
Introducing the Advanced XIP File System

Jared Hulbert
Numonyx

jaredeh@gmail.com

Abstract

A common rootfs option for Linux mobile phones is the
XIP-modified CramFS which, because of its ability to
eXecute-In-Place, can save lots of RAM, but requires
extra Flash memory. Another option, SquashFS, saves
Flash by compressing files but requires more RAM, or
it delivers lower performance. By combining the best
attributes of both with some original ideas, we’ve cre-
ated a compelling new option in the Advanced XIP File
System (AXFS).

This paper will discuss the architecture of AXFS. It will
also review benchmark results that show how AXFS
can make Linux-based mobile devices cheaper, faster,
and less power-hungry. Finally, it will explore how the
smallest and largest of Linux systems benefit from the
changes made in the kernel for AXFS.

1 Filesystems for Embedded Systems

1.1 Why not use what everyone else uses?

Embedded systems and standard personal computers
differ a great deal in how they are used, designed, and
supported. Nevertheless, Linux developers tend to think
of the Flash memory in an embedded system as the
equivalent of a hard disk. This leads many embedded
Linux newbies to ask, “Can I mount ext2 on the Flash?”
The simple answer is yes. One can mount ext2 on a mtd-
block partition in much the same way that one can bathe
in a car wash. However, for both the car wash and the
MTD, this is not what the system was designed for and
there are painful consequences—however, they get the
job done. . . well, sort of.

There are a few key differences between filesystems
used in a personal computer and those used in embed-
ded systems. One of these differences is compression.
Many filesystems used in embedded systems support

compression of file data in 4KB–128KB blocks. Cost,
power, and size limitations in embedded systems result
in a scarcity of resources. Compression helps to relieve
some of that scarcity by allowing the contents of a us-
able rootfs image to fit into a reasonably sized Flash
chip. Some embedded filesystems make use of the MTD
device API rather than a block device API. Using an
MTD device allows the filesystem to take advantage of
special characteristics of Flash and possibly avoid the
overhead of the block device drivers. A third difference
is that a read-only filesystem is perfectly acceptable for
many embedded systems. In fact, a read-only filesys-
tem is sometimes preferred over a writable filesystem
in embedded systems. A read-only filesystem can’t be
corrupted by an unexpected loss of power. Being read-
only can offer a bit of security and stability to an em-
bedded system, while allowing for a higher performance
and space-efficient filesystem design.

Linux filesystems that are well suited to the needs
of embedded systems include CRAMFS, JFFS2,
SQUASHFS, YAFFS2, LOGFS, and UBIFS. Only two
of these filesystems have been included in the kernel.
CRAMFS is a very stable read-only filesystem that sup-
ports compression and mounts from a block device.
There is an out-of-tree patch set for CRAMFS which
enables it to run XIP with no block device. If you
need to write data on Flash, the only option in the ker-
nel is the mature JFFS2. Like JFFS2, YAFFS2 requires
an MTD device, but does not provide compression like
JFFS2. YAFFS2 has been around for several years, but
getting it into the Linux kernel does not seem to be a
priority for the developers. SQUASHFS is over 5 years
old and is included in nearly every distribution. While
the developer has made attempts to get it pushed to
mainline, those attempts have been sidelined by a sur-
prising amount of resistance. As an improvement over
CRAMFS, SQUASHFS is capable of creating larger
filesystems at higher compression ratios. LOGFS and
UBIFS are projects with the same goal, providing more
scalable, writable Flash filesystems for growing NAND

• 211 •

212 • Introducing the Advanced XIP File System

storage in embedded systems. Both support compres-
sion and both are trying hard to be included in the kernel
by 2.6.26.

1.2 The inconvenient filesystem

The linear XIP CRAMFS patches have proved useful
in many small Linux systems for over 8 years. Unfor-
tunately, the patched CRAMFS contains calls to low-
level VM functions, a mount option to pass in a phys-
ical address, and modifications to the virtual memory
code. The main cause of this hubris is that this patched
CRAMFS doesn’t fit the filesystem paradigm and there-
fore doesn’t fit the infrastructure. The result is an ugly
hack and a maintenance nightmare. The patch set broke
badly almost every year due to some change in the
kernel, because it messed with code which filesystems
have no business touching. Not only is XIP CRAMFS
hard to maintain and port, it also has serious limita-
tions. CRAMFS only supports ∼256MB image sizes
and the maximum file size is 16MB. Notwithstanding
these limitations, the linear XIP patches to CRAMFS
have been included in most embedded Linux distribu-
tions for years. Variations on linear XIP CRAMFS ship
in millions of Linux-based mobile phones every year.

Embedded Filesystem Summary
filesystem compress MTD/block writable XIP in-kernel
CRAMFS 4 block 5 5 4
JFFS2 4 MTD 4 5 4
YAFFS2 5 MTD 4 5 5
SQUASHFS 4 block 5 5 5
LOGFS 4 MTD 4 5 soon
UBIFS 4 MTD 4 5 soon
XIP CRAMFS 4 5 5 5 5

2 Changing the Filesystem Paradigm

2.1 The current filesystem paradigm

Performing any real operations on data requires the data
to be in memory. Executing code also requires that it be
in memory. The role of the filesystem in Linux is to or-
der data into files so that it can be found and copied into
to memory as requested. In a typical personal computer,
a Linux filesystem copies data from a hard disk to RAM.
The Linux kernel filesystem infrastructure assumes that
data must be copied from a high-latency block device to
the low-latency system RAM. While there are a few mi-
nor exceptions, this is the rule. This is the basic filesys-
tem paradigm driving the architecture of the Linux vir-
tual filesystem.

A typical embedded system today might have an ARM
processor with some embedded Flash memory and some
RAM. The filesystem would copy data from Flash mem-
ory to RAM in this case. While Flash memory has much
faster read latency than a hard disk, the basic paradigm
is the same. Linux developers tend to think of the Flash
memory in an embedded system as the equivalent of a
block device like a hard disk. This fits the filesystem
paradigm built into the kernel, therefore few kernel de-
velopers care to investigate whether the paradigm fits
the realities of the hardware.

2.2 Why XIP?

What is so useful about the XIP-patched CRAMFS that
has prompted it to be haphazardly maintained out-of-
tree for nearly a decade? What is it about these patches
that make them so hard to reconcile with the kernel? The
answer to both is eXecute-In-Place, or XIP. Executing a
program from the same memory it is stored in is usually
referred to as XIP. As code must be in memory to be
executed, XIP requires a memory-mappable device such
as a RAM, ROM, or a NOR Flash. NAND Flashes are
not memory-mapped and thus not suitable for XIP; they
are more like block devices than RAM.

XIP is common in RTOS-based embedded systems
where the memory model is very simple. In a RTOS,
to add an application from Flash into the memory map,
the designer need only specify where in the Flash the
application is, and link the application there during the
build. When the system is run, that application from
Flash is simply there in memory, ready to be used. The
application never needs to be copied to RAM.

A Linux application in Flash is a file that would be con-
tained in a filesystem stored on the Flash. To get this
application from Flash into a memory map, individual
pages of the application would be copied into RAM
from Flash. The RTOS system would only require the
Flash space necessary to contain the application. The
Linux system would require the Flash space necessary
to store the application, and RAM space to contain the
application as it gets copied to RAM. The Linux filesys-
tem paradigm treats the Flash as a block device. The
Flash-as-block-device paradigm overlooks the memory
aspect of the Flash memory. The result is wasted re-
sources and higher cost.

If we have in our embedded system a Flash that can be
used as memory, why not use it as such? When such

2008 Linux Symposium, Volume One • 213

Flash is used as memory, the system can use less mem-
ory by removing redundancy as explained above. Using
less memory results in reduced cost, which is always
a priority for consumer electronics. Reduced memory
also reduces power, which increases battery life. Perfor-
mance can also be improved with XIP. If an application
does not need to be copied to RAM nor decompressed—
only pointed to—to be used, the paging latency is dras-
tically reduced. Applications launch faster with XIP.
Where it can be used, XIP is a great way of improv-
ing on system cost and performance. For years the only
option was to depend on the limited and hacked linear
XIP CRAMFS patches.

2.3 Expanding the paradigm

The first step toward consolidating the XIP features of
CRAMFS used in the smallest of Linux system into
the kernel came from an unlikely source, one of the
largest of Linux systems. As part of the 2.6.13 merge,
the s390 architecture tree introduced a block driver for
dcssmemory that extended the block device to include
a .direct_access() call. This new interface re-
turns an address to a memory region that can be directly
accessed. It allows for XIP from memory which is pos-
ing as a special block device. To complete the system
modification to ext2 were made, and the functions in
/mm/filemap_xip.c were introduced to allow data
on this dcss memory to be used directly from where
it was stored. The s390 architecture users find this fea-
ture very useful because of the way their systems allow
for Linux virtualization. Because many virtual systems
were sharing a root filesystem, requiring each system to
maintain copies of important files and code in a page
cache when it was already accessible in a shared mem-
ory device would be a huge waste of resources.

With these changes to the kernel, the filesystem
paradigm changed a bit. Data no longer had to be copied
from a block device into RAM before being used; the
data that is stored in a special memory device can be
mapped directly. While the embedded Linux world con-
tinued to fumble with the hacked CRAMFS patches,
the mainframe Linux developers laid the foundation for
merging XIP into the kernel.

3 Why a new filesystem?

3.1 The Problems

In order to take advantage of the memory savings and
performance benefits that XIP has to offer, Linux needed
a few more tweaks and a filesystem. Although the
/mm/filemap_xip.c infrastructure was a step in
the right direction, it did not address all the problems
with adding XIP functionality for embedded systems.
The changes introduced by /mm/filemap_xip.c
added a new function, get_xip_page(), to struct
address_space_operation that a filesystem was
supposed to use to pass a struct page for the mem-
ory that was to be inserted into a process’s memory map
directly. In an embedded system, the memory that is to
be passed is Flash, not RAM, and has no page asso-
ciated with it. The way the XIP CRAMFS patches han-
dled this was to call remap_pfn_range(). This was
one of the causes of the maintenance problems with the
patches. Because the API for doing this was intended for
limited use in drivers and internal memory management
code, not for filesystem interfacing, it changed relatively
often. A solution would need to be found that mod-
ified the infrastructure from /mm/filemap_xip.c
with the functionality enabled by calling remap_pfn_
range() directly.

With no struct page to leverage in mapping mem-
ory, the kernel would need the physical address of the
memory to be mapped. The XIP CRAMFS patches
solved this by requiring a -o physaddr=0x. . . at mount.
While this approach works, it violates some of the lay-
ering principles Linux developers try to enforce. This
approach required the filesystem to deal with hardware
details, the physical address of a memory device, which
are supposed to be handled by driver levels. There were
also conflicts with the ioremap() call in the filesys-
tem which mapped these physical addresses into kernel
addressable virtual addresses. There were some rather
important architecture-specific ioremap() optimiza-
tions controlled by #ifdef, creating more confusion
and calling more attention to the layer violation.

Analyzing and comparing systems with and without the
XIP CRAMFS patches lead to a discovery. Under some
circumstances, XIP CRAMFS would indeed save RAM,
but it would do so spending more space in extra Flash
than was saved. One secondary reason for this mis-
match was that XIP CRAMFS had a rather inefficient

214 • Introducing the Advanced XIP File System

way of mixing XIP and and non-XIP files. XIP files
must be aligned on Flash at page boundaries in order
for the memory to be directly inserted into the memory
map. XIP CRAMFS left possible alignment holes at the
beginning and end of each XIP file. The major cause
of this skewed exchange rate was that XIP CRAMFS
uncompressed entire files even if only a small part of
that file was ever mapped. In a non-XIP system, only
the pages that actually did get mapped would be copied
into the RAM. To realize true memory savings, a solu-
tion would need to be able to identify and XIP at a page
granularity rather than a file granularity. Unfortunately
the kernel internals capable of inserting physical pages,
not backed by a struct page, did not allow page-
by-page granularity.

If any effort was to be expended on creating a mainline-
able XIP filesystem solution, one could not ignore the
limitations of CRAMFS. 256MB is painfully close to to-
day’s largest NOR Flash chip and is many sizes smaller
than today’s NAND Flash chips. Even SQUASHFS
(which supports 4GB filesystems) was criticized as
being “limited” by kernel developers. Simply re-
architecting the CRAMFS patches would not produce a
sufficiently scalable solution. Even using SQUASHFS
as a starting point might be viewed as not scalable.
SQUASHFS would also need to be modified to use
MTD devices. JFFS2 could also be viewed as not scal-
able. It should also be noted that JFFS2, having a
writable architecture, would introduce many additional
complexities if used as the basis for an XIP filesystem.
We decided the best solution was to create a filesystem
designed from the ground up to support XIP.

Obstacles to extending existing filesystem for XIP

1. No struct page for /mm/filemap_xip.c

2. Physical address not provided by drivers

3. XIP/compression on page granularity not sup-
ported

4. Existing filesystems “limited” or poor fit to appli-
cation

3.2 Removing Barriers

As we looked at our options to enable XIP with a sus-
tainable solution, it became obvious that we needed to

address the remaining issues in the kernel infrastructure.
In order to remove the struct page dependency in
/mm/filemap_xip.c we worked with virtual mem-
ory developers as well as the developers of the s390
architecture. Amazingly, the s390 developers were as
excited as we were to remove the struct page de-
pendencies from the /mm/filemap_xip.c for much
the same reasons we had. In both the s390 architecture
and the classic ARM-plus-Flash embedded system, the
XIP memory is memory, but really doesn’t want to be
thought of as system RAM. Adding a struct page
increases RAM overhead, but did not deliver any true
benefit to our systems. Only in the Linux community do
you find “big iron” and embedded systems developers
working toward the same goal. The end result is a set of
patches that is in the -mm tree as of this writing, hoping
for a 2.6.26 merge.

Mapping non-struct page memory into memory
maps requires that the filesystem be able to get the
physical address that the virtual memory layers require.
The target system, an ARM processor with Flash mem-
ory, would be able to have an MTD partition for the
filesystem image to reside in. Using the little-used
mtd->point() would give the filesystem a kernel-
addressable virtual address to the image on Flash. While
it is tempting to try a virt_to_phys() conversion,
this simple approach doesn’t work for our target archi-
tecture. The only place that reliable information about
the physical address of Flash resides is in the MTD sub-
system. Mounting to an MTD and then getting the phys-
ical address from the MTD seems reasonable. However,
the MTD interface didn’t provide an interface to get
the physical address. The MTD developers decided the
best way to get the physical address was to extend the
mtd->point() to include a virtual and a physical ad-
dress. There is a patch that has been signed off by many
key MTD developers and will hopefully be merged in
the 2.6.26 window.

Allowing control over the decision to XIP or com-
press pages at a page granularity requires both a new
filesystem architecture and a change to the kernel. The
patches required to do this are included with the page-
less XIP recently added to the -mm tree. At issue were
the mechanisms available to insert physical addresses
in the form of a page frame number, or pfn, into pro-
cess memory maps. Inserting a pfn with no struct
page required the use of the VM_PFNMAP flag. The
VM_PFNMAP flag makes assumptions about how the

2008 Linux Symposium, Volume One • 215

pfns are ordered within a map. These assumptions are
incompatible with enabling a page granularity for XIP.
The VM_MIXEDMAP patch allows a process’s mem-
ory to contain pfn-mapped pages and ordinary struct
page pages in an arbitrary order. Allowing pfn-mapped
and struct page-backed pages to coexist in any or-
der allows a filesystem to have control over what parts
of what file are XIP, and which are copied to the page
cache.

4 Architecture

4.1 Design Goals

Once we decided that none of the existing Linux filesys-
tems was likely to be easily extended to have the fea-
ture set we required, development of the architecture for
the Advanced XIP File System began. The target ap-
plication we had in mind was in mobile phones. Many
phones use CRAMFS or SQUASHFS; therefore, many
of the features will overlap with these existing filesys-
tems. Being read-only and having limited time stats
is acceptable. We need to improve on the size limi-
tations built into CRAMFS and SQUASHFS by creat-
ing a 64-bit filesystem. Compressing in greater than
4KB chunks like SQUASHFS should also be enabled.
The new filesystem should be able to mount from block
devices like the legacy filesystems, but it should also
mount directly from a MTD device. One new thing that
we needed to add was the ability to mount with part of
the image on a memory-mapped NOR Flash chip, while
the rest of the image in on a NAND-style Flash chip.

4.2 Feature List

1. Basic Attributes

• 64-bit

• read-only

• designed with embedded needs in mind

2. Compression

• 4KB–4GB compression block size

• page-by-page uncompression map for XIP

3. Flexible Mount

• MTD (NAND/NOR)

• block device

• split across XIP NOR and non-XIP NAND

4. Tools

• GPL mkfs.axfs

• Supported image builder available

4.3 Profiling

Having the capability to decide whether to use XIP on
individual pages allows the system designer to make a
more cost-effective system, in theory. The obstacle in
making this work in practice is deciding the right pages
to XIP. The way we decided that made sense to us was to
measure which pages in a filesystem are actually paged
in. We chose to have a profiler built into the AXFS
filesystem driver. The profiler records each time a page
from a file in an AXFS filesystem is faulted into a non-
writable map. After important use cases, the result can
be read out of a /proc file and then the profile buffer can
be reset by writing to that same /proc entry. There is
a Kconfig option to allow the profiler to be compiling
in or out of the driver. To profile a system, the system
designer takes the following steps:

1. profiler is compiled in

2. system is booted with an AXFS image

3. important use cases are run

4. profile is extracted from /proc

5. profile is fed back into the image builder

6. profiler is compiled out

7. optimized AXFS image is loaded into system

4.4 Mount Options

Figure 1 shows how the same image can be mounted
either on a single device or split across two devices.
This is to allow a system designer maximum flexibil-
ity in optimizing systems for cost. A typical use for this
device-spanning capability is to allow an image to span
a NOR-type Flash and a NAND Flash. Device spanning
is only permitted if the first device is directly memory-
mappable. Any XIP regions of the AXFS image would

216 • Introducing the Advanced XIP File System

NOR

NANDBLOCK

/dev/sda1 /dev/mtd1

/dev/mtd2

AXFS
IMAGE

Figure 1: Mounting Details

need to reside on a NOR Flash. However, there is no
reason why the compressed page regions would need to
be in NOR. As NOR Flash is usually more expensive per
bit compared to NAND Flash, placing compressed page
regions in NAND Flash makes economic sense. It is not
uncommon to have a large amount of NAND Flash in a
mobile phone today. The amount on NAND Flash is of-
ten driven by media file storage demands rather the size
of the root filesystem.

XIP CRAMFS would require a large enough NOR Flash
be added to the system for the entire root filesystem im-
age. Such a system could not take advantage of two
facts: first, only a part of the image requires the XIP ca-
pabilities of the NOR Flash; and second, there is a large
NAND Flash available. With AXFS, the NOR Flash can
be as small as the XIP regions of the AXFS root filesys-
tem image, with the rest of the image spilling over into
the NAND. The reason this can lead to cost savings is
that each memory component—the RAM, NOR Flash,
and NAND Flash—can be sized to minimum-ration chip
sizes. If RAM usage is just over a rational chip size,
but there is room in the NOR Flash, the designer can
choose to XIP more pages. If the NOR Flash usage is
over a chip size, but there is free RAM, pages can be
compressed and moved to NAND Flash to be executed
from RAM.

This flexibility also lowers risk for the designer. If ap-
plications need to be added or turn out to be larger than
planned late in the design cycle, adjustments can be
made to the contents of RAM and NOR Flash to squeeze
the extra code and data into the system while retain-
ing performance. With a traditional system, unexpected
code size means unexpectedly high page cache require-
ments. This leads to more paging events. As system
performance is sensitive to paging latencies, more code

will certainly lead to lower system performance. When
this happens with an AXFS system, any free space in
NOR Flash can be exploited to to absorb the extra code
or to free up RAM for data.

4.5 Format

The AXFS on-media format is big-endian and has three
basic components: the superblock, RegionDescriptors,
and Regions. Essentially the superblock points to the
RegionDescriptors, which in turn point to Regions (as
shown in Figure 2). There is, of course, a single su-
perblock, many RegionDescriptors, and many Regions.

SUPERBLOCK

Region Descriptor
Region Descriptor

Region Descriptor
Region Descriptor

Region - file names

Region - node offsets

Region - compressed nodes

Region - xip nodes

Figure 2: On-media Format

The superblock contains filesystem volume-specific in-
formation and many offsets, each pointing to a separate
RegionDescriptor. Each RegionDescriptor then con-
tains an offset to its Region. A Region can contain many
different kinds of data. Some Regions contain the actual
file data and one contains the filename strings, but most
Regions contain ByteTables of metadata that allow the
files to be reconstructed.

ByteTables are how most numbers are stored in AXFS.
It is simply an array of bytes. Several bytes must be
“stitched” together to form a larger value. This is how
AXFS can have such low overhead and still be a 64-bit
filesystem. The secret is that in the AXFS driver, most
numbers are unsigned 64-bit values, but in the ByteTa-
bles, each value is only the minimum number of bytes
required to hold the maximum value of the table. The

2008 Linux Symposium, Volume One • 217

number of bytes used to store the values is called the
depth. For example, a ByteTable of offsets into the
Region containing all the file name strings could have
many depths. If the strings Region is only 240 bytes
long, the depth is 1. We don’t need to store offsets in
8-byte-wide numbers when every offset is going to be
less than the 255 covered by a single byte value. On a
strings Region that is 15KB in size, the depth would be
2, and so on. The ByteTable format makes it easy to
support large volumes without punishing the small em-
bedded systems the design originally targeted.

A Region in AXFS is a segment of the filesystem image
that contains the real data. The RegionDescriptors on
media representations are big-endian structures that de-
scribe where a given Region is located in the image, how
big it is, whether it is compressed, and for Regions con-
taining ByteTables information, information about the
depth and length of that ByteTable.

Several ByteTable regions are dedicated to inode-
specific data such as permissions, offset to the filename,
and the array of data nodes for files or child inodes for
directories. Those are fairly straightforward. The data
nodes prove a little more complex. A file inode points
to an array of page-sized (or smaller) data nodes. Each
node has a type (XIP, compressed, or byte-aligned) and
an index. The XIP case is the simplest. If the node
type is XIP, the node index becomes the page number in
the XIP region. Multiplying the index by PAGE_SIZE
yields the offset to the XIP node data within the XIP
Region.

A node of type byte-aligned contains data that doesn’t
compress and is a little more complicated to find. This
exists because data that doesn’t compress is actually
larger when run through a compression algorithm. We
couldn’t tolerate that kind of waste. The node index be-
comes the index into a ByteTable of offsets. The off-
set points to the location within the byte-aligned Region
where the actual data is found.

The compressed node type is the most complicated to
find. The node index for a compressed node is used as
the index to two separate ByteTable values, the cblock
offset and the cnode offset. A cblock is a block of
data that is compressed. The uncompressed size of all
cblocks is the same for a given filesystem, and is set by
the image builder. A cnode is a data node that will be
compressed. One or more cnodes are combined to fill a
cblock and then compressed as a unit. The compressed

cblocks are then placed in the compressed Region. The
cblock offset points to the location of the cblock con-
taining the node we are looking for. The cblock is then
uncompressed to RAM. In this uncompressed state, the
cnode offset points to where the node’s data resides in
the cblock.

5 Benchmarks

5.1 Benchmark Setup

The benchmarks were run on our modified “Mainstone
2” boards. The kernel was only slightly modified to run
on our platform and to include AXFS. The root filesys-
tem was a build of Opie we created from OpenEmbed-
ded about a year ago. It is a full PDA-style GUI, and we
added a few applications like Mplayer and Quake.

• PXA270 Processor

– 520 MHz (CPU)

– 104 MHz (SDRAM bus)

– 52 MHz (NOR flash bus)

• Linux-2.6.22

– xipImage

– CONFIG_PREEMPT=y

– MTD updated to Sept 25 git pull

– mem=24MB in kernel commandline

• Opie root filesystem

– OpenEmbedded

– about one year old

5.2 Performance

Rather than demonstrate meaningless raw throughput
numbers, we wanted to use a real-life scenario that
shows a difference. The easiest way to show how AXFS
can improve performance is by showing how fast it can
be at launching applications. We reduced the available
RAM to simulate the memory pressure present in a cost-
sensitive consumer electronic device. Figure 3 shows
the combined time it took to start up several applications
in seconds for each filesystem. Once these applications
(video player, PDF viewer, web browser) launched, they

218 • Introducing the Advanced XIP File System

Figure 3: Aggregate application launch (s)

performed the same on each platform as far as we could
measure.

Figure 4 shows the effect of memory pressure on the
various filesystems. This shows the time it took to boot
to the Opie splash screen with the amount of RAM var-
ied via mem=. As the memory pressure builds, you can
see that the performance is very steady on AXFS, while
it really effects the performance of SQUASHFS.

0

20

40

60

80

100

32MB 24MB 16MB

SQUASHFS AXFS

Figure 4: Impact of memory pressure on boot time (s)

5.3 Size

Comparing the image sizes for each filesystem, as we
do in Figure 5, shows how AXFS compresses better
than all the others, although it isn’t much smaller than
SQUASHFS. It also shows how optimized XIP AXFS
is much smaller than the best we could do with XIP
CRAMFS; both save the same amount of RAM.

Comparing the size of the XIP AXFS to the SQUASHFS
image in Figure 5 makes it look as though the
SQUASHFS is smaller. That is only part of the equa-
tion. If we take the amount of RAM used into consid-
eration, it is clear an XIP AXFS image uses less total

Figure 5: Image sizes (MB)

Figure 6: total used memory (MB)

memory, as shown in Figure 6. As all of these sys-
tem use more than 32MB of Flash, a 64MB Flash chip
would likely have to be used for all. However, while
the JFFS2 and SQUASHFS systems both need 32MB
of RAM, the AXFS system would only need 16MB. In
fact, the AXFS system would still have more free RAM
than the others, even with a smaller RAM chip.

6 Summary

AXFS was designed to create a filesystem with a chance
of being merged into the kernel that provided the XIP
functionality long used in the embedded world. It can
conserve memory, saving power and cost. In the right
circumstances it can make systems quicker and more
responsive. Hopefully it can soon be merged and en-
joyed by all—especially by those that have long been
struggling with the XIP CRAMFS patches. We are also
hopeful that other users will find new uses for its unique
capabilities, such as the root filesystem in a LiveCD.

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

