
LTTng: Tracing across execution layers, from the Hypervisor to
user-space

Mathieu Desnoyers
École Polytechnique de Montréal

mathieu.desnoyers@polymtl.ca

Michel Dagenais
École Polytechnique de Montréal
michel.dagenais@polymtl.ca

Abstract

This presentation discusses the upcoming changes to be
proposed to the kernel tracing field by the LTTng com-
munity. It will start by explaining what has been main-
lined (per-cpu atomic operations, Linux Kernel Mark-
ers.) Then, the focus will turn to the patch set currently
developed and for which the mainlining process is in
progress. An important part of this presentation will
talk about the efficient system-wide user-space tracing
infrastructure being designed. Work done for tracing
across execution layers, including the Hypervisors, will
also be shown.

The mainlining status of kernel tracing will be a key el-
ement of this talk. Considering the increasing amount
of news articles written on this subject, many atten-
dees, from the kernel hacker to the system administrator,
should find interest in this presentation.

1 Introduction

Since last year’s symposium, where the need the indus-
try has for a tracer in the Linux kernel has been demon-
strated [1], the expectations from the Linux commu-
nity for tracing tools matching DTrace [2] seem to have
grown [4]. A lot has happened since then in the various
tracing projects, with results still waiting to find their
way into the kernel mainline.

This paper presents the current state of the work per-
formed in the LTTng project which have been integrated
or is planned to be integrated in the Linux kernel. It
details the “Immediate Values,” improvements for the
“Linux Kernel Markers” and discusses the kernel instru-
mentation patch set, based on the markers, submitted to
the Linux community.

2 Related Work

Other projects with similar goals have already tackled
areas of the tracing problem. Credit must be given
to the K42 team [9] at IBM Research for developing
a highly scalable operating system implements a lock-
free, mostly atomic trace buffering mechanism (except
for subbuffer switch.) The Kprobes developers at IBM,
Intel, and Hitachi and the Djprobes [7] team at Hitachi
have also pioneered the area of dynamic kernel code
modification on the x86 architecture, providing the abil-
ity to insert custom instrumentation based on break-
points or jumps based on dynamic code modification.
The shortcoming of these two methods seems to be the
performance impact of the breakpoint and the fact that
none of these can guarantee access to the local variables
in the middle of a function, since they can be optimized
away by the compiler.

The SystemTAP [6] project is built on top of Kprobes
and the Linux Kernel Markers to provide a scriptable
language to create probes, which can be connected on
any of those two information sources to extract infor-
mation from the running kernel. LTTng learned from
the lessons brought by the first generation of tracer,
LTT [10]. It also reused the instrumentation found in
LTT.

More recent work includes the “Driver Tracing Infras-
tructure” (DTI) [8] and the “Generic Trace Setup and
Control” (GTSC), which aim at providing a standard
driver tracing infrastructure for drivers.

3 Mainlining Status

In the past years, the LTTng project has proved its use-
fulness and yet, the ground work required in the Linux
kernel before a kernel tracer can really become usable
is not over. The next section will present the pieces of

• 101 •

102 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

infrastructure required by LTTng which have been inte-
grated in the mainline kernel.

3.1 Linux Kernel Markers

LTTng depends on the Linux Kernel Markers [3] to pro-
vide the instrumentation of the core kernel. It uses the
Linux Kernel Markers as primary information source,
but could connect to other sources of information if
needed. The markers provide an interface to source
code instrumentation that simplifies adapting to code
source changes, separating the concept of “high level
trace event” from the actual code source. The markers
can be dynamically activated, and can provide informa-
tion to probes registering on specific markers from either
the code kernel or GPL modules. Other projects, such
as SystemTAP [6], also support hooking on markers.

3.2 Per-CPU Atomic Operations

The LTTng kernel tracer does not only need to be fast,
but it also needs to be reentrant with respect to other
execution contexts, when it reserves space in its mem-
ory buffer. Using per-CPU data structures and buffers
helps eliminating false sharing and eliminates concur-
rency coming from other processors. However, local in-
terrupts, both maskable and non-maskable (NMI), will
try to write events to the same trace buffers concurrently.

The algorithm for lock-less NMI-safe buffer manage-
ment [5] is based on extensive use of the compare-and-
swap atomic operation. It is known, however, to be
slower than interrupt disable on SMP systems. The Per-
CPU atomic operations, also known as “local ops” do
best of both: they offer reentrancy with respect to NMI
contexts and are faster than interrupt disable on many
architectures. The reason for such performance is that
these operations don’t need neither LOCK prefix nor
memory barriers, since they update memory local to a
given CPU.

In addition to the LTTng tracer, the Per-CPU Atomic
Operations are currently being used in an experimen-
tal patch for the SLUB allocator, which uses the local
compare-and-swap primitive in the allocate and free fast
paths. Initial performance improvements range from
two to threefold compared to the version using interrupt
disable.

4 Forthcoming Kernel Changes

4.1 Immediate Values Optimization

The immediate values are a derivative work of the Linux
Kernel Markers. They provide an infrastructure to en-
code, in the instruction stream of the Linux kernel, static
and global variables which are read-often, but updated
rarely. The read-side does not have to read any infor-
mation from data cache, since it’s already encoded in
the form of an immediate value at each variable refer-
ence site; therefore, all the information needed is present
within the instruction stream.

Updates are done dynamically by updating the immedi-
ate values in the load immediate instructions on a live
running kernel, upon each variable modification.

The original goal of immediate values was to provide a
very efficient activation mechanism for the Linux Ker-
nel Markers. With their current version, in kernel 2.6.25,
each encountered marker adds a memory read to check
if the marker is enabled. The impact on data cache there-
fore grows as more markers are added to kernel cache-
hot instruction paths.

Using the immediate values, to encode the branch con-
dition in the instruction stream, helps solving this prob-
lem. Instead of polluting the data cache, markers based
on immediate values encode the branch condition di-
rectly in the instruction stream. Assembly example of
immediate values use by markers on x86_32 and x86_64
goes as follow. The first example focuses on the added
code to schedule() cache-hot code. It adds 2 bytes
for the immediate value load, a 2-byte test and a 6-byte
conditional near jump, for a total of 10 bytes.

356: b0 00 mov $0x0,%al
358: 84 c0 test %al,%al
35a: 0f 85 1e 03 00 00 jne 67e <schedule+0x449>

For smaller functions such as wake_up_new_
task(), the conditional jump only takes 2 bytes since
the offset can be expressed as a short jump, for a total of
6 bytes.

848e: b0 00 mov $0x0,%al
8490: 84 c0 test %al,%al
8492: 75 7f jne 8513 <wake_up_new_task+0x97>

2008 Linux Symposium, Volume One • 103

This infrastructure can be used simply by replacing ev-
ery reference to a static or global variable “var” by a
imv_read(var) and by changing each update to the
variable by an imv_set(var), the latter being a pre-
emptable function. Variables with size of 1, 2, 4, or 8
bytes can be referred to. If the architecture does not
support updating one of these type size on a live system,
a normal variable read is used. This is the case for a
8 bytes variable on a 32 bits x86, which cannot be en-
coded as an immediate value of a single instruction, and
for variables larger than 2 bytes on PowerPC, because
instructions are limited to 4 bytes in size and take only
2 bytes operands. If no immediate value optimization is
implemented for a given architecture, the generic fall-
back is used: a standard memory read.

Some work is currently being done to improve even fur-
ther immediate values used as boolean condition for a
branch. The goal is to minimize the impact of disabled
markers on a running system, replacing the mov, test
and branch instructions by a sequence of 2-byte nops
and either a 2-byte short jump or a 1-byte nop and 5-
byte jump. Since the compiler might reorder instruc-
tions between the mov, test, and jne/je instructions, this
optimization is only done when the pattern is detected as
unmodified by the compiler. Initial results show that the
97% of the 120 trace points added to the Linux kernel
in the LTTng instrumentation do not suffer from such
compiler modifications on x86_32 and that the success
rate stays at 90% on x86_64. Knowing for sure where
the test and branch instructions are would require some
work on the compiler.

The performance impact of a loop instrumented with
different techniques is shown in tables 1 and 2. This
loop executes some ALU work in the baseline. It is then
compared with the performance impact of the same loop
with an added inactive marker using a sequence of mov,
test, and branch instructions, and with a normal marker
reading a memory variable.

It is then compared with the “ftrace” approach, using
a function call replaced by nops. The latter method is
also used in DTrace. The second column shows the
same results with a baseline which flushes the data cache
containing the information accessed to show how each
method behaves when the data is cache cold. We can see
that the cache cold impact is much higher for the dis-
abled function call when it references information not
present in the cache or in the registers. This is required
to perform the stack setup, even if the function call is

disabled with nops. The non-optimized markers have a
similar data cache impact.

The difference of impact between the cached runs could
be considered as non-significant and amortized by the
pipeline, but the real difference comes from the un-
cached memory accesses, where the runtime cost ranges
from 41.8 to 154.7 cycles.

It must be noted that, on the code size aspect, the mark-
ers also add about 50 bytes in an unlikely branch. With
gcc -O2 or -freorder-blocks, this branch is
placed away from cache-hot instructions and therefore
does not stress the instruction cache. The data added by
each marker is placed in a special section, only needed
when the markers are activated.

4.2 Instrumentation

Once the marker infrastructure is in place to support in-
strumentation, the following step to have a useful tracer
is to start integrating a core instrumentation set in the
kernel. The instrumentation proposed in the LTTng
project is divided into architecture independent and de-
pendant patch sets.

Architecture independent instrumentation is by far the
largest, yet the simplest, instrumentation with 86 mark-
ers inserted in the filesystem, inter-process communi-
cation, kernel, memory management, networking, and
library code. Its simplicity comes from the fact that it
only instruments C code in a straightforward way. It’s
therefore easy to benefit from the small performance
overhead of the markers.

The architecture dependant instrumentation currently
supports the following architectures, from the most
complete to the less: x86_32, x86_64, PowerPC, ARM,
MIPS, SuperH, Sparc, and S/390. Instrumentation at
the assembly level requires some extra mechanisms to
efficiently extract information from system calls. Those
are implemented in the form of a new TIF_KERNEL_
TRACE thread flag added to every architecture. It
can be enabled or disabled at runtime to control sys-
tem call tracing activation for all the system threads.
This new thread flag is tested in assembly to check
if the do_syscall_trace() functions, which con-
tains the system call entry and exit markers, must be
called.

In addition to the instrumentation of the kernel code,
dumping the kernel structures requires the addition of

104 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

x86 Pentium 4, 3.0GHz, Linux 2.6.25-rc7 Added cycles Added cycles
(cached) (uncached)

Optimized marker 0.002 0.07
Normal marker 0.004 154.7
Stack setup + (1+4 bytes) NOPs (6 local var.) 0.04 0.6
Stack setup + (1+4 bytes) NOPs (1 pointer read, 5 local var.) 0.03 222.8

Table 1: Comparison of markers and disabled function impact on x86_32

AMD64, 2.0GHz, Linux 2.6.25-rc7 Added cycles Added cycles
(cached) (uncached)

Optimized marker -1.2 0.2
Normal marker -0.3 41.8
Stack setup + (1+4 bytes) NOPs (6 local var.) -0.5 0.01
Stack setup + (1+4 bytes) NOPs (1 pointer read, 5 local var.) 2.7 51.8

Table 2: Comparison of markers and disabled function impact on x86_64

new in-kernel accessors. This information extraction is
typically done at trace start to have a complete picture
of the operating system state. When a trace is examined
in a viewer, this recorded initial state can be updated us-
ing the information in the trace, and the system state is
thus available for viewing and analysis purposes for the
whole trace duration. Functionality must be added to
dump the important kernel structures in the trace buffers,
in a way that permits to identify when the data struc-
tures are changing concurrently. Typically, the /proc file
system expects the kernel structures to stay unchanged
between two consecutive reads. If they change, it will
result in the loss of information that can’t be linked with
the element being added or removed from the structures.
The output text will be truncated at the offset of the cur-
rently requested read operation.

The LTTng state dump module dumps the kernel struc-
tures to the trace in multiple iterations, releasing the
locks after a fixed number of elements, to make sure
operations such as dumping all the memory maps of
all the processes in the system won’t generate high la-
tencies. Detection of concurrent data structure modi-
fication is done by the rest of the kernel instrumenta-
tion; since every manipulation to these data structures
is traced, the trace analyzer can re-create the data struc-
ture at any given point of the trace after the end of state
dump.

5 User Space Tracing

Work performed in the user-space tracing area involved
porting the Linux Kernel Markers to user-space so that
they can be used in libraries. The linker scripts are mod-
ified to add a new section which contains the markers
placed in each object. A library init function is linked
with each object to allow registration of the markers to
the kernel through an additionnal system call.

Activation of markers can then be done system-wide.
It would allow to easily turn on instrumentation of the
NPTL pthread mutexes at the user-space level, or to in-
strument glibc memory allocation primitives and link
this information with the kernel memory requests.

As a first step, the extraction of information could be
done through a string, passed as an argument to a trace
system call. The reason for using system calls rather
than other mechanisms is that this technique does not
depend on other libraries to open files and help instru-
menting user-space programs executed at boot time.

Eventually, extracting the information without going
through a system call would help to minimize tracing
performance impact. It would, however, imply that
shared buffers should be made accessible for writing to
each traced process. Because of security concerns, these
buffers cannot be shared between the various processes,
as done in the K42 research operating system. There is
therefore still work to do in this area.

2008 Linux Symposium, Volume One • 105

6 Hypervisor Tracing

The Xen hypervisor has already its own tracer, xentrace.
It exports fixed-size data to userspace through a buffer
shared with a process running on domain0. The pro-
cess communicates with the hypervisor to activate trac-
ing through hypercalls.

An experimental port of LTTng to the Xen hypervisor
has been realized. The lttd-xen daemon has been cre-
ated by modifying the lttd daemon to use new hypercalls
rather than debugfs. The same has been done to lttctl
and liblttctl: they have been ported to use hypercalls
rather than a netlink socket. Because we use variable-
sized events, which represent the data in its most com-
pact form, we were able to generate traces twice as small
as xentrace.

The main interest in having a tracer extracting informa-
tion in the same format as the operating system and user-
land is to help analyze concurrency, race and other tim-
ing problems across execution domains.

7 Conclusion

With Kprobes and Linux Kernel Markers already in the
mainline kernel, the road seems to be opening for in-
tegration of more parts required to have a solid tracing
infrastructure in the kernel, namely the immediate val-
ues, a kernel instrumentation, and eventually, support
for userspace tracing.

Once the kernel goals are reached, the focus will be eas-
ier to turn on the other aspects of tracing, which includes
the choice of userland markers and standardization of
hypervisor tracing.

References

[1] Martin Bligh, Rebecca Schultz, and Mathieu
Desnoyers. Linux kernel debugging on
google-sized clusters. In Proceedings of the
Ottawa Linux Symposium 2007, 2007.

[2] Bryan M. Cantrill, Michael W. Shapiro, and
Adam H. Leventhal. Dynamic instrumentation of
production systems. In USENIX ’04, 2004.

[3] Jonathan Corbet. Kernel markers. August 2007.

[4] Jonathan Corbet. On dtrace envy. August 2007.

[5] Mathieu Desnoyers and Michel Dagenais. The
lttng tracer : A low impact performance and
behavior monitor for gnu/linux. In Proceedings of
the Ottawa Linux Symposium 2006, 2006.

[6] Frank Ch. Eigler. Problem solving with
systemtap. In Proceedings of the Ottawa Linux
Symposium 2006, 2006.

[7] Masami Hiramatsu and Satoshi Oshima. Djprobes
- kernel probing with the smallest overhead. In
Proceedings of the Ottawa Linux Symposium
2006, 2006.

[8] David Wilder. Unified driver tracing
infrastructure. In Proceedings of the Ottawa
Linux Symposium 2007, 2007.

[9] Robert W. Wisniewski and Bryan Rosenburg.
Efficient, unified, and scalable performance
monitoring for multiprocessor operating systems.
In Supercomputing, 2003 ACM/IEEE Conference,
2003.

[10] Karim Yaghmour and Michel R. Dagenais. The
linux trace toolkit. Linux Journal, May 2000.

106 • LTTng: Tracing across execution layers, from the Hypervisor to user-space

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

