
Putting LTP to test—Validating both the Linux kernel and Test-cases

Subrata Modak
Linux Technology Center, IBM INDIA,
subrata@linux.vnet.ibm.com

Balbir Singh
Linux Technology Center, IBM INDIA,
balbir@linux.vnet.ibm.com

Masatake YAMATO
Red Hat Inc.,

yamato@redhat.com

Abstract

The Linux Test Project (LTP)[5] is receiving renewed
interest, and attention due to increased focus on test-
ing, and integration of Linux components from several
projects in the Linux Ecosystem. LTP has not only dis-
covered bugs in the Linux kernel, but also inconsisten-
cies between other components such as libraries, the
man pages, and the kernel.

In this paper, we will cover our experience in this area
and delve into the details of benefits being brought to
LTP because of closer interaction with the Linux ecosys-
tem. We will also discuss the adoption of newer tech-
nologies for static and dynamic analysis of existing test
cases, and show that we can use this approach to reduce
any errors in test cases (leading to better end automa-
tion of Linux testing). We will also analyze the new
LTP code using various test metrics, and look at the re-
quirements for allowing the test cases to handle errors
introduced by Fault Injection. We finally propose inte-
gration of all such technologies to LTP infrastructure.

1 Introduction

The surge in growth of LTP[7] in the last couple of years
has also brought along with it a host of issues that needs
to be addressed immediately. While numerous patches
flow in to create new test cases for the ever-expanding
new features of the kernel, as well as fixing the exist-
ing ones to adapt to the enhancements of existing ker-
nel features; one immediate and dire problem that has
cropped up is to validate the quality of the test cases
themselves—those of which will in turn validate the
quality of the kernel code.

While the kernel code can be validated through the dis-
covery of new bugs, but, the very question of the test

case quality needs to be found and answered. Contrary
to the belief that the effectiveness of a test case is limited
to only finding bugs, the importance of the test case is
repeatedly established when it continuously proves the
stability of the same code. However, doubts on the qual-
ity of test cases are often raised when they fail to expose
bugs for too long. There can be different reasons for
this. One—the code that it is supposed to test has sta-
bilized enough, and until somebody changes something
dramatically; regression will not be discovered soon. In
this scenario, although nothing can be done to the test
case itself, it still retains the ability to find any regres-
sions in future.

Another reason could be that the test cases themselves
are not written as good programs. They have loopholes
in the way of becoming good quality code. This is some-
thing which can be addressed effectively by analyzing
the test code through various static and dynamic analy-
sis tools available to the Open Source Community. In
this paper we discuss many of them. Major issues found
would be highlighted, along with the remedy to make
LTP a much better project.

2 Benefits of The Linux Ecosystem

The biggest common misunderstanding about LTP may
be that the relationship between LTP and other projects
is one-way; LTP just tests the Linux kernel. Another
misunderstanding is that the test cases in LTP can be
written easily based on man pages as specification. One
of the authors (YAMATO) also believed the same, be-
fore joining LTP. In reality the relationship between LTP
and other projects is complimentary. This fact came
to his cognizance gradually through various stages, and
surprises while contributing to LTP. He has already ex-

• 209 •

210 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Figure 1: Linux ecosystem around test

pressed the extent of such relationship at Linux Ecosys-
tem Around Test[14].

Figure 1 shows the concept of The Linux Ecosystem.
The projects in the ecosystem contribute mutually. De-
velopment efforts and/or by-products in a project are re-
used in other projects of the ecosystem.

2.1 Lessons learned while working on LTP

In the majority of circumstances, test cases were writ-
ten based on man pages. In most instances they report
SUCCESS. This fact leads to misunderstanding among
test developers. The real worry starts only when a test
case reports FAILURE. When FAILURE is reported
for the first time, a programing error in the test case is
suspected. The test case developer wonders misreading
man page, and/or misusing the helper libraries of LTP.
The test case FAILURE generates a series of investi-
gation to find out the root cause of such a failure. And
the hunt for the flaw in any component of the ecosystem
starts only then.

2.1.1 Suspecting run time bug

If the error could not be found in the test case, the de-
veloper moves to the next stage. Armed with the only
understanding that LTP tests just the Linux kernel, the

developer suspects bug in the Linux kernel. At this point
one may choose reporting the error to Linux Kernel
Mailing List(LKML)[4] or examining the kernel source
code. But this understanding alone is not enough. C
language level wrapper exists between the test case and
the kernel. For many system calls theses wrappers are
implemented as really thin layer, and are part of GNU
libc[1]. But, wrappers for some system calls do some
other work, and belong to libraries other than GNU libc.
These library wrapping system calls are called system
libraries. Therefore before suspecting and examining
Linux kernel, one must also suspect and examine the
system library related to the test cases. Here, both the
Linux kernel, and the system libraries as a whole are
called run time entities.

The example in this section is based on author’s working
on a test case for posix_fadvise() system call[8].

When the author was working on it, the test case calls
the system call with a wrong argument, and expects
EINVAL error. The test case ran successfully on the
author’s PC but failed on the system used by the bug
reporter[12].

The difference of test result came from the build con-
figuration of kernel; The function sys_fadvise64_
64 was implemented for the system call and
treated CONFIG_EXT2_FS_XIP configuration in
wrong way[15]. CONFIG_EXT2_FS_XIP was turned
off in the kernel running on the author’s PC but might
have been turned on in the kernel running on the system
used by the bug reporter.1

Only few lines were needed to fix the bug by chang-
ing the KERNEL_CONFIG option before building the de-
sired kernel, however the inspection had taken rather
long time. The author had inspected from upper layer:
GNU libc first, and then the Linux kernel. Histor-
ically posix_fadvise has two variants; posix_
fadvise64 and posix_fadvise64_64. Their
implementation look complex because many #ifdefs
were used to share the code for the variants. Therefore
the author had suspected a programming error in those
#ifdefs causing the bug, and hence the delay.

1The author found “Machine Architecture: armv6l” in the bug
report.

2009 Linux Symposium • 211

2.1.2 Suspecting man pages

With expectation that a test case for a system call can
be easily based on the man pages, one may easily sus-
pect only the run time environment, kernel and system
libraries. But one would rarely suspect the man page.
The activity defining the specification of new system
call, and the code implementing it are not separate. In
other words the system call is not implemented after its
man page is written. The maintainer of man pages joins
the testing[13] of the implementation of newer system
call, and writes the man page only after that. Like the
run time, the man pages must also be suspected.

The previous paragraph has also a real example. When
the author reviewed a test case for io_cancel sys-
tem call written by his colleague, he found strange code
in it. The test case expects an error number to return
when invalid arguments are passed to io_cancel.
The strange thing was that the returned value from
io_cancel was compared with a negative number:

io_cancel(ctx,NULL,NULL)==-EFAULT

In kernel space, negative integer is used to represent an
error. But in user space, generally positive integer is
used to represent an error. The test case ran successfully,
but man page said the system call is expected to return
positive integer when an error occurs.

There is an inconsistency between the run time and the
man page for io_cancel. While inspecting this is-
sue the author found (1) that the C language wrapper
for io_cancel is not part of GNU libc, but, is part
of libaio library. And (2) returning negative integer
to represent an error is libaio’s own convention. The
author sent a bug report for the man pages to the man
pages maintainer. As the result, the latest man pages for
system calls wrapped by libaio have following NOTES:

“GNU libc does not provide a wrapper
function for this system call. The wrapper
provided in libaio for io_cancel does not
follow the usual C library conventions for in-
dicating error: on error it returns a negated er-
ror number.”

Simply to say, LTP developer has to suspect everything
when test case reports FAILURE till it is fixed. The
fix may go anywhere. And when it happens, it validates

LTP’s contribution to The Linux Ecosystem. Good soft-
ware in the “Open Source World” is the outcome of
greater collaboration among various OSS projects. It is
sometimes true for LTP that the test cases themselves
are the outcome. Different from other projects, the de-
velopment process itself is another outcome: finding in-
consistency between run time and the man pages being
a prime factor.

2.2 Role Reversal (From other projects to LTP)

The test cases for utimensat system call in LTP was
submitted by the man pages maintainer[13]. The man
pages maintainer participates in kernel development by
testing and verifying newer kernel code, before the code
is shipped as part of official release version of kernel. He
reflects such experience when he writes man pages for
them. The test code is mainly utilized three times: once
for stabilizing the easy development of kernel code, an-
other time for verifying the description of man pages,
and last time for LTP. As part of LTP, the test case is run
again and again on many different environments.

These days some test cases are written by kernel devel-
opers and system library developers; the original authors
themselves are the test targets. The number of such test
cases have increased. Some of them are imported to
LTP by LTP maintainer. Some of them are directly con-
tributed to LTP by the original authors. This is really a
good trend. To write test cases, one has to understand
the test target. The cost to understand the test target is
the most expensive stage to write a test case. Such cost
can be reduced if the original author of the test target
writes test case for it.

On the other hand, writing test cases by the third person
is extremely valuable; such person can have very dif-
ferent view to the test targets from the original authors.
And this may be the strongest reason why LTP exists
as a project independent from the Linux kernel, system
libraries and man pages.

3 Dynamic Analysis

In the above 2 sections we explained the relationship be-
tween LTP and other projects; and introduced the pro-
posal that we can fix bugs in the run time(the Linux
kernel and support libraries) and the specification(man
pages) through developing LTP test cases. However,

212 • Putting LTP to test—Validating both the Linux kernel and Test-cases

such kind of bug fixing can be done because LTP takes
efforts to make test cases of higher quality. Any action
to other projects/proposals starts from reliable test cases.
Here after we will describe efforts on how we can bring
more reliability to our existing test cases, by analyzing
them using run time analysis tools and via static analysis
tools.

3.1 Memory Leak Analysis

While there has been numerous issues reported dur-
ing testing/analyzing through Valgrind’s memcheck
tool[11], here we look into some of the most signifi-
cant ones. The following generated error clearly demon-
strates that the program has been handling memory al-
location/deallocation incorrectly. There has been many
such instances found inside LTP, a reflection that all of
them needs to be fixed to better handling of memory us-
age during program execution:

3.1.1 Pure Leakage Issues

A memory leak detection on the hackbench2 tool shows

valgrind --leak-check=full
--show-reachable=yes
./hackbench 20 process 1000
LEAK SUMMARY:
definitely lost: 9,840 bytes in 420 blocks.
possibly lost: 0 bytes in 0 blocks.
still reachable: 3,200 bytes in
1 blocks. suppressed:
0 bytes in 0 blocks.

The problem could be addressed as shown below:

if(p) { free(p); (p)=NULL; }

at the end of every memory usage, or, before program
exit would help solve such problems. And, it indeed
helped. Following is the analysis post fix:

ERROR SUMMARY: 0 errors from 0 contexts
(suppressed: 3 from 1)
malloc/free: in use at exit:
0 bytes in 0 blocks.
malloc/free:
423 allocs, 423 frees,
14,720 bytes allocated.
All heap blocks were freed
-- no leaks are possible.

2Hackbench is a part of the LTP test suite.

3.1.2 Invalid Read Instances

Invalid read of size 8 at 0x401428:
main (clone07.c:141)
Address 0xfffffffffffffff8
is not stack’d, malloc’d or (recently) free’d.
More than 10000000 total errors detected.
I’m not reporting any more.

The example above illustrates the example of a test case
trying to reference memory, it never owned as the mes-
sage shows. The run-time has been tolerant of these er-
rors, but they are a sign of code that needs to be revisited
and needs our attention.

3.1.3 Jump to Invalid Addresses

Jump to the invalid address stated on
the next line at 0xFFFFFFFFFF600800: ???
by 0x401650: main (getcpu01.c:125)
Address 0xffffffffff600800 is not stack’d,
malloc’d or (recently) free’d

Process terminating with default action
of signal 11 (SIGSEGV)
Bad permissions for mapped region at
address 0xFFFFFFFFFF600800
at 0xFFFFFFFFFF600800: ???
by 0x401650:
main (getcpu01.c:125)

3.2 Checking Race Conditions

There are two types of tests in LTP which required to be
investigated on this point. On one hand the thread tests
needed analysis to see if proper synchronization exists
between them, and on the other side we also wanted to
see if multiple instances of the same test program(which
has a single thread of execution) do not fall into the
trap of deadlocks, or, race conditions over commonly
accessed system resources.

3.2.1 Tests Creating Multiple Threads

This threw up some more surprises. Most of the tests
falling under this category revealed that none of them
has proper locking code between threads. And follow-
ing output is common for all of them when analyzed
through valgrind’s helgrind:

Possible data race during
write of size 8 at 0x421E508
Location 0x421E508 has never
been protected by any lock

2009 Linux Symposium • 213

Dynamic analysis shows that there is a potential race
condition in the test. Submitting test results based on
this test case would require further scrutiny and intro-
spection. There is an urgent need to fix all these issues.

3.2.2 Concurrent Test Execution

Users of LTP reported that many tests inside LTP are
not concurrency safe. They pointed out to various such
issues and fixes for them were also proposed. We point
to few of those.

• Reserving same Port
The following code:

sin1.sin_port
= htons(((getpid() * TST_TOTAL) % 32768)\
+ 11000 + count);

is safer than the below one:

sin1.sin_port
= htons((getpid() % 32768) +\
11000 + count);

if more than one process is trying to bind to the
same port simultaneously, then the following error
can be avoided:

sendfile02 2 BROK : call to bind() failed:
Address already in use
sendfile02 3 BROK : Remaining cases broken

• Generating Keys for Shared Memory Segments

The following comment and code snippet ad-
dresses concerns in concurrent processes who are
trying to create shared memory segments concur-
rently.
/* Get a new IPC resource key. Since there is a
small chance the getipckey() function returns the
same key as the previous one, loop until we have a
different key */

do {
shmkey2 = getipckey();
}while (shmkey2 == shmkey);

• Using sleep() Family to Synchronize

Many tests use sleep() family of functions to syn-
chronize between the parent and the child, with the
hope that after a specified period of time, one will
be able to have a clean access to the resource with

the basic assumption that the other has already ac-
cessed it. But, this is a common programming er-
ror, and many of our old tests are victims to it. It
has already been proved that such mechanism is
faulty and do not provide foolproof mechanism.

Many such instances were discovered and fixed
using the mechanism of pipes to establish proper
communication between parent and child and then
going ahead with the desired operation.

• The ever-famous Reader/Writer problem
Since most of these tests were not initially designed
keeping concurrent execution in mind, they suffer
from this usual design drawback. In one such in-
stance we found test cases seem to fail when multi-
ple instances are run concurrently. The failures oc-
cur because the file(they are trying to access) sizes
don’t match, or, because the number of bytes read
don’t match the file size. This can be attributed to
one parallel instance reading a file before the other
instance’s write to it has completed. In such situa-
tions, either the file size has not been updated in the
inode header, or, the file size has been updated, but,
the file’s write operation has not been updated com-
pletely. To fix this concurrency problem, we agreed
to check for an existing instance and wait for it to
finish before starting another instance. Any other
concurrency resolution technique would compli-
cate matters further. A message to the console in-
dicating such a decision in scheduling policy can
clarify matters cleanly.

3.3 Avoiding Segmentation faults

Certain sections of code try to access memory be-
yond their scope resulting in segfaults. Proper memory
bounds checking before accessing/de-referencing mem-
ory will help to avoid such segmentation faults during
run time. We encountered some instances of segmenta-
tion fault with LTP’s provisioning engine ltp-pan.c. The
following instance of code creates segmentation fault if
coll is not initialized properly. De-referencing creates
the problem further:

coll = get_collection(
filename, optind, argc, argv);
if (coll->cnt == 0) {

A properly written code with checks and balances re-
moves such faults:

coll = get_collection(
filename, optind, argc, argv);
if(!coll) exit(1);
if (coll->cnt == 0)

214 • Putting LTP to test—Validating both the Linux kernel and Test-cases

3.4 Proper Exit Code

Many tests were written without proper exit code. Ze-
roing on all of them and fixing with appropriate return
code is a big challenge given the volume of tests that ex-
ist in LTP today. Following is an excerpt of build warn-
ing generated during one such compilation:

hackbench.c: In function ’main’:
hackbench.c:350: warning: control reaches end
of non-void function

A simple exit(RETURN_CODE) would solve such is-
sues and promote to better program development.

4 Static Analysis

The code that initially gave life to LTP is pretty old, and
we were certain that we would hit issues that does not
adhere to the latest ANSI C or good coding standards.
Even if the code is to follow ANSI C Coding guidelines,
still, we were faced with the dilemma of which coding
pattern to follow. Being directly responsible to test the
Linux kernel, we decided to go ahead with the prevalent
standard in the Linux kernel community.

As a means to measure all the violations, we decided
to check LTP’s health with the most popular Open
Source Static Analysis tools like the SPARSE[9] and
SPLINT[10].

4.1 SPARSE

A single round of compilation through the code exhib-
ited the anomalies in the program development. We
would highlight few of them and probably say/decide
how we can fix them.

4.1.1 Non-ANSI definitions

Numerous instances of non-ANSI definitions for vari-
ous identifiers like the functions/variables were found.
For example, the following definition:

int dataasciichk(
listofchars, buffer, bsize,
offset, errmsg)
char *listofchars;
char *buffer;
int bsize;
int offset;
char **errmsg) {

should be replaced with:

int dataasciichk(
char *listofchars,
char *buffer,
int bsize,
int offset,
char **errmsg) {

4.1.2 Non-Static Symbol Declaration

This arose from situations where the functions and other
identifiers were not defined as static although they were
never used outside the contours of the concerned source
files. The code:

int databinchk(...)

should be replaced with:

static int databinchk(...)

to avoid all such warnings. Given the volume of such
messages thrown during compilation, we can definitely
say that it is going to be a tough task to fix them all.

4.1.3 Symbol ’XYZ’ re-declared with different type

In older style programming as prevalent code in LTP,
the general style is to declare the function prototype at
the beginning of the source code, use them in different
places, and then finally the definition follows at the end
of the source file. Though the compilers can handle for-
ward references well, still Sparse complains about it,
and directs you to combine the prototype declaration
and definitions together before the symbols are being
referred at any point in the program.

4.1.4 Using plain integer as NULL pointer

In many places of our code, integers were directly used
instead of referring them through appropriate pointers.
The following code snippet:

sigprocmask(SIG_UNBLOCK, &newset, 0);

should be replaced with:

sigprocmask(SIG_UNBLOCK, &newset, NULL);

to avoid and fix such warnings.

2009 Linux Symposium • 215

4.1.5 Uninitialized Identifiers

This is probably the most common type of warning gen-
erated by all compilers. The safest bet would be proba-
bly to initialize them with proper values, before the un-
desired bug starts creeping into your program.

4.1.6 Missing type declaration for parameter ’P’

We found some typical instances of code where a func-
tion prototype was just declared:

int mkname(char*, int, int);

But, when it came to defining that function, the type
declarations for certain parameters were missing:

int mkname(name, me, idx)
register char *name;
{

The declarations for me and idx are missing above.

4.1.7 Incompatible types for operation

These types of errors/warnings are thrown when various
data types are mixed up, or, they are not properly type-
caste in their respective operations. The following piece
of code tries to compare whether void * is less then
an integer:

if ((shmptr = shmat (shmid, 0, 0)) < 0)

4.2 SPLINT Analysis

We also found few more static cases through the SPLINT
tool. They are really interesting enough and showed us
how important programming mistakes were made dur-
ing test case coding. Though many of them are safe to
be ignored, still the question remains whether we should
just keep ignoring them for their nature being non-fatal.
This actually would reflect the concept that we were
not clear about when we designed the test, leave aside
a proper way to write it.

4.2.1 Return value ignored

These warnings were generated when certain sections of
code were found using function calls without collecting
the return value of it. The situation is inconsistent, as
many other instances of code were seen collecting the
function’s value. The fundamental flaw is the ambiguity
in designing and writing such function prototypes, when
the author was not sure what to do with the function ?
whether to make it return something, or, just execute a
bunch of instructions.

4.2.2 Result returned by function call is not used

If there was no need for the return value of a function,
why was it collected in the first place? Moreover, if the
purpose is just to execute a function without the need for
a return value, then the prototype could have been well
defined as void.

4.2.3 Path with no return in function declared to
return void *

Even there is something interesting. There is a path
through a function declared to return a value (interest-
ingly a void *) on which there is no return statement.
This means the execution may fall through without re-
turning a meaningful result to the caller.

4.2.4 Format string parameter not compile-time
constant

The following piece of code should have been written
like this

fprintf (stdout,"%s %s\n",
global_progname, VERSION);

rather than this

char *mesg = "%s %s\n";
fprintf (stdout, mesg,
global_progname, VERSION);

If format string parameter is not a constant at com-
pile time, then, this can lead to security vulnerabilities
because the arguments cannot be type checked during
compile time.

216 • Putting LTP to test—Validating both the Linux kernel and Test-cases

4.2.5 Possibility of buffer overflow

It is a commonly know fact that use of sprintf()
has been deprecated, and/or advised to avoid.
snprintf() is recommended instead as use of
function sprintf() may lead to buffer overflows.
However, our code base contains plenty of them and
removing them would really turn out to be challenging.

4.2.6 Suspected infinite loop

Observe the following code:

while (child_signal_counter < num_pgrps) {
alarm(1);
if (debug_flag >= 2)
printf("%d: Master\
pausing for done (%d/%d)\n", mypid,\
child_signal_counter, num_pgrps);
pause();
}

No value used in loop test (child_signal_

counter,num_pgrps) is modified by test or loop
body. Hence this appears to be an infinite loop. Nothing
in the body of the loop, or, the loop test modifies
the value of child_signal_counter. Perhaps the
specification of a function called in the loop body
is missing a modification. Probably the only way of
coming out of this loop, and hence this program is to
get a signal; as probably specified by alarm(1).

4.2.7 Function parameter values declared as mani-
fest array

Though the following type of declaration is harmless

... compute_median (unsigned long
values[MAX_ITERATIONS],
unsigned long max_value);

as size constant is meaningless here. The size of the
array is ignored in this context, since the array formal
parameter is treated as a pointer. A more hassle free
declaration could be just this

... compute_median (unsigned long
values, unsigned long max_value);

5 Fault Injection Impact

The ability to alter the course of execution in the kernel
through a fault induced path has long been known. The
Linux kernel also have the necessary infrastructure to in-
duce random faults in to the various parts of the kernel;
thus forcing applications to expect an undesired behav-
ior. The major advantage of using Fault Injection is to
traverse those error paths of the kernel, which in normal
circumstances (stable) would not have been touched.

The immediate fallout of such a scenario is an increase
in the measurement of the code coverage of the kernel,
as, it would guarantee to traverse the faulty path besides
the actual execution path. The other advantage would
directly go to the developers, who would like to test their
kernel code under such varied scenarios.

Though, all these facts are well known, and has been
proved by many projects in the Open Source Space, still,
such an exercise has never been attempted by the LTP
developers. However, even before we started to see the
fall out of Kernel Fault Injection while executing LTP,
we were sure that such an exercise will help us in two
different ways:

• Increase Kernel Code Coverage[2]

• Help Test Engineers to validate their test code
under varied circumstances

While writing test cases for certain kernel function-
alities, an engineer may test his test cases, by run-
ning it over:

– Stable kernel, and

– Fault Injected kernel:
This would give him a bigger insight into
his/her test behavior, and would in-fact help
him to create a better test case/scenario de-
scription by uncovering bugs, if any, in
his/her test code.

5.1 Experimenting with Fault Injection

We decided to use all the infrastructure provided in
linux-2.6.29 kernel[3], namely:

• fail_io_timeout

2009 Linux Symposium • 217

• fail_make_request

• fail_page_alloc &

• failslab

and use the following parameters of each of these
infrastructure[3]:

• probability

• interval

• times &

• space

With space as 0, times as -1 and interval greater
than 1, we varied the probability parameter for all
the fail* subsystems. The following algorithm reflects
the way the experiment was carried out:

start_code_coverage()
loop (for each testcase)
begin
execute_testcase(inside_stable_kernel)
begin
insert_fault_into_kernel()
loop X Times
begin
execute_testcase(inside_fault_kernel)
end

restore_kernel_to_normal()
end

end
end_code_coverage()

The results observed at varied probability values were
amazing:

• probability=100%

Our test provisioning engine never took off with
probability value set at this level(100%). We
knew that we cannot generate any useful data with
such a system. We did not generate any code cov-
erage data for this.

• probability=30%

With probability value set to this level(30%),
we indeed saw our tests running, but with some
major flaws:

– Failure of many tests
Many tests failed which otherwise pass under
normal circumstances. We traced the reasons
for such failures owing to the fault in the ker-
nel. A small snippet of dmesg output justified
our observation. The following failure types

<<<test_output>>>
sh: /bin/mktemp: Cannot allocate memory
Usage:
mmapstress07 filename holesize e_pageskip
sparseoff

*holesize should be a multiple of
pagesize

*e_pageskip should be 1 always

*sparseoff should be a multiple of
pagesize
Example: mmapstress07 myfile 4096 1 8192
mmapstress07 1 FAIL : Test failed
mmapstress07 0 WARN : tst_rmdir():

TESTDIR was NULL; no removal attempted

were accompanied by dmesg entries like
FAULT_INJECTION: forcing a failure
Pid: 30589, comm: ltp-pan Not tainted

2.6.29-gcov #1
Call Trace:
[<c0698374>]should_fail+0x31f/0x3e0
[<c0698266>]?should_fail+0x211/0x3e0
[<c0514e5c>]?should_failslab+0x60/0x73
[<c05123ca>]?slab_should_failslab+0x35/0x48

– Long hours of execution
Many tests took exceptionally long hours of
execution time. But, otherwise, they take sec-
onds to execute. Since, many tests in the
bucket started reflecting such abnormal be-
havior, we had to terminate the experiment
owing to the fact that the experiment cannot
be continued till infinity.

• probability=10%

We found this particular value more interesting;
that it allowed us to run our test bucket for fi-
nite time, and simultaneously allowed us to mea-
sure the differences in the code coverage of test
runs between the stable and fault environments.
Though many tests exhibited the earlier scenar-
ios (probability=30%), still they did not hinder in
completing the tests in finite time frame. However,
we chose a very small set of tests, namely the LTP
Syscall tests [6].

Figure 2 shows the code coverage obtained when
the tests were run under stable kernel conditions.
Out of accounted TOTAL_CODE=377538, cover-
age is 16.4%, and of TOTAL_FUNCTIONS=29852,
the tests has touched 21.9% functions.

218 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Figure 2: Code Coverage without Fault Injection

And Figure 3 depicts code coverage when the tests
were executed under situation which is a union of
stable and fault injection. Out of TOTAL_CODE=
377538, coverage is 17.0%, and of TOTAL_

FUNCTIONS=29852, the tests has touched 22.6%
functions.

For sake of visibility and compactness, we highlight
only those kernel directories and sub-directories for
which significant code coverage increase has happened.
Few interesting figures are:

• 3.9% increase in block

• 6.2% increase in fs/debugfs

• 4.5% increase in fs/sysfs

• 1.2% increase in mm

Though the overall increase in CODE_COVERAGE of
0.6%, and FUNCTION_COVERAGE of 0.7% is not sig-
nificant, but it drives home a point that Code Coverage is
bound to increase with Fault Injection. The above
results are based in minimal set of LTP test cases run,
and definitely the figure would be impressive, if the en-
tire test suite is run.

Figure 3: Code Coverage with Fault Injection

6 Conclusion

The usage of Static and Dynamic Analysis tools to test
LTP’s health has opened up a new plethora of opportu-
nities. These tools would be put to use more in future to
validate old/new test cases. We look towards integrat-
ing them with LTP infrastructure, and they themselves
becoming yardsticks for quality control. Some of the
LTP test cases are beginning to show their age, they
have helped identify bugs, but with newer technology
and tools, it is time to revisit the test cases and shake
off the bugs hiding in them, which our regular runtime
execution did not expose.

Integration of Fault-Injection creation framework in
LTP would be immensely beneficial to developers, who
can then design robust testcases to handle these faults
better. LTP also looks forward to strengthen its posi-
tion in the Linux Ecosystem, integrate itself with other
players in the same ecosystem, so that it can continue
to deliver and evolve into better test suite to Relentlessly
Pursue a Better Kernel.

Acknowledgement

We would like to thank many of our colleagues and team
mates for their inputs to, and, review of drafts of this

2009 Linux Symposium • 219

paper. And a special thanks to all those LTP developers
whose immense contribution keeps this project growing.

Legal Statement

Copyright c© 2009 International Business Machines Corpora-
tion and Red Hat, Inc. International Business Machines Cor-
poration (“IBM”) and Red Hat, Inc. (“Red Hat”) retain the
copyright to the submitted paper, but have granted unlimited
redistribution rights to all as a condition of submission. This
work represents the view of the authors and does not nec-
essarily represent the view of IBM or Red Hat. IBM, IBM
logo, ibm.com, and WebSphere, are trademarks of Interna-
tional Business Machines Corporation in the United States,
other countries, or both. RED HAT and the Shadowman
logo are trademarks of Red Hat, Inc., registered in the United
States and other countries. Linux R© is the registered trade-
mark of Linus Torvalds in the U.S. and other countries. Other
company, product, and service names may be trademarks or
service marks of others. References in this publication to
IBM products or services do not imply that IBM intends to
make them available in all countries in which IBM oper-
ates. INTERNATIONAL BUSINESS MACHINES CORPO-
RATION AND RED HAT, INC. PROVIDE THIS PUBLICA-
TION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FIT-
NESS FOR A PARTICULAR PURPOSE. Some states do not
allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or ty-
pographical errors.

References

[1] Gnu c library.
http://www.gnu.org/software/libc/.

[2] Lcov - the ltp gcov extension. http://ltp.
sourceforge.net/coverage/lcov.php.

[3] Linux kernel documentation.
http://www.mjmwired.net/kernel/
Documentation/fault-injection/.

[4] Linux kernel mailing list subscription url.
http://vger.kernel.org/
vger-lists.html#linux-kernel.

[5] Linux test project home page.
http://ltp.sourceforge.net/.

[6] Ltp source code repository.
http://ltp.cvs.sourceforge.net/
viewvc/ltp/ltp/runtest/syscalls.

[7] Ltp technical papers - what is ltp, how to use ltp,
etc. http://ltp.sourceforge.net/
documentation/technical_papers/.

[8] Man pages entry for posix_fadvise().
http://www.kernel.org/doc/
man-pages/online/pages/man2/
posix_fadvise.2.h%tml.

[9] Sparse - a semantic parser for c.
http://www.kernel.org/pub/
software/devel/sparse/.

[10] Splint - tool for statically checking c programs for
security vulnerabilities and coding mistakes.
http://www.splint.org/.

[11] Valgrind. http://valgrind.org/.

[12] Pramod Gurav. [LTP] ltp tests failing.
http://www.mail-archive.com/
ltp-list@lists.sourceforge.net/
msg00965.htm%l.

[13] Michael Kerrisk. Linux Foundation fellowship, 6
months in. http://linux-man-pages.
blogspot.com/2008/12/
linux-foundation-fellowship%
-6-months-in.html.

[14] Masatake YAMATO. Linux ecosystem around
test. http://people.redhat.com/
yamato/talks/around-test.pdf.

[15] Masatake YAMATO. [PATCH] checking
ADVICE of fadvice64_64 even if get_xip_page is
given.
http://lkml.org/lkml/2008/1/9/75.

220 • Putting LTP to test—Validating both the Linux kernel and Test-cases

Proceedings of the
Linux Symposium

July 13th–17th, 2009
Montreal, Quebec

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Programme Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

James Bottomley, Novell
Bdale Garbee, HP
Dave Jones, Red Hat
Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Alasdair Kergon, Red Hat
Matthew Wilson, rPath

Proceedings Committee

Robyn Bergeron
Chris Dukes, workfrog.com
Jonas Fonseca
John ‘Warthog9’ Hawley

With thanks to
John W. Lockhart, Red Hat

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

