
A Runtime Code Modification Method for Application Programs

Kazuhiro Yamato
Miracle Linux Corporation

kyamato@miraclelinux.com

Toyo Abe
Miracle Linux Corpration
tabe@miraclelinux.com

Abstract

This paper proposes a runtime code modification
method for application programs and an implementa-
tion. It enables the bugs and security problems to be
fixed at runtime. Such software is notably useful for
applications used in telecom, which cannot be stopped
because of the need to maintain the required level of sys-
tem availability. The advantages of the proposed method
are short interruption of the target application and easy
maintenance using trap instructions and utrace.

This paper also shows evaluation results with three con-
ditions. The interruption times by the proposed method
were comparable to, or shorter than those by existing
similar software, livepatch and pannus. In a certain con-
dition, our implementation’s interruption time was three
orders of magnitude shorter in comparison.

1 Introduction

Although there have been a number of activities to im-
prove software quality, there is no way to completely
prevent bugs and security problems. These are gener-
ally fixed by rebuilding the program with patches to the
source code. This fix naturally requires termination and
restarting of the program. The termination of the pro-
gram not only interrupts the service, but also loses vari-
ous data such as variables, file descriptors, and network
connections. It is impossible to recover these proper-
ties unless a recovery mechanism is built in the program
itself.

Fixing with a termination is a serious problem especially
for application programs used in telecom, because they
cannot easily be terminated to keep the required level
of system availability.1 Therefore, the problems should

1The CGL (Carrier Grade Linux) specification requires 99.999%
availability.

be fixed at runtime with binary patches. In addition, in-
terruption time to apply binary patches should be short
because long interruption degrades the quality of voice
and video, which are major services of telecom.

In this paper, we call an application program to be fixed
by RBP (Runtime Binary Patcher) a target. Two major
open source RBPs, livepatch [1] and pannus [2], already
exist. However, livepatch potentially interrupts the ex-
ecution of a target for a long time. The maintenance of
pannus doesn’t seem to be easy.

This paper proposes a runtime code modification
method for application programs, and, an implemented
RBP. It achieves short interruption and easy mainte-
nance using the trap instruction and the utrace APIs [3].

2 Existing Methods

2.1 ptrace system call and gdb

The ptrace system call provides debug functions,
such as reading/writing memory in the target’s virtual
memory space, acquisition/modification of the target’s
registers, and catching signals delivered to the target.
These functions are enough to realize runtime code
modification. Actually, we can modify a target’s mem-
ory with gdb [4], which is one of the most popular de-
buggers in the GNU/Linux environment and also a typ-
ical application using ptrace.

For example, the gdb command "set variable

((unsigned short)0x8048387)=0x0dff"
overwrites 0x0dff (dec instruction on i386) at
address 0x8048387 by calling ptrace(PTRACE_

POKEDATA, pid, addr, data), where pid, addr,
and data are the process ID of the target, the address
to be overwritten, and the address of data to overwrite,
respectively.

However, this approach potentially causes long inter-
ruption of target execution when the target has many

• 245 •

246 • A Runtime Code Modification Method for Application Programs

main()
{

}

{
 ...

{
 ...

Newly Allocated
Memory

func()

func();
...

}

main()
{

}

{
 ...

}

(a) before (b) after

func();
...

}

func_fix()

func()jmp

Figure 1: Function call path before and after applying a
binary patch

threads or the patch is large. gdb frequently stops
all threads in a target. As the number of threads in-
creases, interruption time increases, too. The writ-
ing size of PTRACE_POKEDATA is a ‘word,’ which is
architecture-dependent—four bytes on i386.

Some practical cases will require additional memory to
apply a binary patch whose size is greater than the orig-
inal code. ptrace doesn’t provide a direct function
to allocate memory. However, livepatch solves this by
making a target execute instructions to allocate memory
as described in Section 2.2.1.

2.2 Open Source RBPs

livepatch and pannus are two major open source RBPs.
They both fix problems by adding a binary patch in the
target’s virtual memory space and overwriting the jmp
instruction to the binary patch at the top of the function
to be fixed (we call it the target function) as shown in
Figure 1. This means problems are fixed by the func-
tion unit. Thus a patch is provided as a function (fixed-
function) in an ELF shared library (patch file). The ba-
sic processes of livepatch and pannus are similar and
roughly divided into the following four stages.

1. Preparation: opens a patch file, obtains the size of

int prot = PROT_READ|PROT_WRITE;
int flags = MAP_PRIVATE|MAP_ANONYMOUS;
mmap(NULL, size, prot, flags, -1, 0);
asm volatile("int $3");

Figure 2: The code written in the target stack

the patch, gives addresses to unresolved symbols,
and so on.

2. Memory Allocation: allocates memory for the
patch in the target.

3. Load: loads the patch into the allocated memory.

4. Activation: overwrites an instruction to jump to the
patch at the top of the target function.

2.2.1 livepatch

livepatch [1] was developed by F. Ukai, and consists
only of a utility in user space, which is about 900
lines of code. In the preparation stage, livepatch gets
the information about the patches in the ELF file with
libbfd. In the memory allocation stage, livepatch first
obtains the stack pointer of the target using PTRACE_
GETREGS. Then it writes the machine code correspond-
ing to the source shown in Figure 2 on the stack. The
code is executed by setting the program counter to the
top address of the stack using PTRACE_SETREGS, fol-
lowed by PTRACE_CONT. The mmap() in the code
allocates memory in the target, because the target it-
self calls the mmap(). The assembler instruction ‘int
$3’ generates the SIGTRAP to bring back the control to
livepatch, which is sleeping by wait(NULL) after the
PTRACE_CONT.

In the load stage, livepatch writes the patch in the allo-
cated memory by repeating PTRACE_POKEDATA. In
the activation stage, PTRACE_POKEDATA is also used
to overwrite the instruction to jump.

2.2.2 pannus

pannus [2] was developed by a group from NTT Cor-
poration. It consists of a utility in user space and a ker-
nel patch. In the preparation stage, livepatch analyzes a

2008 Linux Symposium, Volume Two • 247

patch file by itself without external libraries and obtains
necessary data. The memory allocation is mainly per-
formed by a mmap3() kernel API which is provided
by the kernel patch. Actually it also plays a role in a
portion of the load stage, because the mmap3() maps
the patch file. The mmap3() is an enhanced version
of mmap2(), which is a standard kernel API. It enables
other processes to allocate memory for the specified pro-
cess, directly accessing the core kernel structures such
as mm_struct, vm_area_struct, and so on. Be-
cause members of the structures or access rules are often
changed, the maintenance of the patch doesn’t seem to
be easy.

In the load stage, the access_process_vm() ker-
nel API is used via the kernel patch to set relocation
information in the allocated memory. The API reads/
writes any size of memory in the specified process.

In the activation stage, pannus also uses access_
process_vm() to overwrite the instruction to jump.
Note that pannus checks whether the status is safe be-
fore the overwriting. The safety means that the number
of threads whose program counters point the region to
be overwritten is zero. The program counter is obtained
by PTRACE_GETREGS, after the target was stopped by
PTRACE_ATTATCH. If the status is not ‘safety,’ pannus
resumes the target once by PTRACE_DETATCH, and
tries to check again. If the result of the second check
is not also safety, pannus aborts the overwriting. The
probability that this situation happens increases with the
call frequency of the target function.

3 Proposed Method and its Implementation

3.1 Patching process

We propose a new patching method, which is used in our
project kaho, which means Kernel Aided Hexadecimal
code Operator. The patching process of kaho is divided
into four stages similarly to livepatch and pannus. They
are shown in Figure 3 with detailed steps. Its implemen-
tation consists of a user-space utility program and a ker-
nel patch. The white boxes in the figure are processing
by the utility. The shaded steps are processed in the ker-
nel via IOCTLs. The supported architectures of kaho are
x86_64 and i386 at this moment. All these steps are de-
scribed here and details of IOCTLs and ‘Safety check’
are explained in the following sections.

Init ializat ion

Patch instant iat ion

Patch file analysis

Target execut ion file analysis

Compat ibilit y check

Memory allocat ion

Address resolut ion

Patch loading request

Patch loading

Allocat ion request

Safety check

Act ivat ion

Patch code analysis

Memory
Allocat ion
Stage

Load Stage

Act ivat ion
Stage

Allocated address check

Preparat ion
Stage

Figure 3: The patching process of kaho

The Preparation Stage consists of seven steps. Initial-
ization interprets the command line options, which in-
clude information about the target and the command
file. The command file defines the name of a target,
a fixed function, a patch file, and a map file. Patch
file analysis opens the patch file and reads ELF infor-
mation such as ELF header, section headers, program
headers, symbol table, dynamic sections, and versions.
Target execution file analysis finds the executable from
/proc/<PID>/exe and acquires ELF information.
Compatibility check confirms that byte order (endian),
file class, OS ABI,2 and ABI version of the patch file,
which are contained in the ELF header, are identical to
those of the target execution file. Patch code analysis
searches for an entry whose st_name member is iden-
tical to the name of the fixed function from the symbol
table, and its file position from the st_value. Ad-
dress resolution works out the addresses of unresolved
symbols using a target executable, the depending li-
braries, and /proc/<PID>/maps. When symbols

2such as UNIX – System V, UNIX – HP-UX, UNIX – NetBSD,
GNU/Hurd, UNIX – Solaris, etc.

248 • A Runtime Code Modification Method for Application Programs

are stripped out in the executable and libraries, the map
file must be specified in the command file, because the
map file lists function names and the corresponding ad-
dresses. Patch instantiation allocates the data structure
to manage binary patches in the kernel space, and gen-
erates a unique handle for every a patch instance.

The Memory Allocation Stage consists of three steps.
Allocation request finds a vacant-address range near the
target function using /proc/<PID>/maps and calls
the Memory allocation IOCTL. Allocated address check
confirms that the address3 is within a ±2GB range from
the target function. Note that Allocated address check
is needed for the x86_64 architecture only, because the
immediate operand of the jmp instruction is relative-32-
bit despite having a 64-bit accessible memory space.

Load Stage consists of Patch loading request and Patch
loading. Patch loading request calls an IOCTL with a
patch instance handle, the fixed function’s address in
kaho utility virtual memory, size of the fixed function,
and the target function’s virtual memory address. Patch
loading is an IOCTL to load the fixed function in the
target.

Activation Stage consists of Safety check and Activation.
Safety check confirms that no threads are executing code
on the region to be overwritten by Activation. If this
is not checked, threads may fetch illegal instructions.
There are two modes to check safety, standard mode and
advanced mode. In the standard mode, the check is per-
formed by the kaho utility program. In the advanced
mode, Activation performs it. Activation overwrites the
instruction to jump to the fixed function at the top of the
target function.

In fact, kaho can deactivate and remove the activated
patches. In addition, kaho can modify the data in the
target. In the case, Loading Stage stores the data from
the utility in the kernel. Activation Stage overwrites the
data with access_process_vm().

3.2 Patch instantiation

The Patch instantiation IOCTL receives the process
ID of the target and the number of patches. It first
takes an available handle from its own handle pool and
creates the data structure to manage patches, which

3The address in which the fixed-function is loaded in a precise
sense.

static const struct
utrace_engine_ops kaho_utrace_ops =
{

.report_exec = kaho_report_exec,

.report_quiesce = kaho_report_quiesce,

.report_reap = kaho_report_reap,
};

Figure 4: kaho’s utrace callbacks

is named patch instance. Patch instance’s member
variables include the number of patches, the pointer
to the target’s task_struct, addresses of the tar-
get functions, sizes of the patches, and so on. Then
it gets the pointer to target’s task_struct with
find_task_by_pid(), adds the patch instance to
the dedicated list named patch-instance list, and at-
taches the target by calling utrace_attach() with
the callbacks shown in Figure 4. After the target is at-
tached, utrace_set_flags() with flag UTRACE_

EVENT(EXEC)|UTRACE_EVENT(REAP)4 is called to
delete the patch instance from the patch-instance list and
release it for the case in which the patch becomes no
longer needed. Finally, Patch instantiation returns the
handle to be used in the other IOCTLs.

3.3 Memory Allocation

Memory Allocation IOCTL receives a handle, a request
address, and a request size. It first finds that the patch
instance which has the handle is in the patch-instance
list and stores the request address and the request size in
the patch instance. Then it enables the callback kaho_
report_quiesce() by calling utrace_set_
flags() with flags UTRACE_ACTION_QUIESCE |

UTRACE_EVENT(QUIESCE). Shortly after the flags
are set, utrace executes the callback specified
in .report_quiesce (that is kaho_report_
quiesce() in this case) on the target context as shown
in Figure 5.

kaho_report_quiesce() calls do_mmap()
with the requested address and size on the target
context. As a result, memory is allocated in the target’s
virtual memory space. The basic idea is similar to

4The flag enables callbacks specified in .report_exec and
.report_reap to be called when the target calls the exec()
family and when the target terminates, respectively.

2008 Linux Symposium, Volume Two • 249

sleep

kaho_report_quiesce()

set_utrace_flags()

kaho's
context

Target
context

down(&sem)

up(&sem)

do_mmap()

t im e

Target processing

set_utrace_flags()

kaho's processing

Figure 5: Mechanism of memory allocation

that of livepatch. Next kaho_report_quiesce()
executes up(&sem) to wake up the kaho utility
program which is sleeping by down(&sem). Finally,
kaho_report_quiesce() stores the address of
the allocated memory in the patch instance and calls
utrace_set_flags() without flags UTRACE_

ACTION_QUIESCE|UTRACE_EVENT(QUIESCE) to
disable this callback and resume the target’s processing.
After the sleep finishes, the address is returned.

3.4 Patch Loading

Patch Loading IOCTL receives the handle, the address
at which the fixed function is in the kaho’s memory
space, the address to be loaded in the target’s mem-
ory space, the address of the target function in the tar-
get’s memory space, the size to be loaded, and the sub-
patch ID. The sub patch ID is the sequential number
to identify patches which are applied at one time. Af-
ter Patch Loading stores them in the patch instance,
it loads the fixed functions into the target by calling
access_process_vm().

access_process_vm() is the standard kernel API
which reads or writes the memory in the specified pro-
cess. It is also used from the ptrace system call and
some kernel functions to handle /proc/<PID>/mem.
This means that memory in the target can be written
by calling ptrace and writing /proc/<PID>/mem.
However, This works only when the target is in a traced
state; namely, the target must be stopped. Although this
is necessary to prevent unexpected results in usual cases,
we don’t access memory loading fixed functions. There-
fore, Patch Loading calls access_process_vm()
without stopping the target.

0 55 push %ebp
1 89 mov %ebp,%ebp
2 e5
3 8b mov 0x08(%ebp),%eax
4 45
5 08
6 40 inc %eax

0 e9 jmp $01020304
1 01
2 02
3 03
4 04
5 08
6 40 inc %eax

push

inc

jmp
illegal

illegal

inc

mov

mov

Figure 6: The example of the safety and danger

3.5 Safety check

Safety check confirms that program counters of the all
threads in the target don’t point the region to be fixed.
If a thread’s program counter points to such a region,5

it gets illegal instructions after the instruction to jump is
overwritten, as shown in Figure 6. kaho has two modes
to check the safety. One is the standard mode in which
the kaho utility program checks. The other is the ad-
vanced mode in which the Activation IOCTL checks be-
fore the instruction to jump to the fixed function is over-
written in kernel space. The interruption of the target in
the advanced mode is shorter than that in the standard
mode, because the target is not stopped in the advanced
mode. However, the number of fixed functions which
are applied at one time in the advanced mode is limited
to only one.

3.5.1 Standard mode

Safety check in the standard mode consists of Quick
check and Forced displacement. Quick check attaches
the target with ptrace and checks the value of the pro-
gram counter with PTRACE_GETREGS. When the pro-
gram counters of all threads do not point the region to
be overwritten, the check successfully finishes. Other-
wise, the check is retried. If the failures continue a few
times, Forced displacement is executed as the threads
are attached.

5The first byte of the region is exempted, because some sort of
valid instruction should be overwritten.

250 • A Runtime Code Modification Method for Application Programs

Forced displacement tries to bring about a safety state
using the trap instruction (int 3). It first overwrites a
trap instruction at the top of the target function. Then
it resumes only the threads whose program counters
point the region to be fixed with PTRACE_CONT. Af-
ter that, some threads will stop by the trap instruction.
Consequently such threads become safe. Other threads
including threads which do not run on the code with
trap instruction are checked periodically with PTRACE_
ATTACH and PTRACE_GETREGS. If safety of all
threads is confirmed, the check successfully finishes.
Otherwise, it fails.

3.5.2 Advanced mode

Safety check in the advanced mode is further broken
down into four steps. These consist of Preparation,
Trap handler, Thread safety check, and Target safety
check. The basic strategy is to mark the thread which
has executed the overwritten trap instruction at top of
the target function for safety. This method is inspired
by djprobes [5]. Preparation first makes a checklist
in which pointers to the task struct of all threads and
corresponding check statusus are contained and adds
the pointer of the target’s task struct to the list called
trapped-targets. Then it overwrites the trap instruction
at top of the target function. After this, the check in
the Trap handler becomes active as described below.
Finally, it calls utrace_attach() and utrace_
set_flags() to execute the callback specified in
.report_quiesce for all threads, which is Thread
safety check in this case.

Trap handler is registered by register_die_
notifier() when a system is initialized. It is called
when any process or a thread in the system executes a
trap instruction. Therefore it must confirmed whether
the thread which executes the trap instruction and the
address are included in the trapped-targets list. If it is
included, Trap handler marks the thread as safety. Then
it changes the program counter of the thread to the ad-
dress of the fixed function by setting rip or eip in
struct pt_regs given by the lower-common layer
of kernel, as shown in Figure 7. This means that the
thread executes the fixed function.

Thread safety check is called on the context of the target
thread. It first reads the check list and confirms that the
safety of the thread was already checked by Trap han-
dler. If the thread is ‘safety,’ it finishes immediately.

{
 ...

main()
{

}

{
 ...

}

func();
...

}

func_fix()

func()int3

Trap
hander

(in kernel)

Figure 7: Function call path during safety check in ad-
vanced mode

Otherwise, it checks for safety, reading program coun-
ters in user space, which is saved in the kernel mode
stack. The result is written in the check list. After the
Thread safety check is executed on the all threads, Target
safety check reads the check list and deletes safe threads
from the list. When the check list becomes empty, Tar-
get safety check successfully finishes. Otherwise, it re-
peats Thread safety check for the remaining threads in
the check list.

3.6 Activation

Activation IOCTL receives the handle and the flag.
It overwrites instructions to jump to the fixed func-
tion at the top of the target function using access_
process_vm(). The addresses of the fixed function,
address of the target function, and the sizes of the fixed
functions are obtained from the patch instance. The ex-
amples of the instructions to be overwritten are shown
in Figure 8 and Figure 9. In Figure 8, the jmp instruc-
tion which takes a 32-bit relative address is used and
its total size is 5 bytes. The instructions shown in Fig-
ure 9 are used only when the architecture is x86_64 and
KAHO_X86_64_ABS_JMP is set in the flag. The condi-
tion in which the instructions in Figure 9 is needed is
rare. Code, data, and stack regions in the memory space
are usually sparsely placed in memory.

2008 Linux Symposium, Volume Two • 251

jmpq $0x12345678

Figure 8: Example of instruction to be written

pushq $0x12345678
movl $0x9abcdef0, 4(%rsp)
ret

Figure 9: Example of instructions to be written when
the flag X86_64_ABS_JUMP is specified on the 86_64
architecture

3.7 Usage of kaho utility program

We introduce brief usage for the kaho utility program
named kaho. The usage is greatly influenced from that
of pannus. First of all, environment variable KAHO_
HOME must be set. It specifies the base directory in
which the command file, the patch file, and the map
file are placed. Then users perform the following three
steps.

1. Prepare a command file, a patch file, and a map file.

2. Execute kaho with the load option.

3. Execute kaho with the activation option.

3.8 Limitations

3.8.1 Handling of C++ exception

kaho cannot apply a binary patch to code which can po-
tentially generate C++ exceptions. When the exception
happens, the code compiled by g++ tries to find the
frame to be caught with the .eh_frame_section
in the ELF file which contains the target function. How-
ever, the information about the fixed function is not in
the .eh_frame_section. As a result, the exception
is not caught correctly.

3.8.2 Static variables

When a target function contains static variables and a
patch uses them, the patch may not work correctly. The

reason is that the patch refers not to the variable in the
target, but in itself. This can be avoided by replacing
the static keyword with the extern keyword and
adding the address of the static variable in the target
function to the map file.

3.8.3 Loading new shared libraries

kaho fails to load patches when the fixed functions in the
ELF file require additional functions which are not in
the ELF file itself, the target executable file, or already-
loaded shared libraries.

3.8.4 Multiple binary patch in advanced mode

The present algorithm of the safety check in the ad-
vanced mode allows only one fixed function to be ap-
plied at a time. However, there is a certain situation in
which multiple fixed functions should be applied at one
time. Therefore, we plan to extend the number of fixed
functions which are applied at one time in advanced
mode.

4 Evaluation

4.1 Evaluation method

We evaluated performance of RBPs (livepatch, pannus,
and kaho) by the interruption time in target execution.
This section describes our definition of the interruption
time, our measuring method, the target programs used
for the measurement, and our evaluation environment.

4.1.1 Interruption time

We defined five categories of interruption; Allocation,
Load, Check, Trap, and Setup. Allocation is the inter-
ruption due to memory allocation for a binary patch.
All RBPs but pannus allocate memory in the target con-
text. pannus does it from the outside of the target via
mmap3(). Load is the interruption due to loading the
binary patch. Only livepatch does it in the target con-
text. Check is the interruption due to the safety check
for the target to be safely patched. pannus, kaho in
the standard mode (kaho-std), and kaho in the advanced

252 • A Runtime Code Modification Method for Application Programs

mode (kaho-adv) have safety check mechanisms, which
work in the target context. livepatch doesn’t have such
a step. Trap is the interruption due to the in-kernel trap
handler; it also happens in the safety check step. Only
kaho-adv uses this functionality. Setup is the interrup-
tion due to processing the _init function in the binary
patch. Only pannus executes it in the activation.

4.1.2 Measurement

We placed probe points statically in the kernel to de-
termine the interruption time in each category listed in
Section 4.1.1. Also, we measured the interruption time
in the Trap category from the target by getting proces-
sor’s cycle counter.

The followings are the probe points we placed in kernel.

(A) ptrace-triggered stop/cont point (i.e., TASK_
TRACED stop/cont). The ptrace is used for the
Allocation, Load, or Check category.

(B) kaho’s utrace quiesce handler entry/exit for mem-
ory allocation. This is used for the Allocation cate-
gory in kaho-std and kaho-adv.

(C) kaho’s utrace quiesce handler entry/exit for safety
check. This is used for the Check category in kaho-
adv.

(D) Setupper entry and restorer exit of the _init
function in a patch. This is used used for the Setup
category in pannus.

The following one is in user space (i.e., the target).

(E) Right before calling the fixed function and at the
top of the fixed function. This is used for the Trap
category in kaho-adv.

We conducted our measurements a hundred times per
target. We took the mean value as a result.

4.1.3 Targets for the evaluation

To determine the performance and the characteristics of
each RBP, three typical target programs described below
were used.

• Single: Single-threaded application. The target
function is continuously called and immediately re-
turns. Because safety checks are very easy, this
type of target can be used to determine the shortest
time of the interruption.

• Multi-I: Multi-threaded application. The target
function is frequently called from all of the threads.
A hundred threads simultaneously access the func-
tion without any control. There is no outstanding
resource contention across the threads in this tar-
get. Safety checks are very tough work, so this type
of target can be used to determine the longest time.
This is the most unfavorable condition for kaho-
adv because it uses the trap handler for the check.

• Multi-II: Multi-threaded application and the target
function is never called from any of the threads.
A hundred threads run without accessing the func-
tion. There is no outstanding resource contention
across the threads in this target. This target is the
most favorable condition for kaho-adv because no
one hits its trap handler. We used this target to esti-
mate the effect of the trap on the interruption time.

4.1.4 Evaluation environment

We conducted our measurements on a Dual 2.66GHz In-
tel Quad-Core CPU machine with 4GB of RAM, which
was installed with the Fedora Core 6 Linux distribution.
When testing pannus, the 2.6.15.1 kernel plus the pan-
nus patch was running on the machine, because the lat-
est patch of pannus is against this kernel version. When
testing livepatch and kaho, the 2.6.24 version of the
utrace kernel plus the kaho kernel module was run-
ning on it. Because livepatch supports only the i386 ar-
chitecture, we evaluated livepatch in ia32e mode on the
x86_64 kernel.

4.2 Results

The evaluation results are summarized in Table 1 and
in Figures 10-12. We can see that the results depend
largely on the target, at first glance. For any targets,
the interruptions by kaho-adv were shorter than those
by kaho-std and pannus. The interruptions by kaho-std
were of the same order as those by pannus. Although
the results of livepatch are also presented, it is naïve to
compare the results with pannus and kaho in terms of

2008 Linux Symposium, Volume Two • 253

Target RBP Total Interupt. (µs) Allocation Load Check Trap Setup
Single livepatch 2486 569 (A) 1916 (A) – – –
Single pannus 48 – – 29 (A) – 19 (D)
Single kaho-std 43 5 (B) – 37 (A) – –
Single kaho-adv 10 6 (B) – 3 (C) 0 (E) –
Multi-I livepatch 502253 100055 (A) 402197 (A) – – –
Multi-I pannus 4673323 – – 4657529 (A) – 15794 (D)
Multi-I kaho-std 1034518 119 (B) – 1034399 (A) – –
Multi-I kaho-adv 1017455 111 (B) – 594 (C) 1016750 (E) –
Multi-II livepatch 513139 99107 (A) 414032 (A) – – –
Multi-II pannus 5040145 – – 5020773 (A) – 19372 (D)
Multi-II kaho-std 895451 121 (B) – 895330 (A) – –
Multi-II kaho-adv 634 112 (B) – 522 (C) 0 (E) –

Table 1: Total and break-down interruption time. ‘–’ means N/A. The characters in parentheses indicate the probe
point listed in Section 4.1.2.

the total interruption time. Because livepatch doesn’t
have a safety check, which is an necessary function to
prevent unexpected results, the interruptions are short,
especially for Multi-I and Multi-II. Therefore, we dis-
cuss the results without livepatch in the following sec-
tions.

4.2.1 Single-threaded target

The interruption-time distribution for the ‘Single’ case
is shown in Figure 10. The interruptions by kaho-adv,
kaho-std, and pannus were 10µs, 43µs, and 48µs re-
spectively. The interruption by kaho-adv was about a
quarter of that by kaho-std and pannus. We think the
reason is that context switch of the target doesn’t hap-
pen in Check by kaho-adv, which utilizes utrace.
On the other hand, because kaho-std and pannus use
PTRACE_ATTACH and PTRACE_DETACH for Check,
the context switch happens at least twice.

4.2.2 Multi-threaded target I

The interruption-time distribution for Multi-I is shown
in Figure 11. The interruptions by kaho-adv, kaho-std,
and pannus were 1.02s, 1.03s, and 4.67s, respectively.
This shows that the performance of all RBPs is compa-
rable in this situation.

The interruption due to Check by kaho-adv was 594µs.
This is three orders of magnitude shorter than that of

pannus and kaho-std. However, almost all of the inter-
ruption by kaho-adv was consumed by Trap. When the
fixed function was called via Trap, the time was 2.2µs
longer than the time via direct jump in our evaluation.
Even so, Trap happened about 440,000 times until Acti-
vation was completed. As a result, about 1s of interrup-
tion happened in total.

In the kaho-std and pannus, over 99% of interruptions
were consumed by Check. Although their safety-check
algorithms are almost the same, the interruption by
kaho-adv is about a quarter of pannus’s result. The rea-
son is unclear. It may be due to the difference of the
base kernel versions.

4.2.3 Multi-threaded target II

The interruption-time distribution for Multi-II is shown
in Figure 12. The interruptions by kaho-adv, kaho-std,
and pannus were 634µs, 0.90s, and 5.04s, respectively.
The interruptions by kaho-std and pannus differed little
from the interruptions for Multi-I. However, the inter-
ruption by kaho-adv was notably reduced, because Trap
was not used at all for the target. This means kaho-adv
is much better than kaho-std and pannus when the target
function is not called frequently.

5 Conclusion

This paper has proposed a runtime code modification
method for application programs and an implementation

254 • A Runtime Code Modification Method for Application Programs

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Single
livepatch

pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 10: Interruption-time distribution for the single-
thread target

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Multi-I

livepatch
pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 11: Interruption-time distribution for the multi-
thread target I

Interruption time (us)
1 10 210

3
10 410

5
10

6
10 710

F
re

q
u

e
n

c
y

0

20

40

60

80

100 Multi-II
livepatch

pannus

kaho-std

kaho-adv

1 10 210
3

10 410
5

10
6

10 710
0

20

40

60

80

100

Figure 12: Interruption-time distribution for the multi-
thread target II

named kaho. Such software is called Runtime Binary
Patcher (RBP). The RBP is notably useful for applica-
tions used in telecom, which must continue running to
keep the required level of system availability. The ba-
sic process of kaho is based on that of existing open
source RBPs, livepatch and pannus. However, kaho has

two major advantages. One is short interruption of tar-
get execution by the safety check using the trap instruc-
tion, which is inspired by djprobes. The other is easy
maintenance using the utrace kernel APIs instead of
the ptrace system call.

This paper also has shown the evaluation results with
three conditions. Although the results depended largely
on the condition, the interruptions by kaho were com-
parable to or shorter than interruptions by livepatch
and pannus in all conditions. In a certain condition,
the interruption by kaho was three orders of magnitude
shorter than that by livepatch and pannus.

Acknowledgement

I wish to express my special thanks to Mr. I. Shikase and
Mr. A. Kato of AIR Co., Ltd., who have developed the
kaho utility program.

References

[1] http:
//ukai.jp/Software/livepatch/

[2] http://pannus.sourceforge.net/

[3] http://people.redhat.com/roland/
utrace/

[4] http://sourceware.org/gdb/

[5] http://lkst.sourceforge.net/
djprobe.html

Proceedings of the
Linux Symposium

Volume Two

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

