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Abstract

Host-based Intrusion Detection Systems traditionally
compare observable data to pre-constructed models of
normal behavior. Such models can either be automati-
cally learnt during a training session, or manually writ-
ten by the user. Alas, the former technique suffers from
false positives, and therefore repeatedly requires user in-
tervention, while the latter technique is tedious and de-
manding.

In this paper we discuss how static analysis can be
used to automatically construct a model of application
behavior. We show that the derived model can pre-
vent future or unknown code injection attacks (such as
buffer overflows) with guaranteed zero false alarms. We
present Korset, a Linux prototype that implements this
approach, and focus on its Kernel implementation and
performance.

1 Motivation

The battle between attackers and defenders has been on-
going throughout the course of computer history. At-
tackers expose and exploit application vulnerabilities on
a daily basis, and as a result, software vendors regularly
apply fixes to close breaches and mitigate attacks. Alas,
it’s a seemingly endless cycle that has attackers on the
upper hand, as defenders are mostly responding.

Since even fully patched applications may have un-
known security flaws, defenders commonly use a Host-
based Intrusion Detection System (HIDS), or even mul-
tiple HIDSs, in order to augment security. The advan-
tage of using HIDSs relies on the fact that they may
stop attacks which exploits an application vulnerability
that is still publicly unknown (a.k.a. zero-day exploit) or
against which a patch is not yet provided.

HIDSs identify malicious activity typically by compar-
ing a variety of observable data to a pre-constructed

model of normal application behavior. When a running
process deviates from its model of behavior, it is as-
sumed to be subverted by an attacker. In such an event
the HIDS can take actions to prevent the attacker from
damaging the system, e.g., by terminating the hijacked
process.

There are two classic methodologies for constructing an
application’s model of normal behavior. One prevalent
methodology infers the model from statistical data: the
model is constructed over a period of time, called “train-
ing,” which is assumed to be attack-free (and hopefully
typical). During the training period, the behavior of the
application is observed, collected and transformed into
a representative model. After the model is constructed
and the training period is over, the HIDS monitors the
process, and any deviation from the constructed model
is considered an attack and may result in the termina-
tion of the process. This methodology is highly auto-
mated and capable of detecting a wide range of attacks,
but since it is based on statistical data, it has the inherent
problem of false positives. Recently developed methods
have yielded lower rates of false positives; however, in
practice, it is still a major problem.

A second common HIDS methodology for constructing
an application model of normal behavior is based on
generating application policies. Such policies define the
allowed behavior of the program, using rules that pre-
cisely specify which system resources a process can ac-
cess and in what way. The policies can be written either
by the developer himself or by a knowledgeable user,
because writing them requires a precise understanding
of the expected behavior of the application. The advan-
tage of using program policies relies on the fact that they
can describe the program’s behavior as accurately as the
program code itself, and thus can completely eliminate
false alarms. Alas, manually writing accurate program
policies is not for the faint of heart as it is a tedious and
demanding task.

A HIDS capable of automatically deriving accurate pro-
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Figure 1: Korset’s system architecture. On the left an application is compiled. Korset’s static analyzer observe the
building process, and creates a corresponding Korset graph. On the right, Korset’s in-kernel monitoring agent loads
the application’s graph when it is executed, and then monitor the issued system calls by simulating the automaton.
For simplicity, there is no notion of a process in the figure.

gram policies would enjoy both worlds of zero false pos-
itives and automation. This can be achieved using static
analysis methods as explained in Section 2.

2 The General Idea

Korset’s model of application behavior is Control Flow
Graphs (CFG) induced from the source code and object
files of the program. Assuming that the most practical
ways for an attacker to inflict damage involve system
calls, Korset prunes the CFGs from the nodes that do
not represent system calls. The resulting model is an
automaton that represents the legitimate order of system
calls that an application may issue. This automaton is
then enforced by Korset’s monitoring agent, which is
built into the Linux kernel, by simulating every emitted
system call. When a divergence from the automaton is
encountered, the running process is terminated.

Assuming that the program was written with benign in-
tent, and isn’t self-modifying, then its source code re-
flects the full extent of the legitimate application behav-
ior, and nothing else. Every possible path of execution
is obviously represented in the source, and as a result,
also in the induced automaton. Every sequence of sys-
tem calls not matching the derived automaton couldn’t
have been issued by the program itself, and therefore can

be safely regarded as an intrusion. This leads to Korset
guaranting zero false positives.

3 Architecture

Korset has two main subsystems (see Figure 1), de-
scribed in the following subsections.

3.1 The static analyzer

The static analyzer is a user space subsystem that is re-
sponsible for creating the final application CFG. When
the static analyzer is enabled, the application CFG is au-
tomatically created as part of the compilation process.
When the user builds an application (by running make,
or compiling a random source file), the static analyzer
also creates the CFG. This is achieved by wrapping the
GNU build tools (gcc, ld, as, ar) in a way that is trans-
parent to the build system. As a result, a CFG is con-
structed for every built object file, executable or library
(currently only static libraries are supported). The CFGs
of C programs are initially derived using GCC’s capabil-
ity to dump a representation of the program’s CFG dur-
ing compilation, and the CFGs of Assembly programs
are derived by analysing their object code (see Figure 2).

After the CFGs of the application’s functions are cre-
ated, they are linked together to create a unified CFG
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Figure 2: Three simple functions and their representa-
tive control flow graphs, as constructed by Korset. Note
that write, which belongs to glibc, is a simple wrapper
around a direct system call (Korset does not yet support
the x86’s sysenter facility).

Figure 3: The CFGs are linked together in order to con-
struct the final CFG of the program’s executable.

Figure 4: The resulting CFG is very simple since Korset
prunes away all graph nodes that do not add relevant
information.

that corresponds with the executable of the application
(see Figure 3). Along the way, the graphs are simpli-
fied by tossing away CFG nodes that don’t add relevant
information, and as a result the final CFG consists ex-
clusively of system calls nodes (see Figure 4).

The CFG simplification is a lengthy process which in-
cludes numerous steps of graph determinizing and au-
tomaton manipulations. The complete theory and al-
gorithms behind this process is described in length in
our companion paper [BW08]. The end result, shown
in Figures 5 and 6, is designed to achieve minimum run-
time overhead: the final CFG is consisted of only system
calls nodes and is actually a completely deterministic
automaton. It is then transformed to a binary represen-
tation, which is designed to achieve maximum perfor-
mance by placing the possible emitted system calls of
each graph node closely after the location of the node
itself (see Figure 7).

open() syscall 5

read() syscall 3

write() syscall 4

execve() syscall 11

Figure 5: The CFGs of glibc’s execve(), write(), read()
and open(). These library routines are simple wrappers
around the relevant system call, as reflected in the CFGs.
The system calls involved are read(3), write(4), open(5)
and execve(11).
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fwrite()

syscall 90

syscall 140

syscall 197

syscall 108

syscall 4

syscall 45

syscall 125

syscall 91

syscall 54

Figure 6: The CFG of glibc’s fwrite(). The system calls involved are write(4), brk(45), ioctl(54), mmap(90), mun-
map(91), fstat(108), mprotect(125), _llseek(140) and fstat64(197).

Figure 7: The binary representation of Korset’s graphs is geared towards run-time efficiency.
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3.2 The Monitoring Agent

Korset’s monitoring agent is built natively into the Linux
kernel. When a monitored program is executed, the
monitoring agent loads its CFG, observes the issued sys-
tem calls by the process, and then validates their legiti-
macy by simulating them on the induced automaton.

Following is a description of the components that the
monitoring agent is built of.

Note: Support for the changes described in Subsec-
tion 3.2.1 is added only if the kernel’s build variable
CONFIG_SECURITY_SYSCALL is enabled. Likewise,
support for all other changes described in Subsections
3.2.2-3.2.5 is added only if the kernel’s build variable
CONFIG_SECURITY_KORSET is enabled.

3.2.1 Linux Security Modules changes

Linux Security Modules (LSM) is a Linux kernel secu-
rity framework that provides, among other things, a set
of security hooks that are used to perform access con-
trol. These hooks can be used by security modules to
implement any desired model of security. In order to
support the monitoring of system calls, we have added
a new LSM hook, called security_system_call,
into the security_operations structure (defined
by include/linux/security.h). This new hook
function is called every time user space makes a request
to execute a system call, by a handful of assembly in-
structions that we have added to the system_call
handler (no support yet for the x86’s sysenter facility
and in general only the x86 architecture is currently sup-
ported). The security_system_call hook func-
tion is given two arguments:

1. The location of the struct thread_info of
the current process (which have just made a request
to execute a system call), retrieved from the pro-
cess’ kernel stack using the GET_THREAD_INFO
macro. The struct thread_info can be
used to access the process’ task_struct struc-
ture (the Linux process descriptor), where process
security state is maintained by Korset.

2. The requested system call number, as given in
%eax from user space.

Any security module that registers the security_
system_call hook should use these two arguments
to decide whether or not to allow the execution of the de-
sired system call. The hook function should return zero
if permission to execute the system call is granted. If
zero is returned, the system call handler continues with
normal execution of the system call. Otherwise, the sys-
tem call handler immediately returns to user space with
an EACCES error (permission denied).

As with other LSM hooks, a security module
who wishes to use the security_system_call
hook should call register_security to set
security_ops to refer to its own hook function.

3.2.2 task_struct changes

In order to maintain a per-process automaton in the
kernel, we have added the following new fields to the
task_struct structure:

• korset_graph: The location, in memory, of the
automaton. When a process is not monitored, this
field holds a NULL.

• korset_node: An offset that, together with
korset_graph, yields the location in memory
of the automaton node that the current process is
at.

• korset_size: The size, in bytes, of the automa-
ton that is pointed to by korset_graph. Used
by automaton sanity checks.

3.2.3 CFG Loader

When app is executed, Korset looks for the file app.
korset, which, if it exists, holds the CFG of app. This
is done in fs/exec.c by the do_execve function,
in almost exactly the same manner as the kernel looks
for app’s executable itself (with the exception that only
READ permissions/flags are needed instead of the usual
EXEC ones). If the file app.korset exists, Korset
loads it from disk. This is done in fs/binfmt_elf.c

by the load_elf_binary function (currently only
ELF executables are supported by Korset), again in a
very similar way to how the kernel loads the executable
itself. After app’s graph is successfully read from disk,
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its location in memory is put in the korset_graph
field of the current process, the korset_size field is
updated with the graph’s size and the korset_node
field is set to point to the graph’s root node. (The offset
to the root node is taken from app.korset, as seen in
Figure 7.)

3.2.4 CFG Enforcer

Whenever a process issues a system call a, Korset’s
security_system_call LSM hook function is
called. If korset_graph == NULL then the cur-
rent process is not monitored, and a is immediately
approved. Otherwise, if korset_graph != NULL,
then the current process is monitored, and then Korset
validates the legitimacy of a by simulating one step of
the automaton. This is accomplished by checking the
outgoing edges of the current node, one by one, looking
for an edge that is carrying a. If such an edge is found,
the korset_node field of the current process is up-
dated to point to the destination node of the found edge,
and a is executed. If such an edge is not found, the cur-
rent process is terminated, and security_system_
call returns -1 to the system_call handler. As a
result, the system_call handler does not execute the
requested system call. Instead, it immediately returns to
user space as explained in 3.2.1.

In some cases, after an edge carrying the requested sys-
tem call is found, it is also desired to manipulate its lo-
cation in the graph for performance reasons. This ma-
nipulation is done within the enforcing code. For more
information, see Section 4.

3.2.5 CFG Dumper

As mentioned in the previous subsection, sometimes the
application CFG is manipulated while it is enforced.
This may happen for run-time optimization reasons, as
described in section 4. In those cases, it might be de-
sired that the graph file app.korset itself will be up-
dated to reflect the changes. This is where Korset’s CFG
Dumper kicks in. When a process terminates, and the
conditions described in Section 4 are met, the updated
CFG is dumped to disk. This is done in the do_exit
function, defined by kernel/exit.c, in a manner
that resembles the way the kernel dumps a core file.

4 Runtime Optimization via Frequent Edges
First

Validating a system call a involves matching a against
each of the outgoing edges of the current node v, until
either a match is found or all outgoing edges have been
traversed. The time complexity of this operation is ob-
viously O(d), where d is the number of outgoing edges
v has. The actual overhead is obviously dependent on
the position, in memory, of the more frequent edges. If
a system call a is carried by the first edge in memory,
only one matching iteration will be performed to locate
it, and the run-time overhead will be minimal. Based
on that simple observation, we added the following Fre-
quent Edges First (FEF) algorithm to Korset’s monitor-
ing agent:

1. Every time a system call match is made to an out-
going edge e of node v, e is moved-to-front, i.e.,
it is removed from its i-th location in memory, the
i−1 edges that are located in positions 1..i−1 are
shifted to positions 2..i, and e is placed in position
1.

2. When a monitored process finishes its execution,
its updated CFG is dumped to disk.

This means that when the FEF is enabled, the CFG dy-
namically changes during the execution of the process.
After the process terminates, the most frequent edges
of that specific execution are positioned before the less
frequent ones. If the next execution of that application
would have a similar system call sequences, Korset’s
overhead will be substantially smaller. The FEF can be
used in two modes:

1. Always Enabled: In this mode, the CFG will al-
ways be updated during process execution accord-
ing to the FEF algorithm. The main benefit of
this mode is that a recurring sequence of sys-
tem calls will incur minimal overhead. However,
this mode introduces additional computation that is
performed per observed system call, which may ac-
tually increase Korset’s run-time overhead. There-
fore, we do not use this mode.

2. Only Once: In this mode, the FEF is used as the
final step of CFG construction—the relevant ap-
plication is executed once, in a common work-
load. Upon termination, Korset dumps the updated
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CFG to disk, which is then used as the applica-
tion’s newly constructed CFG. This way, when a
new CFG is constructed, the position of its out-
going edges reflect a real execution of its program
rather than a random order. This mode is obviously
cheap—it has no run-time cost. Its only cost is in
the initial phase of CFG construction. Despite the
low cost and obvious limitation of this mode, it is
quite effective. We have found that even a single
FEF adjustment of a CFG during a single execu-
tion of a program significantly improves Korset’s
performance in future executions.

The ‘Always Enabled’ mode can be further tuned to re-
duce run time cost (e.g., an outgoing edge can be ad-
vanced only if it is not in the first t locations, where t is
a tunable variable that might be different for each appli-
cation). This is a topic for further research. In contrast,
the ‘Only Once’ mode is always used, since it has no
run time cost, and was found to be notably effective.

5 Run-Time Micro Benchmarks

Figure 8 demonstrates the percentage of overhead im-
posed by Korset’s monitoring agent via micro bench-
marks for four system calls with different speeds (write
is the slowest while setuid is the fastest). For a single
system call a, the actual overhead depends on the posi-
tion in memory of the edge carrying a. We measured
three different scenarios for each of the system calls:

1. Best Case: The matching edge is in the first posi-
tion. While this is the best run-time performance
that can be achieved, high precision models (i.e.
with low branching factors), should produce simi-
lar results.

2. Bad Case: The matching edge is in the 50th posi-
tion. This overhead level can only be achieved with
models that have bad precision since a node with
50 or more outgoing edges is very limited with its
constraining effectiveness.

3. Worst Case: The matching edge is in the 325th po-
sition (there are 325 different system calls in Linux
2.6.24). Measured for comparison.

The figure shows two things:

Figure 8: Micro-benchmarks of Korset’s overhead on
four system calls with variable speed. setuid is the
fastest system call and thus has the biggest percentage
of run-time overhead incurred by Korset.

1. The overhead imposed by a small branching factor
is negligible. Achieving a small branch factor is
obviously a factor of precision, but the same per-
formance can be achieved also by placing the more
common graph edges first (which is what our Fre-
quent Edges First process does).

2. As long as the system call itself is slow, Korset’s
run-time penalty is small (in percentage) even if the
branching factor is big. As the system call is faster,
Korset’s run-time penalty is becoming more sig-
nificant (in percentage). Measuring Korset’s per-
formace on simple I/O-centric applications yielded
results similar to the best case (around 1% over-
head) [BW08].

6 Related Work

The idea of applying code-based static analysis tech-
niques to automatically construct models with zero false
alarms was introduced in a seminal work by Wagner
and Dean [WD01]. Their work covers the theory be-
hind the idea, and is a recommended read. Wagner
and Dean used a non-deterministic model which re-
sulted in big run-time overheads, and their prototype
was implemented in Java. Continuing their work, Gif-
fin et al. demonstrated static analysis of SPARC binary
code to generate system calls CFGs of Solaris appli-
cation [GJM02, HGH+04, GJM04, GDJ+05]. Giffin
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et al. have introduced numerous automaton manipula-
tion techniques and binary modification techniques to
increase model precision and reduce non-determinism.
Methods to increase the model precision were intro-
duced, based on additional observable data. More
specifically, it was suggested to add system call argu-
ments [WD01, GJM04], program counter and call stack
information [HGH+04, GJM04] and environment infor-
mation [GDJ+05]. A completely deterministic model,
which results in better run-time performance, was sug-
gested [BW08]. Lastly, the code-based static analysis
model is not foolproof. An attacker can intentionally is-
sue system calls in order to arrive to a desired automaton
node. This type of attack, called mimicry attack,
was introduced by Wagner et al. at [WD01, WS02].

7 Current Status and Future Work

Korset is still a very young prototype. It blocks real
shellcodes, and it was found to incur negligible over-
head on simple I/O-centric applications (see our com-
panion paper [BW08] for a detailed evaluation and
analysis), but it is still very far from a mature HIDS.
It does not yet support dynamically linked applica-
tions, multi-threaded applications, signals, setjmp/
longjmp, etc. In addition, there is still a lot of work re-
quired to increase the precision of the automatons, e.g.,
better assembly analysis, better indirect calls analysis,
add additional observable data to the model, improve
the automaton manipulation algorithms, etc.

Korset is hosted at http://www.korset.org.

8 Conclusion

Korset is an HIDS prototype that automatically con-
structs models of application behavior, and enforces
them from the Linux kernel with guaranteed zero false
positives. Korset is capable of stopping future, or pub-
licly unknown code injection attacks (e.g., buffer over-
flows). Although Korset is still a prototype, it demon-
strates a viable HIDS methodology with promising in-
trusion detection properties.
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