse11_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_mmx_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + /* This is really MMX code, not SSE */ + raid6_before_mmx(&sa); + + asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d)); + asm volatile("pxor %mm5,%mm5"); /* Zero temp */ + + for ( d = 0 ; d < bytes ; d += 8 ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z0][d])); + asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("prefetchnta %0" : : "m" (dptr[z0-1][d])); + asm volatile("movq %mm2,%mm4"); /* Q[0] */ + asm volatile("movq %0,%%mm6" : : "m" (dptr[z0-1][d])); + for ( z = z0-2 ; z >= 0 ; z-- ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z][d])); + asm volatile("pcmpgtb %mm4,%mm5"); + asm volatile("paddb %mm4,%mm4"); + asm volatile("pand %mm0,%mm5"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm5,%mm5"); + asm volatile("pxor %mm6,%mm2"); + asm volatile("pxor %mm6,%mm4"); + asm volatile("movq %0,%%mm6" : : "m" (dptr[z][d])); + } + asm volatile("pcmpgtb %mm4,%mm5"); + asm volatile("paddb %mm4,%mm4"); + asm volatile("pand %mm0,%mm5"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm5,%mm5"); + asm volatile("pxor %mm6,%mm2"); + asm volatile("pxor %mm6,%mm4"); + + asm volatile("movntq %%mm2,%0" : "=m" (p[d])); + asm volatile("movntq %%mm4,%0" : "=m" (q[d])); + } + + raid6_after_mmx(&sa); + asm volatile("sfence" : : : "memory"); +} + +const struct raid6_calls raid6_sse1x1 = { + raid6_sse11_gen_syndrome, + raid6_have_sse1_or_mmxext, + "sse1x1", + 1 /* Has cache hints */ +}; + +/* + * Unrolled-by-2 SSE1 implementation + */ +static void raid6_sse12_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_mmx_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_mmx(&sa); + + asm volatile("movq %0,%%mm0" : : "m" (raid6_mmx_constants.x1d)); + asm volatile("pxor %mm5,%mm5"); /* Zero temp */ + asm volatile("pxor %mm7,%mm7"); /* Zero temp */ + + /* We uniformly assume a single prefetch covers at least 16 bytes */ + for ( d = 0 ; d < bytes ; d += 16 ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z0][d])); + asm volatile("movq %0,%%mm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("movq %0,%%mm3" : : "m" (dptr[z0][d+8])); /* P[1] */ + asm volatile("movq %mm2,%mm4"); /* Q[0] */ + asm volatile("movq %mm3,%mm6"); /* Q[1] */ + for ( z = z0-1 ; z >= 0 ; z-- ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z][d])); + asm volatile("pcmpgtb %mm4,%mm5"); + asm volatile("pcmpgtb %mm6,%mm7"); + asm volatile("paddb %mm4,%mm4"); + asm volatile("paddb %mm6,%mm6"); + asm volatile("pand %mm0,%mm5"); + asm volatile("pand %mm0,%mm7"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm7,%mm6"); + asm volatile("movq %0,%%mm5" : : "m" (dptr[z][d])); + asm volatile("movq %0,%%mm7" : : "m" (dptr[z][d+8])); + asm volatile("pxor %mm5,%mm2"); + asm volatile("pxor %mm7,%mm3"); + asm volatile("pxor %mm5,%mm4"); + asm volatile("pxor %mm7,%mm6"); + asm volatile("pxor %mm5,%mm5"); + asm volatile("pxor %mm7,%mm7"); + } + asm volatile("movntq %%mm2,%0" : "=m" (p[d])); + asm volatile("movntq %%mm3,%0" : "=m" (p[d+8])); + asm volatile("movntq %%mm4,%0" : "=m" (q[d])); + asm volatile("movntq %%mm6,%0" : "=m" (q[d+8])); + } + + raid6_after_mmx(&sa); + asm volatile("sfence" : :: "memory"); +} + +const struct raid6_calls raid6_sse1x2 = { + raid6_sse12_gen_syndrome, + raid6_have_sse1_or_mmxext, + "sse1x2", + 1 /* Has cache hints */ +}; + +#endif diff -puN /dev/null drivers/md/raid6sse2.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6sse2.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,270 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6sse2.c + * + * SSE-2 implementation of RAID-6 syndrome functions + * + */ + +#if defined(__i386__) || defined(__x86_64__) + +#include "raid6.h" +#include "raid6x86.h" + +static const struct raid6_sse_constants { + u64 x1d[2]; +} raid6_sse_constants __attribute__((aligned(16))) = { + { 0x1d1d1d1d1d1d1d1dULL, 0x1d1d1d1d1d1d1d1dULL }, +}; + +static int raid6_have_sse2(void) +{ +#ifdef __KERNEL__ + /* Not really boot_cpu but "all_cpus" */ + return boot_cpu_has(X86_FEATURE_MMX) && + boot_cpu_has(X86_FEATURE_FXSR) && + boot_cpu_has(X86_FEATURE_XMM) && + boot_cpu_has(X86_FEATURE_XMM2); +#else + /* User space test code */ + u32 features = cpuid_features(); + return ( (features & (15<<23)) == (15<<23) ); +#endif +} + +/* + * Plain SSE2 implementation + */ +static void raid6_sse21_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_sse_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_sse2(&sa); + + asm volatile("movdqa %0,%%xmm0" : : "m" (raid6_sse_constants.x1d[0])); + asm volatile("pxor %xmm5,%xmm5"); /* Zero temp */ + + for ( d = 0 ; d < bytes ; d += 16 ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z0][d])); + asm volatile("movdqa %0,%%xmm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("prefetchnta %0" : : "m" (dptr[z0-1][d])); + asm volatile("movdqa %xmm2,%xmm4"); /* Q[0] */ + asm volatile("movdqa %0,%%xmm6" : : "m" (dptr[z0-1][d])); + for ( z = z0-2 ; z >= 0 ; z-- ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z][d])); + asm volatile("pcmpgtb %xmm4,%xmm5"); + asm volatile("paddb %xmm4,%xmm4"); + asm volatile("pand %xmm0,%xmm5"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm5,%xmm5"); + asm volatile("pxor %xmm6,%xmm2"); + asm volatile("pxor %xmm6,%xmm4"); + asm volatile("movdqa %0,%%xmm6" : : "m" (dptr[z][d])); + } + asm volatile("pcmpgtb %xmm4,%xmm5"); + asm volatile("paddb %xmm4,%xmm4"); + asm volatile("pand %xmm0,%xmm5"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm5,%xmm5"); + asm volatile("pxor %xmm6,%xmm2"); + asm volatile("pxor %xmm6,%xmm4"); + + asm volatile("movntdq %%xmm2,%0" : "=m" (p[d])); + asm volatile("pxor %xmm2,%xmm2"); + asm volatile("movntdq %%xmm4,%0" : "=m" (q[d])); + asm volatile("pxor %xmm4,%xmm4"); + } + + raid6_after_sse2(&sa); + asm volatile("sfence" : : : "memory"); +} + +const struct raid6_calls raid6_sse2x1 = { + raid6_sse21_gen_syndrome, + raid6_have_sse2, + "sse2x1", + 1 /* Has cache hints */ +}; + +/* + * Unrolled-by-2 SSE2 implementation + */ +static void raid6_sse22_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_sse_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_sse2(&sa); + + asm volatile("movdqa %0,%%xmm0" : : "m" (raid6_sse_constants.x1d[0])); + asm volatile("pxor %xmm5,%xmm5"); /* Zero temp */ + asm volatile("pxor %xmm7,%xmm7"); /* Zero temp */ + + /* We uniformly assume a single prefetch covers at least 32 bytes */ + for ( d = 0 ; d < bytes ; d += 32 ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z0][d])); + asm volatile("movdqa %0,%%xmm2" : : "m" (dptr[z0][d])); /* P[0] */ + asm volatile("movdqa %0,%%xmm3" : : "m" (dptr[z0][d+16])); /* P[1] */ + asm volatile("movdqa %xmm2,%xmm4"); /* Q[0] */ + asm volatile("movdqa %xmm3,%xmm6"); /* Q[1] */ + for ( z = z0-1 ; z >= 0 ; z-- ) { + asm volatile("prefetchnta %0" : : "m" (dptr[z][d])); + asm volatile("pcmpgtb %xmm4,%xmm5"); + asm volatile("pcmpgtb %xmm6,%xmm7"); + asm volatile("paddb %xmm4,%xmm4"); + asm volatile("paddb %xmm6,%xmm6"); + asm volatile("pand %xmm0,%xmm5"); + asm volatile("pand %xmm0,%xmm7"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm7,%xmm6"); + asm volatile("movdqa %0,%%xmm5" : : "m" (dptr[z][d])); + asm volatile("movdqa %0,%%xmm7" : : "m" (dptr[z][d+16])); + asm volatile("pxor %xmm5,%xmm2"); + asm volatile("pxor %xmm7,%xmm3"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm7,%xmm6"); + asm volatile("pxor %xmm5,%xmm5"); + asm volatile("pxor %xmm7,%xmm7"); + } + asm volatile("movntdq %%xmm2,%0" : "=m" (p[d])); + asm volatile("movntdq %%xmm3,%0" : "=m" (p[d+16])); + asm volatile("movntdq %%xmm4,%0" : "=m" (q[d])); + asm volatile("movntdq %%xmm6,%0" : "=m" (q[d+16])); + } + + raid6_after_sse2(&sa); + asm volatile("sfence" : : : "memory"); +} + +const struct raid6_calls raid6_sse2x2 = { + raid6_sse22_gen_syndrome, + raid6_have_sse2, + "sse2x2", + 1 /* Has cache hints */ +}; + +#endif + +#ifdef __x86_64__ + +/* + * Unrolled-by-4 SSE2 implementation + */ +static void raid6_sse24_gen_syndrome(int disks, size_t bytes, void **ptrs) +{ + u8 **dptr = (u8 **)ptrs; + u8 *p, *q; + int d, z, z0; + raid6_sse16_save_t sa; + + z0 = disks - 3; /* Highest data disk */ + p = dptr[z0+1]; /* XOR parity */ + q = dptr[z0+2]; /* RS syndrome */ + + raid6_before_sse16(&sa); + + asm volatile("movdqa %0,%%xmm0" :: "m" (raid6_sse_constants.x1d[0])); + asm volatile("pxor %xmm2,%xmm2"); /* P[0] */ + asm volatile("pxor %xmm3,%xmm3"); /* P[1] */ + asm volatile("pxor %xmm4,%xmm4"); /* Q[0] */ + asm volatile("pxor %xmm5,%xmm5"); /* Zero temp */ + asm volatile("pxor %xmm6,%xmm6"); /* Q[1] */ + asm volatile("pxor %xmm7,%xmm7"); /* Zero temp */ + asm volatile("pxor %xmm10,%xmm10"); /* P[2] */ + asm volatile("pxor %xmm11,%xmm11"); /* P[3] */ + asm volatile("pxor %xmm12,%xmm12"); /* Q[2] */ + asm volatile("pxor %xmm13,%xmm13"); /* Zero temp */ + asm volatile("pxor %xmm14,%xmm14"); /* Q[3] */ + asm volatile("pxor %xmm15,%xmm15"); /* Zero temp */ + + for ( d = 0 ; d < bytes ; d += 64 ) { + for ( z = z0 ; z >= 0 ; z-- ) { + /* The second prefetch seems to improve performance... */ + asm volatile("prefetchnta %0" :: "m" (dptr[z][d])); + asm volatile("prefetchnta %0" :: "m" (dptr[z][d+32])); + asm volatile("pcmpgtb %xmm4,%xmm5"); + asm volatile("pcmpgtb %xmm6,%xmm7"); + asm volatile("pcmpgtb %xmm12,%xmm13"); + asm volatile("pcmpgtb %xmm14,%xmm15"); + asm volatile("paddb %xmm4,%xmm4"); + asm volatile("paddb %xmm6,%xmm6"); + asm volatile("paddb %xmm12,%xmm12"); + asm volatile("paddb %xmm14,%xmm14"); + asm volatile("pand %xmm0,%xmm5"); + asm volatile("pand %xmm0,%xmm7"); + asm volatile("pand %xmm0,%xmm13"); + asm volatile("pand %xmm0,%xmm15"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm7,%xmm6"); + asm volatile("pxor %xmm13,%xmm12"); + asm volatile("pxor %xmm15,%xmm14"); + asm volatile("movdqa %0,%%xmm5" :: "m" (dptr[z][d])); + asm volatile("movdqa %0,%%xmm7" :: "m" (dptr[z][d+16])); + asm volatile("movdqa %0,%%xmm13" :: "m" (dptr[z][d+32])); + asm volatile("movdqa %0,%%xmm15" :: "m" (dptr[z][d+48])); + asm volatile("pxor %xmm5,%xmm2"); + asm volatile("pxor %xmm7,%xmm3"); + asm volatile("pxor %xmm13,%xmm10"); + asm volatile("pxor %xmm15,%xmm11"); + asm volatile("pxor %xmm5,%xmm4"); + asm volatile("pxor %xmm7,%xmm6"); + asm volatile("pxor %xmm13,%xmm12"); + asm volatile("pxor %xmm15,%xmm14"); + asm volatile("pxor %xmm5,%xmm5"); + asm volatile("pxor %xmm7,%xmm7"); + asm volatile("pxor %xmm13,%xmm13"); + asm volatile("pxor %xmm15,%xmm15"); + } + asm volatile("movntdq %%xmm2,%0" : "=m" (p[d])); + asm volatile("pxor %xmm2,%xmm2"); + asm volatile("movntdq %%xmm3,%0" : "=m" (p[d+16])); + asm volatile("pxor %xmm3,%xmm3"); + asm volatile("movntdq %%xmm10,%0" : "=m" (p[d+32])); + asm volatile("pxor %xmm10,%xmm10"); + asm volatile("movntdq %%xmm11,%0" : "=m" (p[d+48])); + asm volatile("pxor %xmm11,%xmm11"); + asm volatile("movntdq %%xmm4,%0" : "=m" (q[d])); + asm volatile("pxor %xmm4,%xmm4"); + asm volatile("movntdq %%xmm6,%0" : "=m" (q[d+16])); + asm volatile("pxor %xmm6,%xmm6"); + asm volatile("movntdq %%xmm12,%0" : "=m" (q[d+32])); + asm volatile("pxor %xmm12,%xmm12"); + asm volatile("movntdq %%xmm14,%0" : "=m" (q[d+48])); + asm volatile("pxor %xmm14,%xmm14"); + } + asm volatile("sfence" : : : "memory"); + raid6_after_sse16(&sa); +} + +const struct raid6_calls raid6_sse2x4 = { + raid6_sse24_gen_syndrome, + raid6_have_sse2, + "sse2x4", + 1 /* Has cache hints */ +}; + +#endif diff -puN /dev/null drivers/md/raid6test/Makefile --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6test/Makefile 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,56 @@ +# +# This is a simple Makefile to test some of the RAID-6 code +# from userspace. +# + +CC = gcc +CFLAGS = -I.. -O2 -g -march=i686 +LD = ld +PERL = perl + +.c.o: + $(CC) $(CFLAGS) -c -o $@ $< + +%.c: ../%.c + cp -f $< $@ + +%.uc: ../%.uc + cp -f $< $@ + +%.pl: ../%.pl + cp -f $< $@ + +all: raid6.o raid6test + +raid6.o: raid6int1.o raid6int2.o raid6int4.o raid6int8.o raid6int16.o \ + raid6mmx.o raid6sse1.o raid6sse2.o \ + raid6recov.o raid6algos.o \ + raid6tables.o + $(LD) -r -o $@ $^ + +raid6test: raid6.o test.c + $(CC) $(CFLAGS) -o raid6test $^ + +raid6int1.c: raid6int.uc unroller.pl + $(PERL) ./unroller.pl 1 < raid6int.uc > $@ + +raid6int2.c: raid6int.uc unroller.pl + $(PERL) ./unroller.pl 2 < raid6int.uc > $@ + +raid6int4.c: raid6int.uc unroller.pl + $(PERL) ./unroller.pl 4 < raid6int.uc > $@ + +raid6int8.c: raid6int.uc unroller.pl + $(PERL) ./unroller.pl 8 < raid6int.uc > $@ + +raid6int16.c: raid6int.uc unroller.pl + $(PERL) ./unroller.pl 16 < raid6int.uc > $@ + +raid6tables.c: mktables + ./mktables > raid6tables.c + +clean: + rm -f *.o mktables mktables.c raid6int.uc raid6*.c raid6test + +spotless: clean + rm -f *~ diff -puN /dev/null drivers/md/raid6test/test.c --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6test/test.c 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,98 @@ +/* -*- linux-c -*- ------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6test.c + * + * Test RAID-6 recovery with various algorithms + */ + +#include +#include +#include +#include "raid6.h" + +#define NDISKS 16 /* Including P and Q */ + +const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256))); +struct raid6_calls raid6_call; + +char *dataptrs[NDISKS]; +char data[NDISKS][PAGE_SIZE]; +char recovi[PAGE_SIZE], recovj[PAGE_SIZE]; + +void makedata(void) +{ + int i, j; + + for ( i = 0 ; i < NDISKS ; i++ ) { + for ( j = 0 ; j < PAGE_SIZE ; j++ ) { + data[i][j] = rand(); + } + dataptrs[i] = data[i]; + } +} + +int main(int argc, char *argv[]) +{ + const struct raid6_calls * const * algo; + int i, j; + int erra, errb; + + makedata(); + + for ( algo = raid6_algos ; *algo ; algo++ ) { + if ( !(*algo)->valid || (*algo)->valid() ) { + raid6_call = **algo; + + /* Nuke syndromes */ + memset(data[NDISKS-2], 0xee, 2*PAGE_SIZE); + + /* Generate assumed good syndrome */ + raid6_call.gen_syndrome(NDISKS, PAGE_SIZE, (void **)&dataptrs); + + for ( i = 0 ; i < NDISKS-1 ; i++ ) { + for ( j = i+1 ; j < NDISKS ; j++ ) { + memset(recovi, 0xf0, PAGE_SIZE); + memset(recovj, 0xba, PAGE_SIZE); + + dataptrs[i] = recovi; + dataptrs[j] = recovj; + + raid6_dual_recov(NDISKS, PAGE_SIZE, i, j, (void **)&dataptrs); + + erra = memcmp(data[i], recovi, PAGE_SIZE); + errb = memcmp(data[j], recovj, PAGE_SIZE); + + printf("algo=%-8s faila=%3d(%c) failb=%3d(%c) %s\n", + raid6_call.name, + i, (i==NDISKS-2)?'P':'D', + j, (j==NDISKS-1)?'Q':(j==NDISKS-2)?'P':'D', + (!erra && !errb) ? "OK" : + !erra ? "ERRB" : + !errb ? "ERRA" : + "ERRAB"); + + dataptrs[i] = data[i]; + dataptrs[j] = data[j]; + } + } + } + printf("\n"); + } + + printf("\n"); + /* Pick the best algorithm test */ + raid6_select_algo(); + + return 0; +} diff -puN /dev/null drivers/md/raid6x86.h --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/raid6x86.h 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,242 @@ +#ident "$Id: raid6x86.h,v 1.3 2002/12/12 22:41:27 hpa Exp $" +/* ----------------------------------------------------------------------- * + * + * Copyright 2002 H. Peter Anvin - All Rights Reserved + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, Inc., 53 Temple Place Ste 330, + * Bostom MA 02111-1307, USA; either version 2 of the License, or + * (at your option) any later version; incorporated herein by reference. + * + * ----------------------------------------------------------------------- */ + +/* + * raid6x86.h + * + * Definitions common to x86 and x86-64 RAID-6 code only + */ + +#ifndef LINUX_RAID_RAID6X86_H +#define LINUX_RAID_RAID6X86_H + +#if defined(__i386__) || defined(__x86_64__) + +typedef struct { + unsigned int fsave[27]; + unsigned int cr0; +} raid6_mmx_save_t; + +/* N.B.: For SSE we only save %xmm0-%xmm7 even for x86-64, since + the code doesn't know about the additional x86-64 registers */ +/* The +3 is so we can make sure the area is aligned properly */ +typedef struct { + unsigned int sarea[8*4+3]; + unsigned int cr0; +} raid6_sse_save_t __attribute__((aligned(16))); + +#ifdef __x86_64__ + +/* This is for x86-64-specific code which uses all 16 XMM registers */ +typedef struct { + unsigned int sarea[16*4+3]; + unsigned int cr0; +} raid6_sse16_save_t __attribute__((aligned(16))); + +#endif + +#ifdef __KERNEL__ /* Real code */ + + static inline u32 raid6_get_fpu(void) +{ + u32 cr0; + + preempt_disable(); + asm volatile("movl %%cr0,%0 ; clts" : "=r" (cr0)); + return cr0; +} + +static inline void raid6_put_fpu(u32 cr0) +{ + asm volatile("movl %0,%%cr0" : : "r" (cr0)); + preempt_enable(); +} + +#else /* Dummy code for user space testing */ + +static inline u32 raid6_get_fpu(void) +{ + return 0xf00ba6; +} + +static inline void raid6_put_fpu(u32 cr0) +{ + (void)cr0; +} + +#endif + +static inline void raid6_before_mmx(raid6_mmx_save_t *s) +{ + s->cr0 = raid6_get_fpu(); + asm volatile("fsave %0 ; fwait" : "=m" (s->fsave[0])); +} + +static inline void raid6_after_mmx(raid6_mmx_save_t *s) +{ + asm volatile("frstor %0" : : "m" (s->fsave[0])); + raid6_put_fpu(s->cr0); +} + +static inline void raid6_before_sse(raid6_sse_save_t *s) +{ +#ifdef __x86_64__ + unsigned int *rsa = s->sarea; +#else + /* On i386 the save area may not be aligned */ + unsigned int *rsa = + (unsigned int *)((((unsigned long)&s->sarea)+15) & ~15); +#endif + s->cr0 = raid6_get_fpu(); + + asm volatile("movaps %%xmm0,%0" : "=m" (rsa[0])); + asm volatile("movaps %%xmm1,%0" : "=m" (rsa[4])); + asm volatile("movaps %%xmm2,%0" : "=m" (rsa[8])); + asm volatile("movaps %%xmm3,%0" : "=m" (rsa[12])); + asm volatile("movaps %%xmm4,%0" : "=m" (rsa[16])); + asm volatile("movaps %%xmm5,%0" : "=m" (rsa[20])); + asm volatile("movaps %%xmm6,%0" : "=m" (rsa[24])); + asm volatile("movaps %%xmm7,%0" : "=m" (rsa[28])); +} + +static inline void raid6_after_sse(raid6_sse_save_t *s) +{ +#ifdef __x86_64__ + unsigned int *rsa = s->sarea; +#else + /* On i386 the save area may not be aligned */ + unsigned int *rsa = + (unsigned int *)((((unsigned long)&s->sarea)+15) & ~15); +#endif + asm volatile("movaps %0,%%xmm0" : : "m" (rsa[0])); + asm volatile("movaps %0,%%xmm1" : : "m" (rsa[4])); + asm volatile("movaps %0,%%xmm2" : : "m" (rsa[8])); + asm volatile("movaps %0,%%xmm3" : : "m" (rsa[12])); + asm volatile("movaps %0,%%xmm4" : : "m" (rsa[16])); + asm volatile("movaps %0,%%xmm5" : : "m" (rsa[20])); + asm volatile("movaps %0,%%xmm6" : : "m" (rsa[24])); + asm volatile("movaps %0,%%xmm7" : : "m" (rsa[28])); + + raid6_put_fpu(s->cr0); +} + +static inline void raid6_before_sse2(raid6_sse_save_t *s) +{ +#ifdef __x86_64__ + unsigned int *rsa = &s->sarea; +#else + /* On i386 the save area may not be aligned */ + unsigned int *rsa = + (unsigned int *)((((unsigned long)&s->sarea)+15) & ~15); +#endif + s->cr0 = raid6_get_fpu(); + + asm volatile("movdqa %%xmm0,%0" : "=m" (rsa[0])); + asm volatile("movdqa %%xmm1,%0" : "=m" (rsa[4])); + asm volatile("movdqa %%xmm2,%0" : "=m" (rsa[8])); + asm volatile("movdqa %%xmm3,%0" : "=m" (rsa[12])); + asm volatile("movdqa %%xmm4,%0" : "=m" (rsa[16])); + asm volatile("movdqa %%xmm5,%0" : "=m" (rsa[20])); + asm volatile("movdqa %%xmm6,%0" : "=m" (rsa[24])); + asm volatile("movdqa %%xmm7,%0" : "=m" (rsa[28])); +} + +static inline void raid6_after_sse2(raid6_sse_save_t *s) +{ +#ifdef __x86_64__ + unsigned int *rsa = s->sarea; +#else + /* On i386 the save area may not be aligned */ + unsigned int *rsa = + (unsigned int *)((((unsigned long)&s->sarea)+15) & ~15); +#endif + asm volatile("movdqa %0,%%xmm0" : : "m" (rsa[0])); + asm volatile("movdqa %0,%%xmm1" : : "m" (rsa[4])); + asm volatile("movdqa %0,%%xmm2" : : "m" (rsa[8])); + asm volatile("movdqa %0,%%xmm3" : : "m" (rsa[12])); + asm volatile("movdqa %0,%%xmm4" : : "m" (rsa[16])); + asm volatile("movdqa %0,%%xmm5" : : "m" (rsa[20])); + asm volatile("movdqa %0,%%xmm6" : : "m" (rsa[24])); + asm volatile("movdqa %0,%%xmm7" : : "m" (rsa[28])); + + raid6_put_fpu(s->cr0); +} + +#ifdef __x86_64__ + +static inline raid6_before_sse16(raid6_sse16_save_t *s) +{ + unsigned int *rsa = s->sarea; + + s->cr0 = raid6_get_fpu(); + + asm volatile("movdqa %%xmm0,%0" : "=m" (rsa[0])); + asm volatile("movdqa %%xmm1,%0" : "=m" (rsa[4])); + asm volatile("movdqa %%xmm2,%0" : "=m" (rsa[8])); + asm volatile("movdqa %%xmm3,%0" : "=m" (rsa[12])); + asm volatile("movdqa %%xmm4,%0" : "=m" (rsa[16])); + asm volatile("movdqa %%xmm5,%0" : "=m" (rsa[20])); + asm volatile("movdqa %%xmm6,%0" : "=m" (rsa[24])); + asm volatile("movdqa %%xmm7,%0" : "=m" (rsa[28])); + asm volatile("movdqa %%xmm8,%0" : "=m" (rsa[32])); + asm volatile("movdqa %%xmm9,%0" : "=m" (rsa[36])); + asm volatile("movdqa %%xmm10,%0" : "=m" (rsa[40])); + asm volatile("movdqa %%xmm11,%0" : "=m" (rsa[44])); + asm volatile("movdqa %%xmm12,%0" : "=m" (rsa[48])); + asm volatile("movdqa %%xmm13,%0" : "=m" (rsa[52])); + asm volatile("movdqa %%xmm14,%0" : "=m" (rsa[56])); + asm volatile("movdqa %%xmm15,%0" : "=m" (rsa[60])); +} + +static inline raid6_after_sse16(raid6_sse16_save_t *s) +{ + unsigned int *rsa = s->sarea; + + asm volatile("movdqa %0,%%xmm0" : : "m" (rsa[0])); + asm volatile("movdqa %0,%%xmm1" : : "m" (rsa[4])); + asm volatile("movdqa %0,%%xmm2" : : "m" (rsa[8])); + asm volatile("movdqa %0,%%xmm3" : : "m" (rsa[12])); + asm volatile("movdqa %0,%%xmm4" : : "m" (rsa[16])); + asm volatile("movdqa %0,%%xmm5" : : "m" (rsa[20])); + asm volatile("movdqa %0,%%xmm6" : : "m" (rsa[24])); + asm volatile("movdqa %0,%%xmm7" : : "m" (rsa[28])); + asm volatile("movdqa %0,%%xmm8" : : "m" (rsa[32])); + asm volatile("movdqa %0,%%xmm9" : : "m" (rsa[36])); + asm volatile("movdqa %0,%%xmm10" : : "m" (rsa[40])); + asm volatile("movdqa %0,%%xmm11" : : "m" (rsa[44])); + asm volatile("movdqa %0,%%xmm12" : : "m" (rsa[48])); + asm volatile("movdqa %0,%%xmm13" : : "m" (rsa[52])); + asm volatile("movdqa %0,%%xmm14" : : "m" (rsa[56])); + asm volatile("movdqa %0,%%xmm15" : : "m" (rsa[60])); + + raid6_put_fpu(s->cr0); +} + +#endif /* __x86_64__ */ + +/* User space test hack */ +#ifndef __KERNEL__ +static inline int cpuid_features(void) +{ + u32 eax = 1; + u32 ebx, ecx, edx; + + asm volatile("cpuid" : + "+a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx)); + + return edx; +} +#endif /* ndef __KERNEL__ */ + +#endif +#endif diff -puN /dev/null drivers/md/unroll.pl --- /dev/null 2002-08-30 16:31:37.000000000 -0700 +++ 25-akpm/drivers/md/unroll.pl 2004-01-08 00:26:29.000000000 -0800 @@ -0,0 +1,24 @@ +#!/usr/bin/perl +# +# Take a piece of C code and for each line which contains the sequence $$ +# repeat n times with $ replaced by 0...n-1; the sequence $# is replaced +# by the unrolling factor, and $* with a single $ +# + +($n) = @ARGV; +$n += 0; + +while ( defined($line = ) ) { + if ( $line =~ /\$\$/ ) { + $rep = $n; + } else { + $rep = 1; + } + for ( $i = 0 ; $i < $rep ; $i++ ) { + $tmp = $line; + $tmp =~ s/\$\$/$i/g; + $tmp =~ s/\$\#/$n/g; + $tmp =~ s/\$\*/\$/g; + print $tmp; + } +} diff -puN include/linux/raid/md_k.h~raid6-20040107 include/linux/raid/md_k.h --- 25/include/linux/raid/md_k.h~raid6-20040107 2004-01-08 00:26:29.000000000 -0800 +++ 25-akpm/include/linux/raid/md_k.h 2004-01-08 00:26:29.000000000 -0800 @@ -23,7 +23,8 @@ #define TRANSLUCENT 5UL #define HSM 6UL #define MULTIPATH 7UL -#define MAX_PERSONALITY 8UL +#define RAID6 8UL +#define MAX_PERSONALITY 9UL #define LEVEL_MULTIPATH (-4) #define LEVEL_LINEAR (-1) @@ -41,6 +42,7 @@ static inline int pers_to_level (int per case RAID0: return 0; case RAID1: return 1; case RAID5: return 5; + case RAID6: return 6; } BUG(); return MD_RESERVED; @@ -57,6 +59,7 @@ static inline int level_to_pers (int lev case 1: return RAID1; case 4: case 5: return RAID5; + case 6: return RAID6; } return MD_RESERVED; } _