
Containers: Challenges with the memory resource controller and its
performance

Balbir Singh
IBM

balbir@in.ibm.com

Vaidyanathan Srinivasan
IBM

svaidy@linux.vnet.ibm.com

Abstract

Containers in Linux are under active development and
have different uses like security, isolation and resource
guarantees. In order to provide a resource guarantee
for containers, resource controllers are used as basic
building blocks to monitor and control utilization of sys-
tem resources like CPU time, resident memory and I/O
bandwidth, among others. While CPU time and I/O
bandwidth are renewable resources, memory is a non-
renewable resource in the system. Infrastructure to mon-
itor and control resident memory used by a container
adds a new dimension to the existing page allocation and
reclaim logic.

In order to assess the impact of any change in memory
management implementation, we propose adding pa-
rameters to modify VM1 behavior and instrument code
paths and collect data against common workloads like
file-server, web-server, database-server and developer
desktop. Data of interest would be reclaim rate, page
scan density, LRU2 quantum, page container affinity and
page generation.

This paper discusses, in detail, the design and perfor-
mance issues of RSS controller and pagecache con-
troller within the container framework. Some of the
modifications to the current page reclaim logic that
could help containers are also evaluated.

1 Background

Server consolidation, virtualization and containers are
buzz words in the industry today. As enterprises are con-
solidating applications and platforms to a single server,
either through virtualization or containers, there is a

1Linux virtual memory manager.
2Least recently used page list.

need to differentiate between them. Consider a server
that hosts two platforms, one an employee e-mail server
and the other a customer call center application. The en-
terprise would definitely want the customer call center
application to have a priority over the employee e-mail
server. It would be unacceptable if the employee e-mail
server occupied and consumed most of the resources
available in the consolidated server thereby affecting
performance of critical applications (in this case, the call
center application).

Resource management can provide service guarantees
by limiting the resource consumption of the employee
e-mail server. Resource controllers are part of container
framework that would monitor and control certain re-
source. Controllers generally monitor and limit one re-
source like memory, CPU time, I/O bandwidth etc. In
order to provide isolation between containers from re-
source perspective, we would primarily need to control
memory and CPU time. In this paper we discuss the
challenges with the design and implementation of mem-
ory controller.

2 Memory controller

A memory controller [13] allows us to limit the memory
consumption of a group of applications. Several pro-
posals for memory control have been posted to LKML,3

they are resource groups [11], memory container [12],
beancounters [6], and the most recent, RSS controller
[2] [3]. The design and features supported by each of
the proposals is discussed below.

2.1 Resource groups

The resource groups memory controller was developed
by Chandra Seetharaman, Jiantao Kong, and Valerie
Clement [11].

3Linux kernel mailing list.

• 209 •

210 • Containers: Challenges with the memory resource controller and its performance

It was built on top of the resource groups, resource man-
agement infrastructure and supported both limits and
guarantees. Guarantees and limits were set using the
min_shares and max_shares parameters, respec-
tively. Resource groups control only user-space pages.
Various configuration parameters allowed the system
administrator to control:

• The percentage of the memory usage limit, at
which the controller should start reclaiming pages
to make room for new pages;

• The percentage to which the reclaimer should
shrink pages, when it starts reclaiming;

• Number of seconds in a shrink interval;

• Number of shrink attempts in a shrink interval.

A page LRU list, broken down from zone LRU, is main-
tained for every resource group, which helps minimize
the number of pages to be scanned during page reclaim.

Task migration is an expensive operation, as it requires
the class field in each page to be updated when a
task is migrated.

2.2 Memory container

The salient features of memory containers as posted by
Rohit Seth [12] are as follows:

• It accounts and limits pagecache and RSS usage of
the tasks in the container.

• It scans the mappings and deactivates the pages
when either the pagecache or RSS limit is reached.

• When container reclaim is in progress, no new
pages are added to it.

The drawbacks of this approach are:

• Task migration is an expensive operation, the con-
tainer pointer of each page requires updating.

• The container that first accesses a file, is charged
for all page cache usage of that file.

• There is no support for guarantees.

2.3 Beancounters

The memory controller for Beancounters was developed
by Pavel and Kirill [7]. The salient features of this im-
plementation are:

• Initial versions supported only resource limits,
whereas later versions supports reclaim of RSS
pages as well.

• The system call interface was the only means
for setting limits and obtaining resource usage,
whereas newer versions have added file system
based configuration and control.

• Kernel resources such as page tables, slab usage is
accounted for and limited.

The drawbacks of this approach are:

• There is no direct support for guarantees.

• Task migration is supported, however when a task
migrates, it does not carry forward the charges of
the resources used so far.

• Pagecache control is not present.

2.4 RSS controller

The RSS controller was developed by Balbir Singh [14].
The salient features of this implementation are:

• No change in the size of page structure.

• RSS accounting definition is the same as that is
presently used in the LinuxTM kernel.

• The per-zone LRU list is not altered.

• Shared pages are reclaimed by un-mapping the
page from the container when the container is over
its limit.

The drawback of this approach is the reclaim algorithm.
The reclaimer needs to walk through the per zone LRU
of each zone to first find and then reclaim pages belong-
ing to a given container.

2007 Linux Symposium, Volume Two • 211

page
descriptor

meta
page

page
descriptor

meta
page

page
descriptor

meta
page

...

page
descriptor

meta
page

LRU
List

Per Container
List

Figure 1: RSS controller with per container list

Pavel enhanced the RSS controller [2] and added sev-
eral good features to it. The most significant was a per
container list of pages.

Figure 1 shows the organization of the RSS controller.
Each page has a meta page associated with it. All the
meta pages of the pages belonging to a particular con-
tainer are linked together to form the per container list.
When the container is over its limit, the RSS controller
scans through the per container list and try to free pages
from that list.

The per container list is not the most efficient implemen-
tation for memory control, because the list is not in LRU
order. Balbir [3] enhanced the code to add per container
LRU lists (active and inactive) to the RSS controller.

3 Pagecache control

Linux VM will read pages from disk files into a main
memory region called pagecache.4 This acts as a buffer
between the user application’s pages and actual data on
disk. This approach has the following advantages:

• Disk I/O is very expensive compared to memory
access, hence the use of free memory to cache disk
data improves performance.

• Even though the application may read only a few
bytes from a file, the kernel will have to read mul-
tiple disk blocks. This extra data needs to be stored
somewhere so that future reads on the same file can
be served immediately without going to disk again.

• The application may update few bytes in a file re-
peatedly, it is prudent for the kernel to cache it in
memory and not flush it out to disk every time.

• Application may reopen the same file often, there
is a need to cache the file data in memory for future

4Also referred to as disk cache.

use even after the file descriptor is closed. More-
over the file may be opened by another application
for further processing.

The reader might begin to ponder why we need to con-
trol the pagecache? The problem mainly arises from
backup applications and other streaming data applica-
tions that bring in large amounts of disk data to memory
that is most likely not to be reused. As long as free
memory is available, it is best to use them for page-
cache pages since that would potentially improve perfor-
mance. However, if there is no free memory, then cold
pages belonging to other applications would be swapped
out to make room for new pagecache data. This behav-
ior would work fine in most circumstances, but not all.
Take the case of a database server that does not access
records through pagecache as it uses direct I/O. Applica-
tions, like the database server, manage their own mem-
ory usage and prefer to use their own disk caching algo-
rithms. The OS is unlikely to predict the disk cache be-
havior of the application as well as the application can.
The pagecache might hurt the performance of such ap-
plications. Further, if there is a backup program that
moves large files on the same machine, it would end up
swapping pages belonging to database to make room for
pagecache. This helps the backup program to get its
job done faster, but after the backup is done, the system
memory is filled with pagecache pages while database
application pages are swapped-out to disk. When the
database application needs them back, it will have to
wait for the pages to be swapped-in. Hence the database
application pays the price for backup application’s inap-
propriate use of pagecache.5

The problem becomes more visible with server consol-
idation and virtualization. Now there is a need to limit
the usage of pagecache for a certain group of applica-
tions in order to protect the working set of other criti-
cal applications. Limiting the pagecache usage for less
important tasks would impact its performance, which is
acceptable, because the system performance is judged
only based on the performance of the critical applica-
tion like database or web server.

The RSS controller does control pagecache to some ex-
tent. When an application maps files, the pages are ac-
counted in its resident set and would be reclaimed by

5The pagecache feature is less important in the example given,
since the throughput of the database is more important than the speed
of the backup.

212 • Containers: Challenges with the memory resource controller and its performance

RSS controller if they go over the limit. However, it
is possible for application to load data into pagecache
memory with read/write system calls and not map all
the pages in memory. Hence there is a need to con-
trol unmapped pagecache memory as well. The page-
cache controller is expected to count unmapped page-
cache pages and reclaim them if found over the limit. If
the pages are mapped by the application, then they are
counted as RSS page and the RSS controller will do the
needful. If unmapped pagecache pages are not tracked
and controlled, then the pages unmapped by the RSS
controller will be marked for swap-out operation. The
actual swap-out operation will not happen unless there
is a memory pressure. The pages reclaimed by the RSS
controller will actually go into swapcache which is part
of pagecache. The pagecache controller will count these
swap-cache pages as well and create a memory pressure
to force the reclaimer to actually swap-out the pages and
free system memory. In order to maintain memory lim-
its, for containers, pagecache memory should also be
controlled apart from RSS limit. Pagecache controller
and RSS memory controller are parts of memory con-
troller for containers. Initial prototype patches are in-
dependent, however both these controllers share code
paths and hopefully they will eventually be integrated
as part of container memory controller.

The Linux VM has various knobs like /proc/
sys/vm/{swappiness, dirty_ratio, dirty_

background_ratio} to control pagecache usage and
behavior. However they control system-wide be-
havior and may affect overall system performance.
swappiness is a percentage ratio that would control
choice of pages to reclaim. If the percentage is greater,
anonymous pages would be chosen and swapped out
instead of pagecache pages during page reclaim. Re-
ducing the swappiness ratio would reduce page-
cache usage. The other two knobs, dirty_ratio
and dirty_background_ratio, control write out
of pagecache pages. Dirty pagecache pages needs to be
written out to disk before the page can be reused. How-
ever a clean pagecache page is as good as free mem-
ory because it can be freed with almost zero overhead
and then reused for other purposes. The kernel period-
ically scans for dirty pagecache pages and writes them
out based on the desired dirty page ratio.

Container framework and memory controller provide in-
frastructure to account for and monitor system mem-
ory used by group of applications. Extending the avail-

able infrastructure to account for and control pagecache
pages would provide isolation, control and performance
enhancements for certain groups of applications. By de-
fault, the Linux kernel would try to use the memory
resources in the best suitable manner to provide good
overall system performance. However, if applications
running in the system are assigned different priorities
then kernel’s decisions needs to be made taking into ac-
count the container’s limits which indirectly implies pri-
ority.

Limiting the amount of pagecache used by a certain
group of applications is the main objective of the page-
cache controller under the container framework. Couple
of methods to control pagecache have been discussed
on LKML in the past. Some of these techniques are dis-
cussed below.

3.1 Container pagecache controller

Pagecache accounting and control subsystem under con-
tainer framework [15] works using the same principle
as memory controller. Pages brought into the pagecache
are accounted for against the application that brought
it in. Shared pagecache pages are counted against the
application that first brought it into memory. Once the
pagecache limit is reached, the reclaimer is invoked that
would pick unmapped pages in inactive list and free
them.

The code reclaim path for the RSS controller and page-
cache controller is common except for few additional
condition checks and different scan control fields. All
reclaim issues discussed in RSS controller section ap-
plies to the pagecache controller as well.

3.2 Allocation-based pagecache control

Roy Huang [4] posted a pagecache control technique
where the existing kswapd() would be able to reclaim
pages when the pagecache goes over limit. A new rou-
tine balance_pagecache() is called from various
file I/O paths that would wake up kswapd() in order
to reclaim pagecache pages if they are over the limit.
kswapd() checks to see if pagecache is over the limit
and then it uses shrink_all_memory() to reclaim
all pagecache pages. The pagecache limit is set through
a /proc interface.

2007 Linux Symposium, Volume Two • 213

The generic reclaimer routine is used here, which
prefers pagecache pages over mapped pages. However,
if the pagecache limit is set to a very small percentage,
then the reclaimer will be called too often and it will
end up unmapping other mapped pages as well. Another
drawback in this technique is not distinguishing mapped
pagecache pages that might be in use by the application.
If a mapped page is freed, then the application will most
probably page-fault for it soon.

Aubrey Li [9] took a different approach by adding a
new allocation flag, __GFP_PAGECACHE, to distin-
guish pagecache allocations. This new flag is passed
during allocation of pagecache pages. Pagecache limit
is set through /proc as in the previous case. If the uti-
lization is over the limit, then code is added to flag a low
zone watermark in the zone_watermark_ok() rou-
tine. The kernel will take the default action to reclaim
memory until sufficient free memory is available and
zone_watermark_ok() would return true. The re-
claim technique has the same drawbacks cited in Roy’s
implementation.

Christoph Lameter [8] refined Aubrey’s approach [9]
and enhanced the shrink_zone() routine to use dif-
ferent scan control fields so that only pagecache pages
are freed. He introduced per-zone pagecache limit and
turned off may_swap in scan control so that mapped
pages would not be touched. However, there is a prob-
lem with not unmapping mapped pages because page-
cache stats count both mapped and unmapped page-
cache pages. If the mapped part is above limit, like if
an application mmap() file causes pagecache to go over
the limit, then the reclaimer will be triggered repeatedly,
which does not unmap pages and reduce the pagecache
utilization. We should account for only unmapped page-
cache pages for the limit in order to workaround this is-
sue. Mapped pagecache pages will be accounted by the
RSS memory controller. The possibility of user space-
based control of pagecache was also discussed.

3.3 Usermode pagecache control

Andrew Morton [10] posted a user-mode pagecache
control technique using fadvise() calls to hint the
application’s pagecache usage to kernel. The POSIX
fadvise() system call can be used to indicate to
the kernel how the application intends to use the con-
tents of the open file. There are a couple of options
like NORMAL, RANDOM, SEQUENTIAL, WILLNEED,

NOREUSE, or DONTNEED that the application can use
to alter caching and read-ahead behavior for the file.

Andrew has basically overridden read/write system
calls in libc through LD_PRELOAD and inserted
fadvise() and sync_file_range() calls to
zero out the pagecache utilization of the application.
The application under control is run using a shell script
to override its file access calls, and the new user space
code will insert hidden fadvise calls to flush or discard
pagecache pages. This effectively make the applica-
tion not use any pagecache and thus does not alter other
memory pages used in the system.

This is a very interesting approach to show that page-
cache control can be done from user space. However
some of the disadvantages are:

• The application under control suffers heavy perfor-
mance degradation due to almost zero pagecache
usage, along with added system call overheads.
The intent was to limit pagecache usage and not
to avoid using it.

• Group of applications working on the same file
data will have to bring in data again from disk
which would slow it down further.

More work needs to be done to make fadvise()more
flexible to optimally limit pagecache usage while still
preserving reasonable performance. The containers ap-
proach is well suited to target a group of applications
and control their pagecache utilization rather than per
process control measures.

4 Challenges

Having looked at several memory controller implemen-
tations, we now look at the challenges that memory con-
trol poses. We classify these challenges into the follow-
ing categories:

1. Design challenges

2. Implementation challenges

3. Usability challenges

We will look at each challenge and our proposed solu-
tion for solving the problem.

214 • Containers: Challenges with the memory resource controller and its performance

4.1 Design challenges

The first major design challenge was to avoid extend-
ing the struct page data structure. The problem
with extending struct page is that the impact can
be large. Consider an 8 GB machine, which uses a 4 KB
page size. Such a system has 2,097,152 pages. Extend-
ing the page size by even 4 bytes creates an overhead of
8 MB.

Controlling the addition using a preprocessor macro def-
inition is not sufficient. Linux distributions typically
ship with one enterprise kernel and the decision regard-
ing enablement of a feature will have to be made at
compile time. If container feature is enabled and end
users do not use them, they incur an overhead of mem-
ory wastage.

Our Solution. At first, we implemented the RSS con-
troller without any changes to struct page. But
without a pointer from the page to the meta page, it be-
came impossible to quickly identify all pages belong-
ing to a container. Thus, when a container goes over
its limit and tries to reclaim pages, we are required to
walk through the per zone LRU list each time. This is a
time-consuming operation and the overhead, in terms of
CPU time, far outweighs the disadvantage of extending
struct page.

The second major challenge was to account shared
pages correctly. A shared page can be charged:

• To the first container that brings in the page. This
approach can lead to unfairness, because one con-
tainer could end up bearing the charge for all
shared pages. If the container being charged for
the shared page is not using the page actively, the
scenario might be treated as an unfair implementa-
tion of memory control.

• To all containers using the shared page. This sce-
nario would lead to duplicate accounting, where
the sum of all container usage would not match the
total number of pages in memory.

Our Solution. The first RSS container implementation
accounted for every shared page to each container. Each
container mm_struct was charged for every page it
touched. In the newer implementations, with their per-
container LRU list, each page can belong to only one

container at a time. The unfairness issue is dealt with
using the following approach: A page in the per con-
tainer LRU list is aged down to the inactive list if it is
not actively used by the container that brought it in. If
the page is in active use by other containers, over a pe-
riod of time this page is freed from the current container
and the other container that is actively using this page,
will map it in. The disadvantage of this approach is that
a page needs to be completely unmapped from all map-
pings, before it can move from one container to another.

The third major challenge was to decide on whether we
should account per thread memory usage or per process
memory usage. All the threads belonging to a process
share the same address space. It is quite possible that
two threads belonging to the same process might belong
to two different containers. This might be due to the
fact that they may belong to different container groups
for some other resource, like CPU. They might have dif-
ferent CPU usage limits. This leads to more accounting
problems as:

• By default all pages in a thread group are shared.
How do we account for pages in a thread group?

• We now need to account every page to the thread
that brought it in, thus requiring more hooks into
task_struct.

Our Solution. We decided to charge the thread group
leader for all memory usage by the thread group. We
group tasks virtually for memory control by thread
group. Threads can belong to different containers, but
their usage is charged to the container that contains the
thread group leader.

4.2 Implementation challenges

The first major implementation challenge was low cost
task migration. As discussed earlier, one of the disad-
vantages of the memory controller implementations was
the time required to migrate a task from one container to
another. It typically involved finding all pages in use by
the task and changing their container pointer to the new
container. This can be a very expensive operation as it
involves walking through the page tables of the page be-
ing migrated.

Our Solution. In the first implementation of the RSS
controller, struct page was not modified, hence

2007 Linux Symposium, Volume Two • 215

there were no references from the page descriptor to
the container. Task migration was handled by adding
a memory usage counter for each mm_struct. When
a process is moved from one container to another, the
accumulated memory usage was subtracted from the
source container and added to the destination container.
If the newly migrated task put the destination container
over its memory usage limit, page reclaim is initiated
on migration. With the new RSS controller implemen-
tation that has a per-container LRU list, a member of
struct page points to the meta page structure.
The meta page structure, in turn, points to the container.
On task migration, we do not carry forward any account-
ing/charges, we simply migrate the task and ensure that
all new memory used by the task is charged to the new
container. When the pages that were charged to the old
container are freed, we uncharge the old container.

The second major implementation challenge is the im-
plementation of the reclaim algorithm. The reclaim
algorithm in Linux has been enhanced, debugged and
maintained in the last few years. It works well with a va-
riety of workloads. Changing the reclaim algorithm for
containers is not a feasible solution. Any major changes
might end up impacting performance negatively or in-
troduce new regressions or corner cases.

Our Solution. We kept the reclaim algorithm for the
RSS controller very simple. Most of the existing code
for the reclaim algorithm has been reused. Other func-
tions that mimic global reclaim methodology for con-
tainers have been added. The core logic is implemented
in the following routines:
container_try_to_free_pages

container_shrink_active_list

container_shrink_inactive_list, and
container_isolate_lru_pages.

These are similar to their per-zone reclaim counterparts:
try_to_free_pages

shrink_active_list

shrink_inactive_list, and
isolate_lru_pages, respectively.

We’ve defined parameters for measuring reclaim perfor-
mance. These are described in Section 5.

4.3 Usability challenges

Some of the challenges faced by the end-users of con-
tainers and resource controllers are described below:

Container configuration:

Containers bring in more knobs for end-user and overall
system performance and ability of the system to meet its
expected behavior is entirely dependent on the correct
configuration of container. Misconfigured containers in
the system would degrade the system performance to an
unacceptable level. The primary challenge with mem-
ory controller is choice of memory size or limit for each
container. The amount of memory that is allocated for
each container should closely match the workload and
its resident memory requirements. This involves more
understanding of the workloads or user applications.

There are enough statistics like delay accounting and
container fail counts to measure the extent to which con-
tainer is unable to meet the workload’s memory require-
ment. Outside of containers, the kernel would try to do
the best possible job, given the fixed amount of system
RAM. If performance is unacceptable, the user would
have to cut down the applications (workload) or buy
more memory. However, with containers, we are dicing
the system into smaller pieces and it becomes the sys-
tem administrator’s job to match the right sized piece to
the right sized job. Any mismatch will produce less than
the desired result.

There is a need for good user space and system-
management tools to automatically analyze the system
behavior and suggest the right container configuration.

Impact on other resource dimensions:

There is an interesting side effect with container re-
source management. Resources like CPU time and
memory can be considered independent while config-
uring the containers. However, practical case studies in-
dicate that there is a relationship between different re-
sources, even though they are accounted for and con-
trolled independently. For example, reducing the work-
ing set of an application using a memory controller
would indirectly reduce its CPU utilization because the
application is now made to wait for page I/O to hap-
pen. Restricting working set or pagecache of a work-
load increases its I/O traffic and makes it progressively
I/O bound even though the application was originally
CPU bound when running unrestricted.

Similarly, reducing the CPU resource to a workload may
reduce its I/O requirement because the application is not
able to generate new data at the same rate. These kinds

216 • Containers: Challenges with the memory resource controller and its performance

of interactions suggest that configuring containers may
be more complex than we may have considered.

5 Reclaim parameters

The reclaim algorithm is a very critical implementation
challenge. To visualize and gain insight into the reclaim
algorithm of the container, a set of parameters have been
defined. These parameters are discussed in the follow-
ing sections.

5.1 Page reclaim rate

Page reclaim rate measures the rate at which pages are
being reclaimed from the container. The number of
pages reclaimed and the duration of the reclaim cycle
are taken into account.

Page reclaim rate =
nr_reclaimed
(tstart − tend)

Where tstart and tend are the time stamp at the beginning
and end of one reclaim cycle (container_shrink_
pages) and nr_reclaimed is the number of pages freed
during this time. From a memory controller point of
view, freeing a page is as good as unmapping them from
the process address space. The page can still be in mem-
ory and may additionally be dirty, pending a write-out or
swap operation.

A very low reclaim rate value indicates we are taking
more time to free pages:

• All pages are in active list and it takes more reclaim
cycles to move them to inactive list and then ulti-
mately reclaim them.

• We have been searching the wrong set of pages and
it took time to find the right page.

• Most candidate pages are dirty and we are blocked
on write-out or swap I/O operation.

5.2 Page container affinity

The page container affinity measures the affinity of
physical page to a particular container. When system is
running multiple containers, each of the containers is ex-
pected to free pages and consume it again. If containers

grab each others page, that means that too much concur-
rent reclaim and allocations are happening, whereby a
page just freed by container A is immediately allocated
by container B. This could also happen if Container B
was under the limit and A was over the limit and we
are purposely taking memory pages away from A and
giving it to B.

5.3 Page generation

Page generation is the number of times a page was freed
by a container. A very high value for page generation
indicates that:

• The container size is very low; this implies that we
are actively freeing our working set, which keeps
coming back in.

• The reclaim algorithm is freeing the wrong set of
pages from the container.

5.4 LRU quantum

The reclaimer mainly works on the active list and inac-
tive list of pages belonging to the container. New al-
locations or recently referenced allocations would go
to the head of the active list. The container_
shrink_active_list routine picks appropriate
pages from the active list and moves them to inactive
list. While container_shrink_inactive_list

calls shrink_page_list to free aged pages at the tail
of the inactive list.

Newest pages are supposed to be at the head of the ac-
tive list while the oldest page would be at the tail of the
inactive list. LRU quantum is the time difference be-
tween these two pages. This is an important parameter
because this gives an indication of how fast the active
and inactive lists are churned.

A greater value of LRU quantum indicates a stable con-
tainer, where the working set fits the available memory.
The reclaimer is run less often and pages take a while
before they falls off the end of inactive list.

A smaller value of LRU quantum indicates churning of
the list. Combined with page generation, this means
there is too little memory for the container. If page gen-
eration is low while LRU quantum is high then it could
indicate a problem in the LRU aging algorithm used.

2007 Linux Symposium, Volume Two • 217

5.5 Page scan density

Page scan density is the number of times a page was
scanned before it was actually freed. A lower the value
indicates that the reclaimer has been choosing the right
pages to free and it is quite smart. Higher values of
page scan density for a wider range of pages means the
reclaimer is going through pages and is unable to free
them, or perhaps the reclaimer is looking at the wrong
end of the LRU list.

6 Case studies

A few typical workload examples have been studied in
order to understand various parameters and its varia-
tions, depending upon workload and container config-
uration. The following section describes the parameters
traced during execution of simple workloads and test
programs.

6.1 Sequential memory access workload

Pagetest is a simple test program that allocates mem-
ory and touches each page sequentially for n number of
times. In the following experiment, the pagetest pro-
gram was run with an RSS limit of 400 MB, while the
program would sequentially touches 600 MB of mem-
ory five times.

Observations:

• Memory reclaim pattern shows that once the RSS
usage limit is hit, then all the pages are reclaimed
and the RSS usage drops to zero

• The usage immediately shoots to 400 MB because
the plots is approximately by time and we did not
have samples during the interval when the applica-
tion was under limit and slowly filled its RSS up to
the limit.

• Active list and inactive list size are mirror image of
each other since the sum of active and inactive size
is constant. The variations in list size corresponds
to the page reclaim process.

• Free memory size dropped initially and it remains
constant while cached memory size initially in-
creased and then remained constant. Free mem-
ory size is not affected by the reclaim process since
pages reclaimed by RSS controller was pushed to
swapcache and stays there until touched again or
there is enough memory pressure to swap-out to
disk. Since we had enough free memory in this ex-
periment, the swapcache grew and no swap to disk
happened.

• LRU quantum was less than one second in this
case. The time difference between pages at the
head of active list and tail of inactive list was high
just before the reclaim started and then quickly
dropped down as pages are reclaimed.

• Page scan density shows that we scanned pages
three to four times before reclaiming them. This
shows that the reclaim algorithm has maintained
the active and inactive list optimally and has been

218 • Containers: Challenges with the memory resource controller and its performance

choosing the right pages. We would not see a uni-
form distribution if the list aging algorithm was in-
correct.

• Page generation shows that most part of physical
RAM was reused 5 times during the test which cor-
responds to the loop iteration of 5.

6.2 kernbench test

Kernbench compiles a Linux kernel using multiple
threads that would consume both anonymous pages and
pagecache pages. In the following experiment, the kern-
bench test was run with 100 threads with RSS controller
and memory limit set to 300 MB. The pagecache con-
troller and pagecache limit was not enabled during this
experiment.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

m
ic

ro
 s

ec
s

kilo samples

Reclaim rate

Observations:

• kernbench has run for long time and the reclaim
pattern is compressed. There are many cycles of
reclaim. Hence it is difficult to deduce the slope
pattern in the memory size and LRU quantum plots

• Page reclaim rate plot has very wide distribution
of values and it has been difficult to make sense
of the plot. The time taken to reclaim a page in
each reclaim cycles is mostly under few milli sec-
onds. However, many times the number of pages
reclaimed during a reclaim cycles goes too low
making the time shoot up.

• Page scan density and page generation shows that
certain region of memory had more pages recycles
and their wide distribution corresponds to the com-
plexity of the workload and their memory access
pattern.

6.3 dbench test with pagecache limit

The dbench file system benchmark was used to stress
the pagecache controller. In the following experiment,
dbench was run for 60 seconds with 20 clients. When
dbench was run unrestricted, it used around 460 MB
pagecache. In this experiment pagecache controller
limit was set to 300 MB which would force reclaim of
pagecache pages during the run. RSS controller was not
enabled during this experiment.

2007 Linux Symposium, Volume Two • 219

Observations:

• Pagecache controller would not reclaim all page-
cache pages when the limit is hit. The reclaimer
would reclaim pages as much as possible to push
the container below limit. Hence the pagecache
usage and cached memory size is almost a straight
line.

• As expected the active and inactive list variations
are like mirror image of each other.

• Other parameter like LRU quantum, page genera-
tion and pagescan density was similar to pagetest
program and not as widely distributed as kern-
bench. Pagecache usage pattern of dbench is much
simpler compared to memory access pattern of
kernbench.

6.4 Web server workload

The daytrader benchmark application (with stock size
of 2000 and 800 concurrent users) was run with IBM R©

WebsphereTM community edition. Only the RSS con-
trol was enabled. The figures show reclaim parameter
variation for container sizes of 600 MB and 400 MB
respectively. The Web server workload involved an in-
built database server called derby, which stores all
daytrader data. The daytrader database results were ob-
tained using the following steps:

1. Reset the daytrader data.

2. The configuration parameters are selected (direct
transaction, no EJB, synchronous commit).

3. The database is populated with data.

4. We use a load balancer (web stress) tool to ac-
cess the /daytrader/scenario URL of the
Web server. We’ve used the Apache HTTP server
benchmarking tool ab [1] in our testing.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 20 40 60 80 100 120

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 100 200 300 400 500 600 700

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 20000

 40000

 60000

 80000

 100000

 0 100 200 300 400 500 600 700

m
ic

ro
 s

ec
s

kilo samples

Reclaim rate

220 • Containers: Challenges with the memory resource controller and its performance

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 100 200 300 400 500 600 700

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

Observations:

• Decreasing the size of the container reduced the
LRU quantum value.

• Reclaim performance was poor when the number
of pages reclaimed were low which resulted in high
reclaim time.

• Decreasing the size of the container increased the
page scan density. Each page was scanned more
often before it could be freed.

• The range of physical memory used was indepen-
dent of the size of the container used.

• The page generation went up as the size of the con-
tainer was decreased.

6.5 Database workload

The pgbench [5] benchmark was run with only RSS
control enabled. The figures show the reclaim parame-
ter variation for container sizes of 800 MB and 400 MB
respectively. The results were obtained using the fol-
lowing steps:

1. The database was initialized, with a scale factor of
100.

2. The benchmark pgbench was run with a scale
factor of 100, simulating ten clients, each doing
1000 transactions.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 500 1000 1500 2000 2500

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 500 1000 1500 2000 2500 3000 3500

m
eg

a
by

te
s

kilo samples

Free
Cached

Active
Inactive

RSS Usage

2007 Linux Symposium, Volume Two • 221

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 500 1000 1500 2000 2500

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 500 1000 1500 2000 2500 3000 3500

nr
re

cl
ai

m
ed

kilo samples

Pages reclaimed

Observations:

• Decreasing the size of the container increased the
rate of change of LRU quantum.

• High LRU quantum values resulted in more pages
being reclaimed.

• Decreasing the size of the container increased the
page scan density Each page was scanned more of-
ten before it could be freed.

• The range of physical memory used was indepen-
dent of the size of the container used.

• The range of physical memory used is bigger than
the maximum RSS of the database server.

• The page generation went up as the size of the con-
tainer was decreased.

• The range of physical memory used decreased as
the page generation increased.

7 Future work

We plan to extend the basic RSS controller and the page-
cache controller by adding an mlock(2) controller
and support for accounting kernel memory, such as slab
usage, page table usage, VMAs, and so on.

8 Conclusion

Memory control comes with the overhead of increased
CPU time and lower throughput. This overhead is ex-
pected as each time the container goes over its assigned
limit, page reclaim is initiated, which might further ini-
tiate I/O. A group of processes in the container are un-
likely to do useful work if they hit their limits frequently,
thus it is important for the page reclaim algorithm to en-
sure that when a container goes over its limit, it selects
the right set of pages to reclaim. In this paper, we’ve
looked at several parameters, that help us assess the per-
formance of the workload in the container. We’ve also
looked at the challenges in designing and implementing
a memory controller.

The performance of a workload under a container is de-
teriorated as expected. Performance data shows that the
impact of changing the container size might not be lin-
ear. This aspect requires further investigation along with
the study of performance of pages shared across con-
tainers.

9 Open issues

The memory controller currently supports only limits.
Guarantees support can be built on top of the current
framework using limits. One desirable feature for con-
trollers is excess resource distribution. Resource groups
use soft limits to redistribute unutilized resources. Each
container would get a percentage of unutilized resources
in proportion to its soft limit. We have to analyze the
impact of implementing such a feature.

222 • Containers: Challenges with the memory resource controller and its performance

10 Legal Statement

c©International Business Machines Corporation 2007. Per-
mission to redistribute in accordance with Linux Symposium
submission guidelines is granted; all other rights reserved.

This work represents the view of the authors and does not
necessarily represent the view of IBM.

IBM, IBM logo, ibm.com, and WebSphere, are trademarks of
International Business Machines Corporation in the United
States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the
United States, other countries, or both.

Other company, product, and service names may be trade-
marks or service marks of others.

References in this publication to IBM products or services
do not imply that IBM intends to make them available in all
countries in which IBM operates.

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES

THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,

EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MER-

CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied war-
ranties in certain transactions, therefore, this statement may
not apply to you. This information could include technical
inaccuracies or typographical errors. Changes are periodi-
cally made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or
the program(s) described in this publication at any time with-
out notice.

References

[1] Apache http benchmarking tool.
http://httpd.apache.org/docs/2.0/
programs/ab.html.

[2] Pavel Emelianov. Memory controller with
per-container page list.
http://lkml.org/lkml/2007/3/6/198.

[3] Pavel Emelianov and Balbir Singh. Memory
controller with per-container lru page list.
http://lkml.org/lkml/2007/3/9/361.

[4] Roy Huang. Pagecache control through page
allocation.
http://lkml.org/lkml/2007/1/15/26.

[5] Tatsuo Ishii. Pgbench postgresql benchmark.
http://archives.postgresql.org/
pgsql-hackers/1999-09/msg00910.
php.

[6] Kirill Korotaev. Beancounters v2. http:
//lkml.org/lkml/2006/8/23/117.

[7] Kirill Korotaev. Beancounters v6. http:
//lkml.org/lkml/2006/11/9/135.

[8] Christoph Lameter. Pagecache control through
page allocation. http:
//lkml.org/lkml/2007/1/23/263.

[9] Aubrey Li. Pagecache control through page
allocation. http:
//lkml.org/lkml/2007/1/17/202.

[10] Andrew Morton. Usermode pagecache control:
fadvise().
http://lkml.org/lkml/2007/3/3/110.

[11] Chandra Seetharaman. Resource groups. http:
//lkml.org/lkml/2006/4/27/378.

[12] Rohit Seth. Containers. http:
//lkml.org/lkml/2006/9/14/370.

[13] Balbir Singh. Memory controller rfc. http:
//lkml.org/lkml/2006/10/30/51.

[14] Balbir Singh. Memory controller v2.
http://lkml.org/lkml/2007/2/26/8.

[15] Vaidyanathan Srinivasan. Container pagecache
controller.
http://lkml.org/lkml/2007/3/06/51.

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

