
VirtFS—A virtualization aware File System pass-through

Venkateswararao Jujjuri
IBM Linux Technology Center

jvrao@us.ibm.com

Eric Van Hensbergen
IBM Research Austin

bergevan@us.ibm.com

Anthony Liguori
IBM Linux Technology Center
aliguori@us.ibm.com

Badari Pulavarty
IBM Linux Technology Center

badari@us.ibm.com

Abstract

This paper describes the design and implementation of
a paravirtualized file system interface for Linux in the
KVM environment. Today’s solution of sharing host
files on the guest through generic network file systems
like NFS and CIFS suffer from major performance and
feature deficiencies as these protocols are not designed
or optimized for virtualization. To address the needs of
the virtualization paradigm, in this paper we are intro-
ducing a new paravirtualized file system called VirtFS.
This new file system is currently under development and
is being built using QEMU, KVM, VirtIO technologies
and 9P2000.L protocol.

1 Introduction

Much research has focused on improving virtualized
disk and network device performance, and indeed, mod-
ern hypervisors like KVM have been able to obtain good
performance as a result and are now a viable alterna-
tive to bare metal systems. Through the introduction
of higher level interfaces for guests to interact with a
hypervisor, we believe it is possible to obtain better per-
formance than bare metal in consolidated workloads [8].

This paper explores an example of one such interface,
VirtFS. VirtFS introduces a paravirtual file system driver
based on the VirtIO [13] framework. This interface
presents a number of unique advantages over the tradi-
tional virtual block device. The majority of applications
(including most hypervisors) prefer to interact with an
Operating System’s storage API through the file system
interfaces instead of dedicated disk storage APIs. By
paravirtualizing a file system interface, we avoid a layer
of indirection in converting guest application file system

operations into block device operations and then again
into host file system operations.

In addition to performance improvements over a tradi-
tional virtual block device, exposing guest file system
activity to the hypervisor provides greater insight to the
hypervisor about the workload the guest is running. This
allows the hypervisor to make more intelligent decisions
with respect to I/O caching and creates new opportuni-
ties for hypervisor-based services like de-duplification.

In Section 2 of this paper, we explore more details about
the motivating factors for paravirtualizing the file sys-
tem layer. In Section 3, we introduce the VirtFS design
including an overview of the 9P protocol, which VirtFS
is based on, along with a set of extensions introduced
for greater Linux guest compatibility.

Section 4 describes the implementation of VirtFS within
QEMU and within the Linux Kernel’s v9fs file system.
Section 5 presents our initial performance evaluation.

2 Motivation

Virtualization systems have historically focused on pro-
viding the illusion of access to underlying hardware de-
vices (either by emulating the physical device interface
or through a paravirtualization API). Within Linux, the
de facto standard for paravirtual I/O communication is
the VirtiIO subsystem. At the time of this writing, the
mainstream Linux kernel had VirtIO devices for con-
sole, disk, and network as well as a PCI passthrough
device and a memory ballooning device.

2.1 Paravirtual Application and System Services

What has been largely ignored within the mainstream
virtualization community is the opportunity for raising

• 109 •

110 • VirtFS—A virtualization aware File System pass-through

the level of interface from the physical device layer to
higher-level system and even application services. Such
an approach has been used within academic and re-
search communities in the implementation of microker-
nels [1], exokernels [4], multikernels [14], and satel-
lite kernels [9]. Enabling paravirtualization of appli-
cation and system services can provide a hybrid envi-
ronment leveraging the security, isolation, and perfor-
mance properties of microkernel-class systems within
more general purpose operating systems and environ-
ments.

There are a number of reasons favoring the use of par-
avirtualized system services versus emulated or paravir-
tualized devices. One of the more compelling arguments
is a higher degree of information available about what
the guest system (or the guest system’s user) is trying to
do. For instance, within a desktop configuration, the hy-
pervisor can provide a frame buffer device for graphics,
but if we move the interface up a level we can provide
paravirtualized access to the hosts windowing system
(whether that windowing system is implemented by the
operating system or an application infrastructure). This
would allow applications within the guest to open new
windows on the user’s desktop versus within a frame
buffer on the desktop. The difference is perhaps sub-
tle in this example, but provide a dramatically different
experience from the user’s perspective.

Similarly, instead of virtualizing the network device,
the hypervisor can provide a paravirtualized interface
to the host IP stack. This eliminates complex config-
uration issues surrounding setting up network-address-
translation, bridging devices, and so forth. Guest appli-
cations using sockets just use the host’s TCP/IP stack di-
rectly. Such an approach works well for services which
the host is already managing multiplexing for multiple
applications (such as graphics, networking, audio, etc.).

An alternative to providing a paravirtualized server
would be to use an existing distributed resource access
protocol (such as X11 for graphics, PPTP for network-
ing, etc) over a virtualized network device. Such an ap-
proach encounters a number of problems. First, it re-
quires both the host and the guest have configured net-
works, and that the servers and clients be configured to
connect to each other. Assuming that you aren’t using
a dedicated virtual network device for this communica-
tion you then incur a number of security concerns and
potential sources for performance interference. Assum-
ing one solves all of those problems, there is also the

issue of the additional overhead of encapsulating ser-
vice requests in TCP/IP which is completely unneces-
sary considering it is very unlikely that you will drop
packets between guests and host, with much more effec-
tive flow-control being capable in such a tightly coupled
system.

By contrast, a paravirtual interface provides a dedicated
(performance and security isolated) channel, precon-
nected between guest and host (no configuration nec-
essary), which doesn’t incur any of the overheads of ar-
bitrary and unnecessary encapsulation which going over
a network (particularly a TCP/IP network) incurs. Ad-
ditionally, the tighter binding of a paravirtual API may
allow sharing optimizations and management simplifi-
cation which is unavailable on either a device based or
network based interface.

2.2 Paravirtual File Systems

File systems are a particularly good target as a paravir-
tual systems service. In addition to the points made
above, the properties of how file systems are used, man-
aged, and optimized by an operating system make them
ideal candidates.

One of the principle problems with virtualized storage
in the form of virtual disks is that data on the disk can
not be concurrently accessed by multiple guests (or in-
deed even by the host and the guest) unless the disk is
read-only. This is because of the large amount of in-
memory state maintained by traditional disk file systems
along with the aggressive nature of the Linux dcache
and page cache. Read/write disk access can only be
accomplished through exclusive access or when negoti-
ated by a secondary protocol. The Linux storage caches
introduce another level of inefficiency, caching indepen-
dent copies of the disk block on both the host and the
guest.

If we use a traditional distributed file system (such as
NFS or CIFS) over a virtualized network device to ac-
cess storage, we run into the configuration, manage-
ment, and encapsulation overheads mentioned previ-
ously. We also encounter problems with two manage-
ment domains for the purposes of user ids, group ids,
ACLs, and so forth. The distributed file systems also
incur the double-cache behavior of the virtual disks.
The other problem is that many distributed file systems
impose their own file system semantics on operations,

2010 Linux Symposium • 111

which may be different from the behavior expected from
a disk file system.

2.3 Application Use Cases

Perhaps the most straightforward application of a par-
avirtualized file system is to replace the virtual disk as
the root file system. When the system boots, the bun-
dled ram disk simply connects to an appropriately la-
beled VirtFS volume to retrieve the root volume. Such
an approach would allow host-based stackable file sys-
tems to be used for rapid cloning, management, and up-
date [10].

In addition to root file systems, the paravirtual file sys-
tem can be used to access a shared file system coher-
ently from several guests. It can also be used to provide
guest to guest file system access. Additionally, it could
be used to access synthetic file systems on the host or
other guests in order to access management and control
interfaces.

Another use case, which we utilized as part of the Li-
bra [2] and PROSE [15] projects is to provide file sys-
tem offload API for applications running within a Lir-
baryOS. In such instances, the application is only run-
ning on top of a very thin OS interface which doesn’t
itself contain system services such as a disk file sys-
tem or network stack. These services are obtained re-
motely through forwarding I/O requests (at a file system
or socket level) to a server running on the host.

Finally we would like to refer to the use cases of the
cloud environment. In a cloud environment where mul-
tiple guests share resources on a host, portions of the
host file systems can be exported and VirtFS mounted
on guests giving a secure window of host file systems
on the guest. This gives guests more like a local file
system interface to portions of host file system. VirtFS
also could be very useful to provide a secure way to pro-
vide storage services to different customers from a sin-
gle host filesystem. This also helps to take advantage of
various file system features like de-dup, snapshots etc.

3 Design

VirtFS provides functionality that is somewhat similar
to a traditional network file systems (NFS/CIFS). The
QEMU server elects to export a portion of its file system

Figure 1: VirtFS block diagram

hierarchy, and the client on the guest mounts this using
9P2000.L protocol. Guest users see the mount point just
like any of the local file systems, while the reads and
writes are actually happening on the host file system.

Figure 1 shows the high level VirtFS anatomy. Server is
part of QEMU and client is part of the guests kernel. The
protocol is exchanged between the client and the server
over VirtIO transport (section 3.5). Server running in the
user mode opens up potential for direct communication
with the fileserver API (section 6.4).

The major difference between a traditional network file
system and VirtFS is its simplicity and optimization to
the KVM environment. Our approach is to leverage a
light-weight distributed file system protocol directly on
top of a paravirtualized transport in order to remote of-
fload elements of the Linux VFS API to a server run
on the virtualization host (or within another partition).
In order to expedite implementation, we selected a pre-
existing distributed file system which closely matched
our desired approach 9P, and provided a virtualization
specific transport interface for it through VirtIO. We
are extending the 9P protocol to better match the Linux
VFS API. The 9P protocol [3], originally developed as

112 • VirtFS—A virtualization aware File System pass-through

part of the Plan 9 research operating system from Bell
Labs [11], and incorporated as a network based dis-
tributed file system within the mainline Linux kernel
during the 2.6.14 release [6].

3.1 Plan 9 Overview

Plan 9 was a new research operating system and associ-
ated applications suite developed by the Computing Sci-
ence Research Center of AT&T Bell Laboratories (now
a part of Lucent Technologies), the same group that de-
veloped UNIX , C, and C++. Their intent was to ex-
plore potential solutions to some of the shortcomings of
UNIX in the face of the widespread use of high-speed
networks to connect machines. In UNIX, networking
was an afterthought and UNIX clusters became little
more than a network of stand-alone systems. Plan 9 was
designed from first principles as a seamless distributed
system with integrated secure network resource sharing.

Plan 9s transparent distributed computing environment
was the result of three core design principles which per-
meated all levels of the operating system and application
infrastructure:

1. develop a single set of simple, well-defined inter-
faces to services

2. use a simple protocol to securely distribute the in-
terfaces across any network

3. provide a dynamic hierarchical structure to orga-
nize these interfaces

In Plan 9, all system resources and interfaces are repre-
sented as files. UNIX pioneered the concept of treating
devices as files, providing a simple, clear interface to
system hardware. Plan 9 took the file system metaphor
further, using file operations as the simple, well-defined
interface to all system and application services. The
benefits and details of this approach are covered in great
detail in the existing Plan 9 papers [12].

3.2 9P Overview

9P represents the abstract interface used to access re-
sources under Plan 9. It is somewhat analogous to the

VFS layer in Linux. In Plan 9, the same protocol op-
erations are used to access both local and remote re-
sources, making the transition from local resources to
cluster resources to cloud resources completely trans-
parent from an implementation standpoint. Authenti-
cation is built into the protocol, and the protocol itself
may be run over encrypted and digested transports. It is
important to understand that all 9P operations can be as-
sociated with different active semantics in synthetic file
systems. Traversal of a directory hierarchy may allocate
resources, or set locks. Reading or writing data to a file
interface may initiate actions on the server, such as when
a file acts as a control interface. The dynamic nature
of these synthetic file system semantics makes caching
dangerous and in-order synchronous execution of file
system operations a desirable default. For an example
of the potential difficulties, think of interacting with the
proc or sysfs file systems in Linux over a cached file
system mount where some of the data can be dozens of
seconds out of date with the actual state on the server.

The 9P protocol itself requires only a reliable, in-order
transport mechanism to function. It is commonly used
on top of TCP/IP, but has also been used over RUDP,
PPP, and over raw reliable mechanisms such as the PCI
bus, serial port connections, and shared memory.

The base 9P protocol is based on 12 paired protocol op-
erations (each with a request and response version) and
a special error response which is used to notify the client
of problems with a request. They are made up of pro-
tocol accounting operations (version, authentication, at-
tach, flush), file operations (lookup, create, open, read,
write, remove, close), and meta-data operations (set at-
tributes, get attributes). The nature of the operations
is strict balanced RPC (each request gets a single re-
sponse). The protocol is stateful, requiring the server
to maintain certain aspects of the state of session and
outstanding transactions. The protocol has provisions
for supporting multiple outstanding transactions on the
same transport and can be run in synchronous or asyn-
chronous modes (depending on the implementation of
the client and the server).

As mentioned previously, the 9P file system was added
to the 2.6.14 mainline linux kernel with support for
TCP/IP and named pipe transports (such that it could
be used to access user-space file systems). Later, in
2.6.x the transport interfaces were modularized to al-
low for alternative transports to be plugged into the 9P
client. In 2.6.x an RDMA interface was added by Tom

2010 Linux Symposium • 113

Tucker support infiniband, and in 2.6.x fscache support
was added by Abhishek Kulkarni. It currently has the
distinction of being the distributed file system imple-
mented with the fewest lines of code in the Linux kernel.

3.3 9P Extensions

The 9P protocol was originally designed specifically for
the Plan 9 operating system, and as such implements a
subset of the rich functionality of the Linux VFS layer.
Additionally, it has slightly different definitions for cer-
tain parameters (such as permissions, open-mode, etc.).
It also takes a different approach to user and group man-
agement, using strings instead of ids.

In order to adapt 9P to better supporting POSIX dur-
ing the Linux port, the protocol was extended with the
9P2000.u (for unix) version. This protocol version pro-
vided support for numeric user and group ids, provided
additional mode and permission bits as well as an ex-
tended attributes structure in order to be POSIX compli-
ant, and augmented existing operations to support sym-
links, links, and creation of special files.

The .u protocol has been used for the past several years,
but had a number of deficiencies. It did not include
full support for Linux VFS operations. Notably absent
was support for quotas, extended attributes, and lock-
ing. Furthermore, its overloading of existing operations
to provided extended functions made developing servers
and clients to support 9p2000.u problematic, and no par-
tial support for 9p2000.u was possible due to differences
in the size of operation protocol messages and ambigu-
ous definitions of extension fields.

In response to these deficiencies, a new approach to of-
fering extensions to the protocol was developed. While
core protocol elements (such as size prefixed packets,
tagged concurrent transactions, and so forth) remain the
same, extended features will get their own operations in
a complimentary op-code space to the existing prtoocol.
The Linux binding for 9P, titled 9P2000.L, will be the
first approach at such an extension and will be aimed at
addressing the .u deficiencies while making the protocol
address a larger subset of the functionality provided by
Linux.

As stated previously, The new 9P2000.L extension will
will exist in a complimentary op-code name space – that

is to say operation identifiers will not overlap with ex-
isting operations, and all extensions will use new op-
erations as opposed to changes to existing operations.
Alternate extension op-codes spaces may be negotiated
by optional postfixes during version negotiation – but
every effort will be made to keep operations within the
existing name space. It was also decided that all exten-
sions should be treated as optional, servers which dont́
wish to implement them (or any subset of them) simply
returns error – well behaved clients will fall back to the
core 9P2000 operations.

3.4 KVM and QEMU

KVM is a set of Linux kernel modules that allows a
userspace process to execute code in a special process
mode. On x86, this is often referred to as compressed
ring 0. Much like vm86 syscall, this mode allows a
userspace program to trap interesting events such as I/O
operations.

QEMU uses the interfaces provided by KVM to imple-
ment full system virtualization emulating standard PC
hardware such as an IDE disk, VGA graphics, PCI net-
working, etc. In the case of KVM, any I/O requests a
guest operating system makes are intercepted and routed
to the user mode to be emulated by the QEMU pro-
cess [7].

3.5 VirtIO Transport

VirtIO is a paravirtual IO bus based on a hypervisor neu-
tral DMA API. With KVM on x86, which is the dom-
inant platform targetted by this work, the underlying
transport layer is implemented in terms of a PCI device.

A PCI device is used to enable support for the widest va-
riety of guests since all modern x86 operating systems
support PCI. The VirtIO PCI implementation makes ex-
tensive use of shared memory. This includes the use of
lockless ring queues to establish a message passing in-
terface and indirect reference to scatter/gather buffers to
enable zero-copy bulk data transfer.

These properties of the VirtIO PCI transport allow
VirtFS to be implemented in such a way that guest
driven I/O operations can be zero-copy. This is a key ad-
vantage of VirtFS compared to using a network file sys-
tem which would always require at least one (but usually
more) data copies.

114 • VirtFS—A virtualization aware File System pass-through

4 Implementation

4.1 Details of the Implementation of VirtFS server
in QEMU

Making the VirtFS server part of QEMU is a very nat-
ural design decision. KVM+QEMU+VirtIO presents an
ideal platform for the VirtFS server where it can effi-
ciently interact with the guest providing one of the effi-
cient paravirtual network file system interfaces. VirtFS
server is facilitate in QEMU by defining two types of
devices.

One is virtio-9p-pci device, and this will be used to
transport protocol messages and data between the host
and the guest. Second one is fsdev device, this is used
to define the export file system characteristics like file
system type, security model (section 4.2)

A typical usage of QEMU to export a file system is:

-fsdev local,id=exp1,path=/tmp/,security_model=mapped
-device virtio-9p-pci,fsdev=exp1,mount_tag=v_tmp

On the client it can be mounted with:

$ mount -t 9p -o trans=virtio v_tmp /mnt

4.2 Security Model

Security is one of the most important aspects of the file
system design and it needs to be handled with care to
cater specific needs of the exploiters. There are two ma-
jor use cases that can make use of this new technology
and their security requirements are quite different. One
demands a complete isolation of guest user domain from
that of the hosts hence practically eliminating any se-
curity issues related to setuid/setgid and root. This is a
very practical use case for certain classes of cloud work-
loads where multi-tenancy is a requirement. A complete
isolation of user domain can practically make two com-
peting customers share the same file system.

The other use case is playing along with the traditional
network file-serving methodologies like NFS and CIFS
by sharing user domains of the host and guest. This
method edges out by offering flexibility to export the
same file system through other network file systems
along with VirtFS.

Linux being POSIX complaint, offers a simple yet pow-
erful file system permission model: Every file system

object is associated with three sets of permissions that
define access for the owner, the owning group, and for
others.

Each set may contain Read (r), Write (w), and Execute
(x) permissions. This scheme is implemented using only
nine bits for each object. In addition to these nine bits,
the Set User Id, Set Group Id, and Sticky bits are used
for number of special cases.

Although this traditional model is sufficient for most of
the use cases, it falls short of satisfying the needs of
the modern world. The need for more granular permis-
sions eventually resulted in a number of Access Control
List (ACL) implementations on UNIX like Posix ACLs,
Rich ACLs, NFSv4 ACLs etc. These ACL models were
developed for specific needs and has very limited degree
of commonality. This poses a major challenge for net-
work file systems as it may have to support wide variety
of file systems with different ACL models [5].

VirtFS, being one of the first file systems in the genre
of paravirtual file systems need to consider all options
and use cases. This type of file systems need to play a
dual role, where it should be a viable alternative to net
work file systems like NFS and CIFS, and also it needs
to fill-in the new space where it should provide special
optimizations and considerations for the needs of guest
operating systems. To address these special needs and
the use cases explained above, we came up with two
types of security models for VirtFS: the mapped security
model and the passthrough security model. QEMU ad-
ministrator picks a model at the start-up and is expected
to stick with that.

4.2.1 Security model: mapped

In this security model, VirtFS server intercepts and maps
the file object create and get/set attribute requests. Files
on the fileserver will be created with VirtFS server’s
(QEMU) user credentials and the client-user’s creden-
tials are stored in extended attributes. On the request
to get attributes, server extracts the client-user’s cre-
dentials from extended attributes and sends them to the
client. Since the files are created on the fileserver with
QEMU credentials, this model keeps the guests user do-
main completely isolated from the host’s user domain.
Host view shows QEMU as the owner of all files created
by any user(including root) on the guest hence provides
complete isolation and security.

2010 Linux Symposium • 115

The access permissions for user attributes are defined
by the file permission bits. The file permission bits of
regular files and directories are interpreted differently
from the file permission bits of special files and sym-
bolic links. For regular files and directories the file per-
mission bits define access to the file’s contents, while
for device special files they define access to the device
described by the special file. The file permissions of
symbolic links are not used in access checks. These
differences would allow users to consume file system
resources in a way not controllable by disk quotas for
group or world writable special files and directories. For
this reason, extended user attributes are only allowed for
regular files and directories only.

Given that the user space extended attributes are avail-
able to regular files only, special files are created as reg-
ular files on the fileserver and appropriate mode bits are
added to the extended attributes. This method presents
all special files and symlinks as regular files on the file-
server while they are represented as special files on the
guest mount.

On Host:
ls -l
drwx------. 2 virfsuid virtfsgid 4096 2010-05-11 09:19 adir
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:36 afifo
-rw-------. 2 virfsuid virtfsgid 0 2010-05-11 09:19 afile
-rw-------. 2 virfsuid virtfsgid 0 2010-05-11 09:19 alink
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:57 asocket1
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:32 blkdev
-rw-------. 1 virfsuid virtfsgid 0 2010-05-11 09:33 chardev

On Guest:
ls -l
drwxr-xr-x 2 guestuser guestuser 4096 2010-05-11 12:19 adir
prw-r--r-- 1 guestuser guestuser 0 2010-05-11 12:36 afifo
-rw-r--r-- 2 guestuser guestuser 0 2010-05-11 12:19 afile
-rw-r--r-- 2 guestuser guestuser 0 2010-05-11 12:19 alink
srwxr-xr-x 1 guestuser guestuser 0 2010-05-11 12:57 asocket1
brw-r--r-- 1 guestuser guestuser 0, 0 2010-05-11 12:32 blkdev
crw-r--r-- 1 guestuser guestuser 4, 5 2010-05-11 12:33 chardev

Most of the file systems offer only one block for ex-
tended attributes. This limitation curbs the use of ex-
tended attributes to stored the target link location. Un-
der this model, target link location is store as file data
using write() and readlink reads it back through read()

On Guest:
ls -l asymlink
lrwxrwxrwx 1 root root 6 2010-05-11 12:20 asymlink -> afile

On Host:
ls -l asymlink
-rw-------. 1 root root 6 2010-05-11 09:20 asymlink
cat asymlink
afile
#

Just like any security model, this has its own advantages
and limitations. One of the main strength and weakness

of this model is, the host file system will be VirtFSized.
While the guest doesn’t see any difference, host users
and tools need to understand the security model to use
the file system credentials on the host. This is a strength
because it completely isolates the guest users address
space, it allows the server to run as a non-privileged
user, hence it involves no issues of root-squashing or se-
tuid issues. Hence this security model makes it perfect
for the guest to run in its own security island.

4.2.2 Security model: Passthrough.

In this security model, VirtFS server passes down all re-
quests to the underlying file system. File system objects
on the fileserver will be created with client-user’s cre-
dentials. This can be done by setting setuid()/setgid()
during creation or chmod/chown immediately after cre-
ation. At the end of create protocol request, files on the
fileserver will be owned by client-user’s credentials.

On Host:

grep 611 /etc/passwd
hostuser:x:611:611::/home/hostuser:/bin/bash

ls -l
-rwxrwxrwx. 2 hostuser hostuser 0 2010-05-12 18:14 file1
-rwxrwxrwx. 2 hostuser hostuser 0 2010-05-12 18:14 link1
srwxrwxr-x. 1 hostuser hostuser 0 2010-05-12 18:27 mysock
lrwxrwxrwx. 1 hostuser hostuser
5 2010-05-12 18:25 symlink1 -> file1

On Guest:
$ grep 611 /etc/passwd
guestuser:x:611:611::/home/guestuser:/bin/bash

$ ls -l
-rwxrwxrwx 2 guestuser guestuser 0 2010-05-12 21:14 file1
-rwxrwxrwx 2 guestuser guestuser 0 2010-05-12 21:14 link1
srwxrwxr-x 1 guestuser guestuser 0 2010-05-12 21:27 mysock
lrwxrwxrwx 1 guestuser guestuser 5 2010-05-12 21:25 symlink1 -> file1

This model lets the host tools understand the filessytem,
and statistics collection and quotas enforcement will be
easier. But this needs the server to run as a privileged
user (root) and also exposes root/setuid security issues
just like NFS

4.2.3 ACL Implemenation

Access Control Lists (ACLs) steps in where the tradi-
tional mode bits security model is not sufficient. ACLs
allow fine grained control by the assignment of permis-
sions to individual users and groups even if these do not
correspond to the owner or the owning group. Access
Control Lists are a feature of the Linux kernel and are
currently supported by many common file systems and

116 • VirtFS—A virtualization aware File System pass-through

its support is crucial with the wide spread usage of file
sharing among heterogeneous systems like Linux/Unix,
and Windows. While ACLs are an essential part of com-
prehensive security scheme, the lack of universal stan-
dards often make the design complex and complicated
and VirtFS is not an exception.

At the time of writing this paper, we are still at the
design stage of implementing the following aspects of
ACL.

A newly created file system object inherits ACLs from
its parent directory. The common practice is a non-
directory object inherits the parent default ACLs as its
access ACLs and directory object inherits parent default
ACLs as its default ACLs. To make things little more
complicated, there are no standards on the inheritance
algorithm and they differ for each ACL model.

In adition to the gid/uid/mode-bits, ACLs of the file sys-
tem object will be checked before granting the request-
ing access to a file system object. This checking can
be done either on the client or on the server. If the en-
forcement is on the server, it need to have the context of
the client-user’s credentials, which makes the protocol
very bulky. For this reason it becomes a natural choice
to have permission checks at the client.

We are leaning towards supporting at least NFSv4 level
ACLs and employing client to do the ACL enforcement
while the ACL inheritance is servers job. The server can
choose to delegate it to the fileserver.

4.3 Current state of the project

At the time of writing this paper, the project is ac-
tively being worked on with a team of seven IBM en-
gineers and the community is just starting to get ex-
cited. Several patches has been posted to the com-
munity mailing lists. Client side patches are being
posted to the v9fs-developer@lists.sourceforge.net list
and server side patches are being posted to the qemu-
devel@nongnu.org list.

QEMU community blessed the project by accepting the
VirtFS server feature patch set into the mainline. This is
a significant milestone for the project. A patch set intro-
ducing the security model as explained above is also on
the mailing list awaiting acceptance. We are also work-
ing towards allowing a more asynchronous model for

the QEMU server which should boost performance sig-
nificantly.

On the client side, the team has contributed dozens of
patches to the 9P client of the Linux kernel. We are ac-
tively working on fixing pre-exisitng bugs and defining
the 9P2000.L protocol extension. As mentioned above,
the main intent and focus of this new protocol extension
is to define an efficient Linux friendly protocol. In this
process, we are contributing to the improvement and sta-
balization of the 9P client as a whole.

5 Performance

As mentioned earlier, VirtFS is intended to be the net-
work file system specialist in the virtualization world.
By the virtue of its design VirtFS is expected to yield
better performance compared to its alternatives like
NFS/CIFS. Though we are just getting started, lot of
focus is given to the performance aspect of the imple-
mentation and the protocol design. This section covers
the initial performance evaluation and comparisons with
its counterparts.

5.1 Test Environment

The following test environment is used for the perfor-
mance evaluation.

Host: 8 CPU 2.5GHz Intel Xeon server, 8 GB of
memory, Qlogic 8Gb fiber channel controller, 24 disks
JBOD. 2.6.34-rc3 kernel, mainline qemu.

Guest: 2 vCPU, 2GB memory running 2.6.34-rc3 ker-
nel.

The following configuration is used for gathering per-
formance numbers:

Configuration-1: Sequential read and write perfor-
mance of VirtFS in comparison to NFS and CIFS. In
this configuration, file system is mounted on the host
and guest accesses the file system through VirtFS, NFS
or CIFS.

Configuration-2: Sequential read and write perfor-
mance of VirtFS in comparison to block-device perfor-
mance. In this configuration, guest directly accesses the
file system on the block device.

2010 Linux Symposium • 117

Setup

• For comparisons with blockdev, each block de-
vice is exported to guest as a block device
(cache=writethrough). Filesystem is not mounted
in the host and its mounted only on the guest for
this testing.

• Each filesystem is stripped across 8 disks to elimi-
nate single disk bottlenecks. 3 such filesystems are
used for the performance analysis.

• Each filesystem is mounted in the host and ex-
ported (using defaults) to the guest over virtio-net.

• Filesystems are un-mounted, remounted and re ex-
ported before each read test to eliminate host level
pagecache.

Commands

Used simple "dd" tests to simulate sequential read and
sequential write patterns.

Write:
dd if=/dev/zero of=/mnt/fileX bs=<blocksize>
count=<count>

Read:
dd if=/mnt/fileX of=/dev/null bs=<blocksize>
count=<count>

blocksize - 8k, 64k, 2M.
count = number of blocks to do 8GB worth of IO.
All the tests are conducted in the guest with various IO
block sizes.

5.2 VirtFS, NFS and CFS comparison

Figure-2 compares sequential read performance of
VirtFS at various block sizes against NFS and CIFS.
VirtFS clearly outperforms NFS and CIFS at all block
sizes

Figure-3 compares sequential write performance of
VirtFS at various block sizes against NFS and CIFS.
Again, as expected VirtFS outperforms NFS and CIFS
at all block sizes.

Figure 2: Comparing Sequential Read among
VirtFs/NFS/CIFS

Figure 3: Comparing Sequential Write among
VirtFs/NFS/CIFS

5.3 VirtFS, block device comparison

Figure-4 compares sequential read performance of
VirtFS against local file system access by block device.
At the time of writing this paper, VirtFS doesn’t seem
to scale well with number of file systems. This is due
to single threaded implementation of VirtFS server in
QEMU. Currently efforts are underway to convert it to
multi threaded implementation.

Figure-5 compares sequential write performance of
VirtFS against the block device access. As these are not
synchronous writes, VirtFS is able to scale very well by
taking advantage of the host and guest page caches.

118 • VirtFS—A virtualization aware File System pass-through

Figure 4: Comparing Sequential Read between VirtFs
and Block device

Figure 5: Comparing Sequential Write between VirtFs
and Block device

6 Next Steps

6.1 Complete 9P2000.L

Defining an optimal and efficient protocol that is well
suited for Linux’s needs is our current focus. Imple-
menting the defined 9P2000.L protocol messages both
on the client and server and getting them into mainline
will be our immediate priority. We are aiming to make
the prototype available for early adopters and exploiters
as quickly as possible and also plan for next releases
with more advanced features.

6.2 Security

ACL implementation for network file systems is always
a challenge as the server need to support different file
systems with different ACL models. It becomes more
complicated for VirtFS as we are supporting two dif-
ferent security models as mentioned above. The Linux
kernel supports POSIX ACLs only but we are planning
on supporting NFSv4 level ACLs. This may throw more
challenges on the way.

6.3 Page Cache Sharing

Reading a file on the network file system mount on the
guest makes the host to read the page onto its cache,
send the data over the protocol to guests page cache be-
fore it is consumed by the user. In the case KVM, both
host and guest are running on the same hardware and are
using same physical resources. That means the page-
cache block is being duplicated in different regions of
the memory. One could extrapolate this problem to the
worst case scenario where almost half of the system’s
page cache is wasted in duplication. We need to come up
with a method where the host and guest share the same
physical page. This eliminates the need for data copy
between guest and host and provide better data integrity
and protection to the application yielding extreme per-
formance benefits. Sharing pages between two operat-
ing systems is challenging as we can run into various
locking and distributed caching issues.

6.4 Interfacing with File system APIs

A user space server has an unique opportunity where
it can interact directly with the file system API instead

2010 Linux Symposium • 119

of going through the system call/VFS interface. VirtFS
server, being a user space server can be modeled to plug
directly into the fileservers API if one is available. This
opens up speciality features offered by the fileserver to
the guest through VirtFS and hence gives an opportu-
nity to give a true pass-through representation of the file-
server. Simply put, this effort should provide a layer of
indirection between the third party/specialized file sys-
tems on the host and virtual machines, enabling any ap-
plication dependent on the special features of these file
systems to run on the guests VirtFS mount.

7 Conclusions

In this paper we have motivated and described the devel-
opment of a paravirtual system service, namely VirtFS.
We have described its integration into KVM/QEMU and
the Linux kernel, and discussed both its underlying pro-
tocol and the changes we are making to that protocol to
improve its support for Linux VFS features. We have
described few different use cases and included a dis-
cussion of different security models for deploying this
paravirtual file systems in cloud environments. Finally,
we have shown that our initial work has superior per-
formance to the use of conventional distributed file sys-
tems and even reasonable performance when compared
to the use of a paravirtualized disk. As described in the
next steps (section 6) we plan on continuing the devel-
opment to improve performance, stability, security, and
features. It is our belief that as virtualization continues
to becomes more pervasive, paravirtual system services
will play a larger role – perhaps completely overtaking
paravirtual devices and device emulation.

8 Acknowledgements

We would like to thank Sripathi Kodi for his valuable
review comments.

We would like to thank Jim Garlick for his contributions
to 9P2000.L. We’d also like to thank Ron Minnich and
Latchesar Ionkov who have provided valuable feedback
as well as being th eco-maintainers of the 9P subsystem
in Linux. We’d also like to thank all those members
of the Linux kernel development community who have
contributed patches to the 9p base infrastructure we are
leveraging.

References

[1] Mike Accetta, Robert Baron, William Bolosky,
David Golub, Richard Rashid, Avadis Tevanian,
and Michael Young. Mach: A new kernel
foundation for unix development. pages 93–112,
1986.

[2] Glenn Ammons, Jonathan Appavoo, Maria
Butrico, Dilma Da Silva, David Grove, Kiyokuni
Kawachiya, Orran Krieger, Bryan Rosenburg,
Eric Van Hensbergen, and Robert W. Wisniewski.
Libra: a library operating system for a jvm in a
virtualized execution environment. In VEE ’07:
Proceedings of the 3rd international conference
on Virtual execution environments, pages 44–54,
New York, NY, USA, 2007. ACM.

[3] Bell-Labs. Introduction to the 9p protocol. Plan 9
Programmers Manual, 3, 2000.

[4] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr.
Exokernel: an operating system architecture for
application-level resource management. In SOSP
’95: Proceedings of the fifteenth ACM symposium
on Operating systems principles, pages 251–266,
New York, NY, USA, 1995. ACM.

[5] Andreas Grunbacher. Posix access control lists on
linux. USENIX paper - Freenix track, 2003.

[6] Eric Van Hensbergen and Ron Minnich. Grave
robbers from outer space using 9p2000 under
linux. In In Freenix Annual Conference, pages
83–94, 2005.

[7] M. Tim Jones. Discover the linux kernel virtual
machine - learn the kvm architecture and
advantages.

[8] Anthony Liguori and Eric Van Hensbergen.
Experiences with content addressable storage and
virtual disks. In In Proceedings of the Workshop
on I/O Virtualization (WIOV), 2008.

[9] Edmund B. Nightingale, Chris Hawblitzel, Orion
Hodson, Galen Hunt, and Ross Mcilroy. Helios:
Heterogeneous multiprocessing with satellite
kernels. In In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles,
2009.

120 • VirtFS—A virtualization aware File System pass-through

[10] Fabio Oliveira, Gorka Guardiola, Jay A. Patel,
and Eric Van Hensbergen. Blutopia: Stackable
storage for cluster management. In CLUSTER,
pages 293–302, 2007.

[11] Rob Pike, Dave Presotto, Sean Dorward, Bob
Flandrena, Ken Thompson, Howard Trickey, and
Phil Winterbottom. Plan 9 from Bell Labs.
Computing Systems, 8(3):221–254, Summer
1995.

[12] Rob Pike, Dave Presotto, Ken Thompson, Howard
Trickey, and Phil Winterbottom. The use of name
spaces in plan 9. SIGOPS Oper. Syst. Rev.,
27(2):72–76, 1993.

[13] Rusty Russel. virtio: towardsa a de-facto standard
for virtual I/O devices. In Operating Systems
Review, 2008.

[14] Adrian Schupbach, Simon Peter, Andrew
Baumann, Timothy Roscoe, Paul Barham, Tim
Harris, and Rebecca Isaacs. Embracing diversity
in the barrelfish manycore operating system. In In
Proceedings of the Workshop on Managed
Many-Core Systems, 2008.

[15] Eric Van Hensbergen. P.R.O.S.E.: partitioned
reliable operating system environment. SIGOPS
Operating Systems Review, 40(2):12–15, 2006.

Proceedings of the
Linux Symposium

July 13th–16th, 2010
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Linux Symposium
Martin Bligh, Google
James Bottomley, Novell
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Matthew Wilson

Proceedings Committee

Robyn Bergeron

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

