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Abstract

Although software testing can never prove a program
is correct, it can catch many errors early and plays an
important part in the process of declaring a program
“stable” and ready for release. Cluster filesystems (e.g.,
GFS2), by their very nature require hardware-intensive
test environments, and are thus also expensive to test.
This tends to limit test coverage compared with their
simpler, single-node counterparts (ext2/3/4, xfs, etc).

Since reliability is a key feature of any filesystem, this
paper considers a number of techniques which may be
used to help simulate a cluster on a single node, reduc-
ing the cost of testing and increasing the coverage in the
process. Although GFS2 is taken as the example filesys-
tem, the techniques described are generic and apply to
any similar filesystem.

1 Introduction

There is a catch-22 situation in filesystem development
where users are unsure of trusting their data to a new
filesystem until its been in use by other people for a pe-
riod of time. Software verification and testing is one
way to try and break this cycle and to help build confi-
dence.

Testing cluster filesystems is particularly problematic
because they, by definition, require clusters to test on,
and since these are expensive to run it is often difficult
to get enough testing time, particularly on larger config-
urations.

In addition, it is often those running larger clusters who
are the most sensitive to downtime, and thus reliability
is often at the top of the list of requirements.

When supporting filesystems in the field, things will oc-
casionally go wrong, and in that case it is imperative to
identify the cause of the failure as quickly as possible,

and thus to be able to rectify it. Filesystems therefore
should be designed with this consideration in mind.

This paper considers the possible methods by which a
cluster filesystem (taking GFS2 as the example) can be
tested and debugged. We consider some of the more
recent developments based around the Linux tracing in-
frastructure. We include performance testing as well as
testing in order to verify functional correctness.

1.1 Proof

In an ideal world, it would be possible to prove the cor-
rectness of software. In reality, it is impossible to prove
the correctness of anything but the simplest software;
the main difficulty is that the combination of all the pos-
sible inputs to the system and all the possible states is
so large that it is impossible to prove the system cor-
rect within a reasonable amount of time. This prevents
exhaustive testing, but even with techniques to try and
cut down on the total number of states which need to
be tested, it is still usually too difficult even for fairly
simple systems.

A further complication arises from the possibility that
there is an error in the original specification, and in that
case a system maybe provably correct, but still fail due
to some unforeseen circumstance.

1.2 Source analysis

By carefully annotating the source, some errors can be
removed at compile time. The sparse tool can de-
tect a number of issues relating to endian conversion,
arithmetic with invalid types (e.g., bitwise) and similar
issues. It isn’t able to detect a huge range of errors, but it
does catch a number of basic issues, given a disciplined
to annotation of the source code.

gcc can also assist in this, of course, as more tests are
built in as can careful use of const etc. in the source
files.
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1.3 Not quite exhaustive testing

In this category are methods like lockdep. The idea is to
run a “normal” workload on the filesystem under test
and then to monitor the operations performed for in-
valid sequences. The advantage of this method is that it
will catch potential deadlocks even when the code paths
didn’t happen to run (in the test) at the same time, but
where it is possible that they might cause a deadlock in
the future.

Occasionally this will cause false positives, but those
can be removed by suitable annotation or reordering
of operations. One example of that is the configfs
mkdir() issue where the locking is correct, but done
in a different way to that expected by lockdep.

1.4 Feature & regression testing

As features are added to GFS2 [1, 2], new tests are
added or adapted from other filesystems. In addition,
Red Hat’s QE department perform regular regression
tests over each release of Red Hat Enterprise Linux be-
fore release.

Although this prevents previous issues from reappearing
and helps to ensure that the basic functionality is work-
ing, the total state space is so much larger that it will
never be able to catch all the issues.

1.5 Early exposure to users

One of the core philosophies of Open Source is that code
should be released early and often. This can be a very
successful strategy for projects which have a large audi-
ence. However, people who have clusters don’t usually
have them sitting idle just waiting for a new release of
software to test on them.

As a result, the benefit of this form of testing is less
than with the more common features, such as single
node filesystems. There is still a substantial benefit to
be gained from people building GFS2 in a variety of
different configurations, but most of the bugs reported
have related to build issues.

1.6 Performance testing

Once all the functionality has been tested, the next aim
is to be able to narrow down any performance issues,

at least to the section of code where they occur. At that
point more targeted methods can then be used to identify
bottlenecks.

One example of performance testing is Askant [3] (in
the contrib section of the gfs2-utils git tree), which uses
a combination of static analysis to annotate blktrace out-
put with the details of the on-disk structures being writ-
ten.

1.7 Testing issues

The main issue raised above is that it is tricky to test a
cluster file system without a cluster, which makes test-
ing long-winded and expensive. As a result of that, we
plan to try and simulate the effect of being in a cluster
as closely as possible, but only using a single node.

2 Glocks

Since glocks are the core of GFS2, they are also the ini-
tial target of the verification and testing effort. Experi-
ence has shown that many different issues in the cluster
can result in a deadlock which is first encountered at the
glock level.

A glock is a caching mechanism, both for locks and also
for the data and metadata associated with them. Each
glock can have a number of “holders” associated with
it, each of which represents one lock request from the
higher layers. System calls relating to GFS2 queue and
dequeue holders from the glock to protect the critical
section of code.

Each glock corresponds exactly to one DLM lock. The
glock state machine provides a local locking mecha-
nism which is designed to reduce the number of remote
locking calls made by caching the locks in a particular
state until a remote node requires the lock, or until the
VM reclaims the glock from the glock LRU list via the
shrinker.

The glock state machine is based on a work queue. For
performance reasons, we would prefer to use tasklets,
however in the current implementation we need to sub-
mit I/O from that context which prohibits their use. One
of the objectives of the performance tests in this area is
to try and work out just how efficient this code is, and
whether any improvements can reasonably be made.
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The glock debugfs interface allows the visualisation of
the internal state of the glocks, the holders and it also
includes some summary details of the objects being
locked in some cases. Each line of the file either be-
gins G: with no indentation (which refers to the glock
itself) or it begins with a different letter, indented with a
single space, and refers to the structures (H: is a holder,
I: an inode, and R: a resource group) associated with
the glock immediately above it in the file.

An example is shown in figure 1 which is a series
of excerpts (from an approx 18M file) generated
by cat /sys/kernel/debug/gfs2/unity:
myfs/glocks >my.lock during a run of the
postmark benchmark on a single node GFS2 filesys-
tem. The glocks in the figure have been selected in
order to show some of the more interesting features of
the glock dumps.

The glock states are either EX (exclusive), DF (de-
ferred), SH (shared) or UN (unlocked). These states cor-
respond directly with DLM lock modes except for UN
which may represent either the DLM null lock state, or
that GFS2 doesn’t hold a DLM lock. The s: field of
the glock indicates the current state of the lock and the
same field in the holder indicates the requested mode. If
the lock is granted, the holder will have the H bit set in
its flags (f: field) otherwise it will have the W wait bit
set.

The full listing of all the flags for both the holder and
the glock are set out in the two tables 3 and 2.

In the current upstream GFS2, once a DLM lock has
been taken out it is only ever demoted to the null state
(and never unlocked) unless the glock has reached the
end of its life and is being freed. This means that holding
a reference on a glock that has been promoted to any
mode other than NL will also result in a reference on the
associated DLM lock and thus preserve the content of
the lock value block (LVB).

The content of lock value blocks is not currently avail-
able via the glock debugfs interface, although we may
well add this in the future.

The n: field (number) indicates the number associated
with each item. For glocks that is the type number
followed by the glock number so that, as seen in Fig-
ure 1, the first glock is n:5/75320—i.e., an iopen
glock which relates to inode 75320. In the case of inode

Type Number Lock type Use
1 Trans Transaction lock
2 Inode Inode metadata & data
3 Rgrp Resource group metadata
4 Meta The superblock
5 Iopen Inode last closer detection
6 Flock flock(2) syscall
8 Quota Quota operations
9 Journal Journal mutex

Table 1: Glock types

and iopen glocks, the glock number is always identical
to the inode’s disk block number.

One of the more important glock flags, is the l (locked)
flag. This is the bit lock which is used to arbitrate access
to the glock state when a state change is to be performed.
It is set when the state machine is about to send a re-
mote lock request via the DLM, and only cleared when
the complete operation has been performed. Sometimes
this can mean that more than one lock request will have
been sent, with various invalidations occurring between
times.

When a remote callback is received from a node which
wants to get a lock in a mode which conflicts with that
being held on the local node, then one or other of the two
flags D (demote) or d (demote pending) is set. In order
to prevent starvation conditions when there is contention
on a particular lock, each lock is assigned a minimum
hold time. A node which has not yet had the lock for the
minimum hold time is allowed to retain that lock until
the time interval has expired.

If the time interval has expired, then the D (demote) flag
will be set and the state required will be recorded. In
that case the next time there are no granted locks on the
holders queue, the lock will be demoted.

If the time interval has not expired, then the d (demote
pending) flag is set instead. This also schedules the state
machine to clear d (demote pending) and set D (demote)
when the minimum hold time has expired.

The I (initial) flag is set when the glock has been as-
signed a DLM lock. This happens when the glock is first
used and the I flag will then remain set until the glock
is finally freed (which the DLM lock is unlocked).

The most important holder flags are H (holder) and W
(wait), as mentioned earlier, since they are set on granted
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G: s:SH n:5/75320 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:EX n:3/258028 f:yI t:EX d:EX/0 a:3 r:4
H: s:EX f:tH e:0 p:4466 [postmark] gfs2_inplace_reserve_i+0x177/0x780 [gfs2]
R: n:258028 f:05 b:22256/22256 i:16800

G: s:EX n:2/219916 f:yfI t:EX d:EX/0 a:0 r:3
I: n:75661/219916 t:8 f:0x10 d:0x00000000 s:7522/7522

G: s:SH n:5/127205 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:EX n:2/50382 f:yfI t:EX d:EX/0 a:0 r:2
G: s:SH n:5/302519 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/313874 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/271916 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

G: s:SH n:5/312732 f:I t:SH d:EX/0 a:0 r:3
H: s:SH f:EH e:0 p:4466 [postmark] gfs2_inode_lookup+0x14e/0x260 [gfs2]

Figure 1: Example glock dump from debugsfs (edited for size)

Table 2: Glock flags
Flag Name Meaning

l Locked The glock is in the process of changing state
D Demote A demote request (local or remote)
d Pending demote A deferred (remote) demote request
p Demote in progress The glock is in the process of responding to a demote request
y Dirty Data needs flushing to disk before releasing this glock
f Log flush The log needs to be committed before releasing this glock
i Invalidate in progress In the process of invalidating pages under this glock
r Reply pending Reply received from remote node is awaiting processing
I Initial Set when DLM lock is associated with this glock
F Frozen Replies from remote nodes ignored - recovery is in progress

Table 3: Glock holder flags
Flag Name Meaning

t Try A “try” lock
T Try 1CB A “try” lock which sends a callback
e No expire Ignore subsequent lock cancel requests
A Any Any compatible lock mode is acceptable
p Priority Enqueue holder at the head of the queue
a Async Don’t wait for glock result (will poll for result later)
E Exact Must have exact lock mode
c No cache When unlocked, demote DLM lock immediately
H Holder Indicates that requested lock is granted
W Wait Set while waiting for request to complete
F First Set when holder is the first to be granted for this lock
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lock requests and queued lock requests respectively.
The ordering of the holders in the list is important; if
there are any granted holders, they will always be at the
head of the queue, followed by any queued holders.

If there are no granted holders, then the first holder in the
list will be the one which triggers the next state change.
Since demote requests are always considered higher pri-
ority than requests from the filesystem, that might not
always directly result in a change to the state requested.

The glock subsystem supports two kinds of “try” locks.
These are useful both because they allow the taking of
locks out of the normal order (with suitable back-off and
retry) and because they can be used to help avoid re-
sources in use by other nodes. The normal t (try) lock
is basically just that; the so called T (try 1CB) is identi-
cal, except that the DLM will send a single callback to
current incompatible lock holders.

One uses of the T (try 1CB) is with the iopen locks
which are used to arbitrate among the nodes when an
inode’s n_link count is zero, as to which of the nodes
will be responsible for deallocating the inode. The iopen
glock is normally held in the shared state, but when
the n_link count becomes zero and ->delete_
inode() is called, it will request an exclusive lock
with T (try 1CB) set. It will continue to deallocate the
inode if the lock is granted. If the lock is not granted
it will result in the node(s) which was/were preventing
the grant of the lock marking their glock(s) with the D
(demote) flag which is checked at ->drop_inode()
time in order to ensure that the deallocation is not for-
gotten.

This means that inodes which have zero link count, but
are still open, will be deallocated by the node on which
the final close() occurs. Also, at the same time as
the inode’s link count is decremented to zero, the inode
is marked as being in the special state of having zero
link count, but still in use in the resource group bitmap.
This functions like ext3’s orphan list in that it allows
any subsequent reader of the bitmap to know that there
is potentially space which might be reclaimed, and to
have a go at reclaiming it.

2.1 Callback injection

In recent kernels, there is a sysfs interface which allows
the injection of demote requests from user space. Since

GFS2 has no communication with other nodes, except
for the callbacks issued in response to DLM lock re-
quests, this provides a way to simulate, on a single node
the same callbacks as if it was part of a cluster.

In combination with the GFS2 trace points and blktrace,
it becomes possible to check that the correct locks are
being held when the block requests I/O are issued and
completed. Also, the overhead of doing this is small
enough that it can be left running during normal system
operation without slowing it significantly (given a not
too unreasonable rate of simulated callbacks).

It is generally safe to inject callbacks for inode glocks
(type 2) however, for reasons which should be clear
from the discussion in the previous section, injecting
callbacks for iopen glocks (type 5) is likely to result in
a corrupted filesystem.

Callback injection is intended for testing in carefully de-
signed test environments, and is not something that we
would encourage general use of.

3 Trace points

Linux has an event tracing subsystem which provides a
high-performance method of tracking certain operations
which are switchable at run time, can be filtered and pro-
vided to user space either as a series of human readable
ASCII messages or via a binary output format.

The goal in placing trace points in GFS2 was to find
a minimum possible number of trace points which can
elicit the maximum possible amount of information
about the correctness and performance of GFS2 whilst
at the same time ensuring that they are generic enough
that they will not need to be altered during future devel-
opments.

With that in mind, the trace points in GFS2 have been
put into three major categories reflecting the main func-
tions of the filesystem.

3.1 glock subsystem

For some time there has been a debugfs file available
which gives a static view of the glock state as described
above. It has been extremely useful in debugging dead-
lock issues, however although it shows what state the
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cluster is currently in, its main failing is that it doesn’t
always show how it got into that state.

The trace points have also been designed with a view
to being able to confirm the correctness of the cache
control by combining them with the blktrace output and
with knowledge of the on-disk layout. It is then pos-
sible to check that any given I/O has been issued and
completed under the correct lock, and that no races are
present.

The on-disk layout could be parsed in a static manner
before the test starts, and then updated can be gained by
using the block map trace points.

On the performance side, there are specific questions
which we want to be able to answer relating to laten-
cies of performing the various cache control operations.
With the current set of trace points it is possible to mea-
sure the latencies of granting a new or cached glock, and
receiving a callback and flushing the cache.

Information gathered from this will be then used to help
target our efforts in improving the scalability of the
filesystem.

In the initial implementation of the glock tracing patch,
it was an extension to blktrace rather than the event
tracer that it is currently. There was only one trace
point at that time, which was gfs2_glock_state_
change right in the heart of the glock layer.

Due to the way in which the glock layer is designed, it is
only valid to read data or metadata relating to an inode
when the glock is in the shared, deferred or exclusive
states. It is only valid to write data or metadata when
the glock is in the deferred or exclusive states.

Given knowledge of which disk blocks belong to
which inode, a task made much easier by the FIEMAP
ioctl() it should be possible to take the combined
information from blktrace and gfs2_glock_
state_change and check that this is indeed the case.

Since the scope of the tracing in GFS2 has been ex-
panded, it is also possible to use the bmap trace points
to elicit the same information. Also, due to some fur-
ther recent patches, GFS2 also tags all of its metadata
I/O with the metadata flag so that any violations should
be easier to spot.

The gfs2_glock_put trace point was introduced so
that tracing applications would be able to reduce the

amount of state that they needed to remember, and also
to allow dynamic tracking of the numbers of allocated
glocks.

In order to keep track of demote requests the gfs2_
demote_rq provides enough information to know
when a request has been received and its source (local
or remote). The plan is to use this to help measure per-
formance.

Also of interest in the performance area is the time
taken from a lock request being submitted to it be-
ing granted. This can be derived from the trace points
gfs2_glock_queue and gfs2_promote.

3.2 Block map subsystem

Block mapping is a task central to any filesystem. GFS2
uses a traditional bitmap based system with two bits per
block. The main aim of the trace points in this subsys-
tem is to allow monitoring of the time taken to allocate
and map blocks.

Additionally, with knowledge of the blocks being
mapped into inodes, it is possible to keep track of the
filesystem layout dynamically and extend tools to take
advantage of this.

The gfs2_bmap trace point is called twice for each
bmap operation. Once at the start to display the bmap
request, and once at the end to display the result.

To keep track of allocated blocks, gfs2_block_
alloc is called not only on allocations, but also on
freeing of blocks.

3.3 Journal/log subsystem

The trace points in this subsystem track blocks being
added to and removed from the journal (gfs2_pin),
as well as the time taken to commit the transactions to
the log (gfs2_log_flush). This can be very useful
when trying to balance the memory usage of a large log
against filesystem performance.

The gfs2_log_blocks keeps track of the reserved
blocks in the log, which can help show if the log is too
small for the workload, for example.
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