
Measuring Function Duration with Ftrace

Tim Bird
Sony Corporation of America
tim.bird@am.sony.com

Abstract

FTrace is a relatively new kernel tool for tracing func-
tion execution in the Linux kernel. Recently, FTrace
added the ability to trace function exit in addition to
function entry. This allows for measurement of func-
tion duration, which adds an incredibly powerful tool
for finding time-consuming areas of kernel execution.

In this paper, the current state of the art for measuring
function duration with FTrace is described. This in-
cludes recent work to add a new capability to filter the
trace data by function duration, and tools for analyzing
kernel function call graphs and visualizing kernel boot
time execution.

Introduction

Analyzing a running operating system kernel can be a
difficult task. In the 2.6.27 version of the kernel, a
powerful tracing mechanism called Ftrace was added to
mainline Linux. Ftrace provides some very nice facil-
ities for instrumenting the kernel, recording trace data,
and outputting the data to user space.

The Ftrace system provides a generic tracing framework
in the kernel, upon which several different kinds of trac-
ers can be implemented. Different kinds of tracers uti-
lize different methods of instrumenting the kernel code
and different data collection algorithms.

Ftrace supports the ability do basic function tracing,
which consists of recording information at the time of
entry to every function executed in the kernel. Addition-
ally, on some architectures, Ftrace supports the ability to
perform function graph tracing, which involves tracking
not just function entry but also function exit, and the
ability to measure function duration. This is is useful to
find performance problems and latency problems in the
kernel.

This paper presents work by the author to add function
graph tracing to the ARM architecture. This includes
a description of the mechanisms used and some of the
issues involved on the ARM architecture.

Also, this paper describes the author’s efforts to add du-
ration filtering to the function graph tracer. Even on
a relatively slow processor, the kernel executes many
thousands of functions per second. Without filtering,
the length of time that data can be captured in the trace
log without loss is very limited. By adding duration fil-
tering, it is possible to greatly extend the duration of a
trace, to capture more events of interest and to help iso-
late problem areas.

1 Overview of Ftrace Operation

1.1 Instrumentation

Ftrace operates by adding tracepoints to the Linux ker-
nel. The insertion into the Linux kernel of locations
where tracing information is recorded is referred to as
instrumentation. Instrumentation comes in two main
forms—explicitly declared tracepoints, and implicit tra-
cepoints. Explicit tracepoints consist of developer-
defined declarations which specify the location of the
tracepoint, and additional information about what data
should be collected at a particular trace site. Implicit
tracepoints are placed into the code automatically by the
compiler, either due to compiler flags or by developer
redefinition of commonly used macros.

Function tracing and function graph tracing utilize im-
plicit instrumentation. The kernel consists of many
thousands of C functions, and it would be extremely im-
practical to maintain explicit tracepoint definitions for
all of them. To instrument functions implicitly, when
the kernel is configured to support function tracing, the
kernel build system adds -pg to the flags used with
the compiler. This causes the compiler to add code to

• 47 •

48 • Measuring Function Duration with Ftrace

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e3a00001 mov r0, #1 ; 0x1
580: ebffffa0 bl 408 <do_sync>
584: e3a00000 mov r0, #0 ; 0x0
588: e89da800 ldmia sp, {fp, sp, pc}

Figure 1: ARM code without call to mcount

00000570 <sys_sync>:
570: e1a0c00d mov ip, sp
574: e92dd800 stmdb sp!, {fp, ip, lr, pc}
578: e24cb004 sub fp, ip, #4 ; 0x4
57c: e1a0c00e mov ip, lr
580: ebfffffe bl 0 <mcount>
584: 00000028 andeq r0, r0, r8, lsr #32
588: e3a00001 mov r0, #1 ; 0x1
58c: ebffff9d bl 408 <do_sync>
590: e3a00000 mov r0, #0 ; 0x0
594: e89da800 ldmia sp, {fp, sp, pc}

Figure 2: ARM code with call to mcount

the prologue of each function, which calls a special as-
sembly routine called mcount. This compiler option is
specifically intended to be used for profiling and tracing
purposes.

Figures 1 and 2 show the ARM assembly code gener-
ated when compiling the short routine sys_sync()
both with and without the -pg compiler flag. The as-
sembly code was produced from the compiled object
file with the command: arm-eabi-objdump -S fs/

sync.o >fs/sync.S. Comparing the two shows that
the mcount call only takes a few extra instructions.

The mcount routine is written in platform-specific
assembly, located in the file arch/arm/kernel/

entry-common.S, for the ARM platform. It is called
every time a function is entered. Because of this, it is
important that the routine have very low overhead, es-
pecially when tracing is disabled1.

Another issue with use of mcount is that it is in-
compatible with certain kinds of compiler optimiza-

1Note that on some platforms, Ftrace includes the capability to
use “dynamic tracepoints,” whereby the tracepoints are replaced
with ’nop’ instructions at runtime, to reduce overhead when not trac-
ing. This is a very neat capability, which dramatically reduces over-
head and makes it feasible to leave tracing configured on even for
some production systems. However, detailed discussion of this ca-
pability is outside the scope of this paper.

tions. mcount must be called with a consistent stack
frame and frame pointer, in order for it to operate
correctly. Some compiler optimizations produce stack
frames, frame pointers, or call sequences that would
cause mcount to be inaccurate, or worse, to function
incorrectly. For example, on the ARM platform, the
kernel must be compiled to use frame-pointers in or-
der for function tracing to work correctly. That is, you
cannot use the -fomit-frame-pointers compiler
option.

Luckily, when the -pg compiler option is used, the gcc
compiler automatically disables several optimizations
which it might normally perform. Also, the kernel con-
figuration system automatically adjusts compiler flags at
build time to avoid conflicts between tracing options and
optimization options.

1.2 Tracing at Runtime

At runtime, tracing is disabled until enabled by the user.
In this situation, the mcount routine returns as quickly
as possible to the instrumented function, and kernel pro-
cessing continues. When tracing is enabled, mcount
calls the function corresponding to the user-selected
tracer, which then records information and makes an en-
try in the trace log.

Tracing can be enabled by the user by the manipulation
of pseudo-files in the debug file system. The user can se-
lect what tracer to activate, and also set various tracing
parameters. Files in the Documentation/trace di-
rectory describe the pseudo-files that are presented by
Ftrace, the different tracers, and what parameters can be
used by each one. In general, there are files for initiating
and suspending a trace, adjusting the trace log size, for
setting parameters for trace-time filtering, and for cus-
tomizing the format of the trace log output.

1.3 Trace Data Capture

The trace log is kept in a new kernel data structure called
the ring buffer. This data structure is specifically de-
signed for holding trace data, for quick and lockless data
entry, and for simultaneous reader and writer access to
the buffer.

The ring buffer provides automatic management of
timestamps used with the trace data. Also, it provides
page-aligned, per-cpu buffers for holding trace data. A

2009 Linux Symposium • 49

more detailed description of the ring buffers is outside
the scope of this document, but see Documentation/
trace/ring-buffer-design.txt for more infor-
mation.

Note that to avoid locking operations, data entry into
the ring buffer is done in steps. First, the data posi-
tion is reserved in the buffer, using the function ring_
buffer_lock_reserve(). The data position is re-
served in an atomic fashion, to avoid a costly lock oper-
ation. (Note that the word lock in the function name is
misleading.)

Next the data for the trace event is filled in. If the
trace data is to be saved (the normal case), then ring_
buffer_unlock_commit() is called to commit the
data to the buffer. If for some reason the event data
should not be saved, then ring_buffer_discard_
commit() can be called to eliminate the event from
the buffer. If no other data has been written to the
buffer, the discard_commit operation can remove the
data from the buffer. However, if other data has been
written, ring_buffer_discard_commit() just
marks the data so that it is ignored by the tracer output
system. In the case of filtering, it is highly desirable to
not merely mark the data, but to actually remove it from
the buffer, to free up space for other event data. This
will be discussed in more depth in Section 2.1.

1.4 Trace output

Finally, a user can access the trace data via more debugfs
pseudo-files. Trace data is formatted in plain text, and
intended to be easily readable by humans, as well as
easily processable by post-trace analysis tools.

Trace data can be accessed either after a trace has com-
pleted, or during a trace run.

1.5 Function Graph Tracing

Function graph tracing is a form of function tracing
where both the function entry and exit are tracked by
the tracer. With “regular” function tracing, only func-
tion entry is traced. When both the entry and exit of
functions are available, it is possible to see the relation-
ship between functions. It is possible to reconstruct the
complete graph of function calls for a particular oper-
ation in the kernel. This is very helpful to understand

the operation of the kernel, and also to detect anoma-
lies in kernel operation. Also, by measuring both entry
and exit, it is possible to measure the duration of each
function.

Function graph tracing utilizes the same compiler in-
strumentation as function tracing. However, using the
mcount mechanism to capture the exit of a function
requires some tricky manipulation of the stack and call
sequence. Since the -pg compiler option only adds
instrumentation for function entry, the Ftrace system
needs to adjust the register and stack conditions before
returning to execute the instrumented function so that
Ftrace can regain control when the function exits.

It does this with a return “trampoline.” This is shown
in Figure 3. When Ftrace is called on function entry, it
records the real return address (the address that the in-
strumented function was called from) and saves it in the
process’ task structure. Because multiple functions will
nest before the returns are processed, these are kept in a
stack of return addresses. After Ftrace calls the function
graph tracer, it replaces the return address (either on the
stack or in a register, depending on the architecture and
ABI being used) with the address of an Ftrace routine
to handle the return trace. Then Ftrace returns to the
instrumented routine so that it can execute. When the
instrumented routine finishes and returns, instead of re-
turning to it’s original caller, it returns to Ftrace. Ftrace
then calls the function graph tracer again, with the func-
tion exit tracepoint data. Then Ftrace retrieves the real
return address from the task structure, and returns to the
real caller.

2 Adding Function Graph Tracing to ARM

Function graph tracing was originally developed on the
x86 architecture. This section describes some of the is-
sues encountered while adding support for this feature
to the 2.6.30 Linux kernel, for the ARM platform.

Here is the list of problems encountered, and the solu-
tions implemented to fix them.

1. Basic function tracing was supported for the ARM
architecture, but testing revealed that the system
hung when it was activated on my particular plat-
form.

50 • Measuring Function Duration with Ftrace

Figure 3: Mcount Handling and Return Trampoline

This was eventually determined to be an issue with
recursion in the tracing code, due to some rou-
tines in the timestamping code path being instru-
mented. For this, I added the ’notrace’ attribute
to my platform-specific sched_clock() and all
possible nested functions called by that routine.

2. Function graph tracing was implemented by doing
the following:

• Extending the ARM mcount routine in
arch/arm/kernel/entry-common.S
to check for and call a registered graph tracer
function.

• Adding a return trampoline for Ftrace for
ARM.

• Adding the return stack data structure to the
task structure for processes.

• Adding an interrupt segment to the ARM
linker directive file.
This was required because portions of the
function graph display code examine routines
to see whether they are interrupt functions.
They do this by checking whether the func-
tion resides in the “interrupt segment.” Note
that I did not actually declare any routines to
be interrupt routines, which is done with a
qualifier on the function declaration.

3. I also modified the code to use a higher-resolution
clock source for timestamps. The default clock
source on my OMAP platform produced times-
tamps with a resolution of only 31 microseconds.
This did not allow trace event times to be dis-
tinguished accurately. Luckily, there was another
clock source (the MPU_TIMER, in my case) avail-
able that had higher resolution.

2009 Linux Symposium • 51

To use this clock source for trace timestamps, I
modified the OMAP sched_clock() to use the
different clock read routine for this timer.

4. I added duration filtering, using the existing
tracing_thresh debugfs pseudo-file. The du-
ration, calculated on function exit, was checked
against this threshold and events discarded if the
threshold was not met.

5. I optimized the duration filtering by adding rou-
tines to the ring buffer code to allow for discard-
ing already-committed events. This change is dis-
cussed in the next section.

2.1 Optimizing the Discard of Trace Events

The function graph tracer places two events in the trace
log for each function call. One event is logged for trace
entry, and one for trace exit. The duration of the func-
tion is recorded in the trace exit event. In the first version
of the duration filtering code, function exit events were
discarded using ring_buffer_discard_commit(),
and the function entry events were discarded using
ring_buffer_discard_event(). ring_buffer_

discard_commit() can usually back up the write
pointer for the log, resulting in complete removal of the
event from the trace buffer. However, ring_buffer_
discard_event() just marks an entry as padding, and
leaves it in the buffer.

This means that even though a trace log entry is not used
in the trace output, it still occupies space in the trace log
buffer, reducing the total number of events that can be
held in the buffer at once.

Normally, previously committed entries in the trace log
cannot be removed from the log, since subsequent en-
tries cannot be moved to reclaim the space in the log
without adding unacceptable overhead to the trace oper-
ation. So for post-commit filters, the only option is to
mark the entry to be discarded as pad and leave it in the
log.

However, the case of a duration filter is special, in that if
a function is less than the duration threshold, all nested
functions will also be less than the threshold. This
means that, when using per-cpu trace buffers, and pro-
cessing an exit event, if all nested function entry and exit
events have been eliminated from the trace buffer, the

last event in the trace buffer will always be the function
entry event for the function that is currently exiting.

This observation allows for optimization of the ring
buffer discard operation. If no other events follow the
event to be discarded in the ring buffer, then it is possible
to back up the commit and write pointers for the event
(avoiding the unacceptably costly move operation), and
eliminate the function entry event completely from the
buffer.

I implemented a new ring buffer routine, called ring_
buffer_rewind_tail() to do this more intelli-
gent discard. In order to validate that rewind_
tail() improved the length of the trace, compared to
a regular discard_event(), I measured the amount
of time I could capture in a trace, using different dura-
tion filter values with the different routines. All tests
were performed with a buffer size of 1408KB.

The results of this testing are found in Table 1.

Discard Duration Total Time Trace
operation filter function covered event

value count by trace count
discard_event 0 3.292M 0.39 s 27392
discard_event 1000 3.310M 1.29 s 26630
discard_event 100000 3.309M 1.34 s 26438
rewind_tail 0 3.295M 0.39 s 27316
rewind_tail 1000 3.327M 31.26 s 35565
rewind_tail 100000 3.328M †79.44 s 1669

†The test only lasted 79 seconds—extrapolating the results yields a
trace coverage time of 27 minutes

Table 1: Comparison of Discard Operations

The results clearly show the efficacy of the optimized
discard operation. When function entry events were left
in the trace log, the log filled up after approximately 1.3
seconds, no matter what the duration filter value was.
The low value (1669) for the event count in the last row
of the table indicates that the test completed before the
log became full. When almost all filtered function entry
events are removed from the log using the rewind_
tail() operation, the buffer can hold almost as many
events of interest as the size of the buffer allows.

3 Example of Use

In this section, I describe use of the function graph tracer
with duration filtering. For this example, I piped data

52 • Measuring Function Duration with Ftrace

between two Linux commands operating on file system
data. The sample program is busybox, running the
’ls’ and ’sed’ commands, with sed executing a trivial
character replacement script. This was run in a loop 10
times.

Steps:

$ mount debugfs -t debugfs /debug
$ cd /debug/tracing
$ cat available_tracers \

function_graph function sched_switch nop
$ echo 0 >tracing_enabled
$ echo 1000 >tracing_thresh
$ echo function_graph >current_tracer
$ echo 1 >tracing_enabled
$ for i in ‘seq 1 10‘ ; do \

ls /bin | sed s/a/z/g ; done
$ echo 0 >tracing_enabled
$ echo funcgraph-abstime >trace_options
$ echo funcgraph-proc >trace_options
$ cat trace

Figure 4 shows the first 25 lines of function graph
trace output. Note that for this example I turned on
the funcgraph-abstime and funcgraph-proc
trace output options. Duration times for the functions
are shown in units of microseconds, on the line contain-
ing the closing brace indicating the function exit.

Note that all functions in the log output took longer than
1000 microseconds to complete. Other functions which
took less time than the tracing_thresh were fil-
tered at runtime from the log.

3.1 Using ’ftd’ to Analyze Data

To analyze system data, a post-processing tool called
ftd was written. ftd stands for function trace dump,
and it is a script with the capability to show call counts
and cumulative time for functions in a trace log. ftd
is written in Python. If you are analyzing a trace log
from an embedded target, it is recommended to move
your trace log to a development host and run ftd there,
rather than on the target.

ftd currently requires the absolute time and process in-
formation per trace line in the trace log, in order to work
properly. Make sure these display options are set before
retrieving the trace log data and using ftd on the data.

To retrieve the trace log data, use:

$ cat trace >/tmp/trace-data.txt

To see a list of functions, sorted by total time spent in
them, use:

$ ftd /tmp/trace-data.txt

The first 10 lines of results for this command on some
sample data are shown in Figure 5.

Other useful tasks that ftd can be used for include:

• Sorting the function list by function count—the
number of times that the function was called during
the trace.

• Examining the local time of a function. The local
time of a function is the elapsed time between the
start and end of the function, minus the time spent
in all functions called between the start and end of
the function. Note that this includes not just chil-
dren function called by this function, but also in-
terrupts. Local time also includes the time spent in
user space, and in other processes’ kernel functions
(i.e. when the function’s process is scheduled out.)
So local time should be interpreted cautiously, with
this understanding.

• Finding the subroutines called by functions the
most times.

See ftd -h for usage help documenting the command
line options to use for these tasks.

4 Performance Measurements

The performance of various Ftrace configurations was
measured, to get a sense of how much overhead tracing
caused during kernel execution.

All results are for an OMAP 5912 processor running
at 192 MHZ. The program I traced was a simple shell
script consisting of:

for i in ‘seq 1 10‘ ; do
echo $i ; find /sys >/dev/null ;

done

2009 Linux Symposium • 53

tracer: function_graph
#
TIME CPU TASK/PID DURATION FUNCTION CALLS
| | | | | | | | | |

193.719625 | 0) ls-556 | | sys_lstat64() {
193.719641 | 0) ls-556 | | vfs_lstat() {
193.719650 | 0) ls-556 | | vfs_fstatat() {
193.719660 | 0) ls-556 | | user_path_at() {
193.719722 | 0) ls-556 | | do_path_lookup() {
193.719755 | 0) ls-556 | | path_walk() {
193.719777 | 0) ls-556 | | __link_path_walk() {
193.719826 | 0) ls-556 | | do_lookup() {
193.719855 | 0) ls-556 | | nfs_lookup_revalidate() {
193.719883 | 0) ls-556 | ! 1028.500 us | _text();
193.719946 | 0) ls-556 | ! 1189.500 us | }
193.719965 | 0) ls-556 | ! 1258.500 us | }
193.719986 | 0) ls-556 | ! 1775.167 us | }
193.720016 | 0) ls-556 | ! 1874.333 us | }
193.720045 | 0) ls-556 | ! 2018.167 us | }
193.720069 | 0) ls-556 | ! 2143.000 us | }
193.720099 | 0) ls-556 | ! 2397.000 us | }
193.720108 | 0) ls-556 | ! 2415.167 us | }
193.720139 | 0) ls-556 | ! 2478.334 us | }
193.720315 | 0) ls-556 | | sys_lstat64() {
193.720337 | 0) ls-556 | | vfs_lstat() {
193.720346 | 0) ls-556 | | vfs_fstatat() {
193.720357 | 0) ls-556 | ! 1094.500 us | user_path_at();
193.720410 | 0) ls-556 | ! 1738.167 us | }
193.720419 | 0) ls-556 | ! 1758.500 us | }
193.720452 | 0) ls-556 | ! 1825.500 us | }

Figure 4: A function graph trace, with a duration filter of 1000 microseconds

I found that this sequence was CPU-bound and spent
most of its time in the kernel. Raw data is not provided
here, but the results of my testing showed that the over-
head for function graph tracing is quite large. My tests
generated approximately 3 million kernel function calls.
The overhead per call, when tracing was active, was ap-
proximately 18.9 microseconds per call. The average
time to execute a kernel function call during the test was
1.7 microseconds, so this represents a significant over-
head. It should be noted that function graph tracing re-
quires 2 calls through the tracer code per function called
(one each for entry and exit).

I found that the overhead per function with tracing dis-
abled was about .3 microseconds per function. This
added, on average, 19% overhead to kernel execution.
The overhead for when function graph tracing was ac-
tive was approximately 1100%. (That’s right, over one
thousand percent).

It should be noted that these are microbenchmarks, oper-
ating on a test designed to be kernel-function intensive,
using non-blocking operations. The CPU utilization of
these tests was always close to 100%. The overhead of

using Ftrace on a system with a real user-space work-
load and real I/O would not be this high.

Tracer Elapsed Function Time Overhead
Status Time count† per per

function function
TRACE=n 9.25 s 2.91M 1.72 us -

nop 10.30 s 2.92M 2.05 us 0.33 us
graph disabled 19.85 s 2.98M 5.22 us 3.50 us
graph active 72.15 s 3.29M 20.61 us 18.89 us

†Function counts were estimated, using data from other testing

Table 2: Overhead of Function Graph Tracing

5 Future Work

The primary motivation for adding these features to
Ftrace on ARM is to use them to help find problem areas
in early boot. The next step in developing these features
is to make it possible to use them during early kernel
startup, to see which functions are taking a long time to
execute, or which functions are called excessively dur-
ing kernel startup.

Unfortunately, it may prove difficult to utilize Ftrace

54 • Measuring Function Duration with Ftrace

Function Count Time Average Local
------------------------------ ----- ------------ ---------- ------------
schedule 70 1353560.333 19336.576 1337519.333
pipe_wait 1 526363.500 526363.500 56.535
preempt_schedule 320 414278.260 1294.620 3870.986
preempt_schedule_irq 17 294134.456 17302.027 -82.004
_text 465 278833.987 599.643 -58897.146
handle_IRQ_event 436 239268.153 548.780 88927.501
handle_mm_fault 396 228733.980 577.611 5986.491
local_bh_enable 1342 220684.604 164.445 16004.635
do_DataAbort 304 197972.822 651.226 61489.333
sys_wait4 4 144681.433 36170.358 144681.433

Figure 5: Output of ftd command

during early boot. Some of the requirements for doing
this are listed below.

Requirements for using Ftrace in early boot:

• Early clock – The tracing systems depends on the
availability of a clock source for timestamps very
early in the boot sequence. On many platforms
(X86, MIPS, and PPC), cpu registers are available
from power-on which can be used for this purpose.
On ARM, clocks are not initialized until after the
kernel has already started running. This would
limit how early tracing could start on ARM.

• Static trace parameters – Trace parameters, such
as the start location for the trace, and the duration
threshold, would have to be specified at compile
time to be available from the earliest kernel execu-
tion points (i.e. start_kernel().)

• Static ring buffer – Possibly the most difficult prob-
lem is pre-initializing the ring buffer data structures
to prepare them for receiving trace data. Other
early-accessible data structures in the kernel, such
as the kernel’s printk log buffer, are much simpler
and their initialization state can be prepared by the
compiler.

Another area that should be worked on is performance.
The overhead of Ftrace should be reduced. The general-
ity of the Ftrace system and utilization of generic clock
routines and ring buffer code add substantial overhead
to a system that should be lightweight. Currently, Ftrace
adds approximately 6 times more overhead, on the same
hardware, than a function graph tracing system that the

author used previously.2.

Finally, this work should be submitted (again) to the ker-
nel mailing list for review and consideration for main-
lining. The patches for the 2.6.31-rc1 kernel and the
ftd may currently be found at http://elinux.org/
Ftrace_Function_Graph_ARM.

6 Conclusion

The Ftrace system continues to be enhanced with new
features and capabilities. This new duration filtering
feature should help kernel developers continue to en-
hance the operation of the kernel. This effort is par-
ticularly focused on finding and reducing latencies in
early boot, so that the Linux kernel can continue to be
improved in the area of fast booting.

2Kernel Function Trace—see http://elinux.org/
Kernel_Function_Trace

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

