
The Hiker Project: An Application Framework for Mobile Linux Devices

David “Lefty” Schlesinger
ACCESS Systems Americas, Inc.

lefty@{hikerproject.org,access-company.com}

Abstract

The characteristics of mobile devices are typically an or-
der of magnitude different than desktop systems: CPUs
run at megahertz, not gigahertz; memory comes in
megabytes, not gigabytes; screen sizes are small and in-
put methods are constrained; however, there are billions
of mobile devices sold each year, as opposed to millions
of desktop systems. Creating a third-party developer
ecosystem for such devices requires that fragmentation
be reduced, which in turn demands high-quality solu-
tions to the common problems faced by applications on
such devices. The Hiker Project’s application frame-
work components present such solutions in a number
of key areas: application lifecycle management, task-to-
task and task-to-user notifications for a variety of events,
handling of structured data (such as appointments or
contact information) and transfer of such data between
devices, management of global preferences and settings,
and general security issues. Together, these components
comprise an “application framework,” allowing the de-
velopment of applications which can seamlessly and
transparently interoperate and share information.

ACCESS Co., Ltd., originally developed the Hiker
Project components for use in their “ACCESS Linux
Platform” product, but recently released them under an
open source license for the benefit and use of the open
source community. This paper will describe, in detail,
the components which make up the Hiker Project, dis-
cuss their use in a variety of real-world contexts, ex-
amine the proliferation of open source-based mobile de-
vices and the tremendous opportunity for applications
developers which this growth represents.

1 The Need for, and Benefits of, a Mobile
Framework

The typical cell phone of today is generally equivalent
in power, in various dimensions, to a desktop system of

four or five years ago. Cell phones increasingly have
CPUs running at close to half a gigahertz, dynamic
RAM of 64 megabytes and beyond, and storage, typi-
cally semiconductor-based, in capacities of several gi-
gabytes. Current MP3 players can have disk capaci-
ties well beyond what was typical on laptop systems
only two or three years ago. The usage models for cell
phones and other mobile devices, however, tend to be
very different than that of desktop systems.

The bulk of applications-related development effort on
open source-based systems has been primarily focused
on servers and desktop devices which have a distinct us-
age model which does not adapt well to smaller, more
constrained mobile devices. In order to effectively use
open source-based systems to create a mobile device,
and particularly to enable general applications develop-
ment for such a device, a number of additional services
are needed.

The term application framework means different things
to different people. To some, it is the GUI toolkit that
is used. To others, it is the window manager. Still oth-
ers see it as the conventions for starting and running a
process (e.g. Linux’s fork() and exec() calls; C
programs have an entry point called “main” that takes
a couple of parameters and returns an integer; etc.).

When we use the term “application framework,” we in-
tend it to mean the set of libraries and utilities that sup-
port and control applications running on the platform.
Why are additional libraries needed to control applica-
tions? Why not just use the same conventions as on a
PC: choose programs off a start menu and explicitly end
an application by choosing the “exit” menu item or clos-
ing its window?

The reason is the different “use model” on handheld
devices. PCs have large screens that can accommo-
date many windows, full keyboards, and general point-
ing devices. A cell phone typically has a screen fewer
than three inches diagonal (although pixel resolutions

• 187 •



188 • The Hiker Project: An Application Framework for Mobile Linux Devices

can be equivalent to QVGA and higher), a complement
of under twenty keys and a “five-way” pointing device
or a “jog wheel.” Based on experience refining Garnet
(formerly known as “Palm OS”), we believe that there
should be only one active window on a typical handheld
device. As another example, when the user starts a new
application, the previous application should automati-
cally save its work and state, and then exit.

Similarly, the optimal conceptual organization of data
is different on mobile devices. Rather than an “ap-
plication/document” paradigm, using an explicit, tree-
structured file system, a “task-oriented” approach,
where data is inherent to the task, is more natural on
these devices. Tasks, as opposed to applications, are
short-lived and focused: making a call, reading an SMS
message, creating a contact or appointment, etc. Occa-
sionally, tasks will be longer-lived: browsing the web,
or viewing media content. Another typical attribute of
such devices is regular, unscheduled interruptions: a
low-battery warning, an incoming email, a stock or news
alert.

As well as the task of managing the lifecycle of pro-
grams (launching, running, stopping), the application
framework must also help with distributing and in-
stalling applications. The conventions are simple: an
application and all supporting files (images, data, local-
izations, etc.) are rolled up into a single file known
as a “bundle.” Bundles are convenient for users and
third party developers, and allow software to be passed
around and downloaded as an atomic object.

A third task of the application framework is to sup-
port common utility operations for applications, such as
communication between applications, keeping track of
which applications handle which kind of content, and
dealing with unscheduled events like phone calls or in-
stant messages.

The final task of the application framework is to imple-
ment a secure environment for software. That means an
environment which resists attempts by one application
to interfere with another (this hardening is called “appli-
cation sandboxing”). The secure environment also sup-
ports security policies for permission-based access to re-
sources. For example, part of a policy might be “only
applications from the vendor are allowed network ac-
cess.” The security policy is implemented using a Linux
security module.

The Hiker components then, broadly speaking, focus on
several key areas:

• presenting a common view of applications to the
user (Application Manager and Bundle Manager),

• communicating time-based and asynchronous
events between applications or between an appli-
cation and the user (Notification Manager, Alarm
Manager, Attention Manager);

• interoperability of applications and sharing of
information between them (Exchange Manager,
Global Settings), and

• performing these functions in a secure context (Se-
curity Policy Framework/Hiker Security Module)

The Abstract IPC service is used by these components in
order to simplify their implementation and allow them to
generally take advantage of improved underlying mech-
anisms through a single gating set of APIs. Taken to-
gether, they provide mechanisms to allow seamless in-
teroperability and sharing of information between suites
of applications in a trusted environment.

These components are intended to offer several concrete
benefits to the development community:

• They provide real reference implementations that
can serve as the basis for application developers
who want to write interoperable applications for
mobile devices.

• They (hopefully) help to jump-start activities re-
lated to mobile devices in several key areas (e.g.
security) by filling a number of current gaps in the
services available to applications in that space.

• They can help to generally increase interest in ap-
plication development for open source-based mo-
bile devices

• They might encourage other companies to both
participate in these projects and to contribute new
projects as well.



2007 Linux Symposium, Volume Two • 189

1.1 Access to the Project, Licensing Terms, etc.

Full source code and other reference material for Hiker
can be found at the Hiker Project web site, http://
www.hikerproject.org.

Sources are currently available as tarballs, but we ex-
pect to be putting a source code repository up in the
near future. Several mailing lists are available, and a
TRAC-based bug reporting/wiki system will be in place
shortly. A large amount of detailed API documentation,
generated by Doxygen, is also available on the site.

Hiker is dual-licensed under the Mozilla Public License,
v. 1.1 and the Library General Public License, v. 2, with
the exception of the LSM-based portion of the Secu-
rity Framework, which, as an in-kernel component, is
licensed under GPL v. 2.

2 The Application Manager

The Application Manager controls application lifetime
and execution and is the component that is responsible
for maintaining the simple application task model that
users expect on a phone. The application manager starts
and stops applications as appropriate, ensures that the
current running application controls the main display,
maintains a list of running applications, places applica-
tions in the background, and prevents multiple launches
of a single application.

The Application Manager is initiated at system start-up
and provides the following services:

• Application launching mechanism and manage-
ment of application lifecycle.

• Routing of launch requests to the existing instance
(if the application is already running).

• Coordination of the “main UI app” – retires the cur-
rent application when a new one is launched, and
launches a default when needed.

• May also provide default behavior for certain im-
portant system events (i.e., hard key handling,
clamshell open/close).

The Application Manager runs in its own process. Ap-
plications typically run in their own processes and con-
trol their own UI. This simple mapping of applications

to processes provides a secure, stable model for appli-
cation execution. To maximize utility on small screen
form factors, the Application Manager will preserve the
standard “Garnet OS” behavior of having one main UI
application at a time, with that application having draw-
ing control of the main panel of the screen (exclusive
of status bars, etc.) When the user runs a new appli-
cation, the system will generally ask the current one to
exit (although there is a facility for applications which
need to continue execution in the background). Also, as
in legacy “Garnet OS” and desktop operating systems
like Mac OS X, only a single instantiation of any given
application at time will be running.

The Application Manager handles the high-level opera-
tions of launching applications, and provides a number
of APIs to applications and to the system for access to
these services. It maintains a list of currently running
applications, and keeps track of which one is the “pri-
mary” or “main UI” application. This special status is
used to coordinate the display and hiding of UI when
the user moves between applications. Note that an ap-
plication that is not the main UI application may still
put up UI under exceptional circumstances, it is simply
recommended that this be done only occasionally (for
example to ask the user for a password), and that it be
in the form of a modal dialog. The user’s attention is
generally focused on the main UI application, and so UI
from background applications is often an interruption. It
is expected that most applications will not run in back-
ground mode.

3 The Bundle Manager

The Bundle Manager combines a file format for dis-
tributing single files that contain applications and all
their dependencies (application name, icon, localized
resources, dependant libraries, etc.) along with func-
tions for installing, removing, and enumerating applica-
tion “bundles.” The Bundle Manager takes care of al-
location of per-application storage locations in writable
storage in the file system, and providing access to local-
ized resources contained within the bundle. Through the
Bundle Manager enumeration mechanism, multiple ap-
plication types are merged and can be launched through
a common mechanism.

The Bundle Manager is the system component respon-
sible for controlling how applications, and supplemen-
tal data for applications (libraries, resources, etc.), are



190 • The Hiker Project: An Application Framework for Mobile Linux Devices

Hiker Security Module

Service/

Process

Management

Power

Management

Bluetooth

Driver

CPU
GSM/GPRS/UMTS/EDGE,

WiFi, Bluetooth Technology, etc.

File

System

Input

Driver

Graphics &

Display

Drivers

Memory

Management

RAM LCD
Input

Device
NAND

Multimedia

Hardware

Open Source Software Hiker Framework ACCESS Proprietary

Networking

Stack

Networking

Drivers

K
e

rn
e

l
H

a
rd

w
a

re

Multimedia

Drivers

H/W Acceleration

X Windowing System

Global Settings

SQLite

OpenSSL

Security Policy
Framework

Gstreamer

Application Server Bundle Manager

GTK+ SyncML
Exchange

Manager

Launchpads (Native, Garnet, Java)

DRM

Multi-

media

Services

Java VM,

JSRs

Garnet VM

(Palm OS)

Emulator

Custom

Widgets

BlueZTelephony
Connection

Manager

ACCESS Linux Platform UI & Core Application Services Frameworks 

U
se

r S
p

a
ce

Attention/Alarm/

Notification

Managers

Exchange

Manager

Plug-Ins

HotSync®
Messaging

Framework

Mobile

Services

Bluetooth

Services

A
p

p
lica

tio
n

s

ACCESS Linux Platform Launcher

Java

Apps

Garnet

Apps

GTK+

Apps

3rd-party

Native

Apps

Telephony

&

Messaging

Home

Screen

(NFDM)

SMS, MMS,

IM

NetFront

Browser

(SVG, SMIL)

PIM

Applications

Entertainment

Suite

(Audio, Video, Photo

Players)

Native ACCESS Linux Platform ApplicationsLegacy Applications

S
D

K
 To

o
ls

OTA

Data

Sync

OTA

Device

Mgmt

Figure 1: The Hiker Components in the ACCESS Linux Platform

loaded onto a system using the Application Manager
and other framework components, manipulated, trans-
mitted off of the system, and removed.

The Bundle Manager is a mid-level library and server
which provides easy access to application resources for
developers, as well as maintaining state about bundles
present in the system.

The Bundle Manager is designed around the notion of
“bundles” as concrete immutable lumps of information
which are managed on a device, where each bundle can
contain an arbitrary amount of data in a format appro-
priate to that bundle. Each bundle type is defined both
in terms of how it is stored on the device, and as a “flat-
tened” format suitable for transmission as a stream out
of the device. (These formats may be the same, differ-
ent, or overlap at various times).

The Bundle Manager is the channel through which all
third-party applications are distributed and loaded on to

a device. The server component of the Bundle Manager
is intended to be the only software on the device which
has permission to access the bundle folder on the in-
ternal filesystem, requiring interaction with the Bundle
Manager for installation or removal.

The Bundle Manager provides consistent mechanisms
for retrieving resources, both localized and unlocalized
(i.e., loading the files or other bundle contents, perhaps
in a localized folder-name) from bundles.

4 The Notification Manager

Notification Manager provides a mechanism for sending
programmatic notifications of unsolicited system events
to applications. Applications can register to receive par-
ticular types of notifications that they are interested in.
The Notification Manager can deliver notifications not
only to currently running applications, but also to ap-



2007 Linux Symposium, Volume Two • 191

plications that are registered to receive them but are not
currently running.

Notifications are general system level or user applica-
tion level events like application installed/uninstalled,
card inserted/removed, file system mounted/unmount,
incoming call, clamshell opened/closed, time changed,
locale changed, low power, or device going to
sleep/waking up. The Notification Manager has a
client/server architecture.

4.1 Notification Manager server

The Notification Manager server is a persistent thread
in a separate system process which keeps track of all
registered notifications and broadcasts notifications to
registered clients. The Notification Manager server also
communicates with the Package Manager and Applica-
tion Server.

4.2 Notification Manager client library

Client processes call APIs in the Notification Manager
client library to

1. register to receive notifications,

2. unregister previously registered notifications,

3. signal the completion of a notification, and

4. broadcast notifications.

The Notification Manager client library uses the Ab-
stract IPC framework to communicate with the Notifi-
cation Manager server.

4.3 What the Notification Manager is not

1. The Notification Manager should not be used for
application specific or directed notifications like
alarms or find.

2. The Notification Manager facilitates the sending
and receiving of notifications but it does not it-
self broadcast notifications (individual component
owners are responsible for broadcasting their own
notifications).

5 The Alarm Manager

The Alarm Manager provides a mechanism to notify ap-
plications of real time alarm (i.e. time-based) events.
Both currently running and non-running applications
can receive events from the Alarm Manager. The Alarm
Manager does not control presentation to the user—the
action taken by an application in response to an alarm is
defined by the application.

The Alarm Manager:

• Works with power management facilities to regis-
ter the first timer;

• Calls the Application Manager to launch the appli-
cations for which an alarm is due;

• Supports multiple alarms per application; and

• Stores its alarm database in SQLite for persistence.

The Alarm Manager has no UI of its own; applica-
tions that need to bring an alarm to the user’s attention
must do this through the Attention Manager. The Alarm
Manager doesn’t provide reminder dialog boxes, and it
doesn’t play the alarm sound. Applications should use
the Attention Manager to interact with the user.

6 The Attention Manager

The Attention Manager manages system events that
need to be presented to the user, such as a low battery
condition or an incoming call (rather than programmatic
events delivered to other applications like the service
provided by the Notification Manager). The Attention
Manager uses a priority scheme to manage presentation
of items needing attention to the user. The infrastructure
used by applications and system services to ask for at-
tentions and the storage of the currently pending list of
events requiring the user’s attention is separate from the
actual presentation of the events to the user.

The Attention Manager is a standard facility by which
applications can tell the user that something of signifi-
cance has occurred. The Attention Manager is respon-
sible only for being a nexus for such events and inter-
acting with the user in regards to these events; it is not
responsible for generating the events.



192 • The Hiker Project: An Application Framework for Mobile Linux Devices

The Attention Manager provides both a single alert di-
alog and maintains a list of all “alert-like” events. To-
gether these improve the user experience by first getting
the user’s attention when needed, then allowing the user
to deal with the attention or dismiss for review later.
By handling it this way, it is no longer necessary to
click through a series of old alert dialogs. Often the
user doesn’t care about most of the missed appointments
or phone calls—although he might care about a few of
them. Without the Attention Manager, the user cannot
selectively dismiss or follow up on the alert events but
would instead have to deal with each alert dialog in turn.

Applications have complete control over the types and
level of attention they can ask for.

Typical flow of an attention event:

• An application (e.g. the calendar of “Date Book”)
requests the Alarm Manager to awaken it at some
time in the future.

• The Alarm Manager simply sends an event to
an application when that future point in time is
reached. The application can then post an event
to the Attention Manager with the appropriate pri-
ority.

• The Attention Manager will present the appropriate
alert dialog based on the event type and priority.

• The Attention Manager is designed solely to inter-
act with the user when an event must be brought to
the user’s attention.

6.1 When the Attention Manager isn’t appropriate

The Attention Manager is specifically designed for at-
tempts to get attentions that can be effectively handled
or suspended. The Attention Manager also doesn’t at-
tempt to replace error messages. Applications should
use modal dialogs and other existing OS facilities to
handle these cases.

The Attention Manager is also not intended to act as a
“To Do” or “Tasks” application, nor act as a “universal
in-box.” Applications must make it clear that an item ap-
pearing in the Attention Manager is simply a reminder,
and that dismissing it neither deletes nor cancels the
item itself. That is, saying “OK” to an attention message

regarding an upcoming appointment does not delete the
appointment, and dismissing an SMS reminder does not
delete the SMS message from the SMS inbox.

The Attention Manager is not an event logger, nor an
event history mechanism. It contains only the state of
active attention events.

The Attention Manager is organized in order to meet
specific design goals, which are:

• To separate UI from attention event logging mech-
anisms;

• To provide sufficient configurability so that a li-
censee may alter both the appearance and behavior
of the posted events;

• To maintain persistent store of events that will sur-
vive a soft reset;

• To be responsive (need to be quick from alert to
UI—prime example is incoming call); and

• To minimize memory usage (i.e. try to get as small
of memory foot print as possible).

The server model currently utilized relies on an init
script to start a small daemon. The daemon accepts
IPC requests to post, update, query or delete events and
maintain such event state in a database to provide per-
sistent storage for the events. The daemon launches the
attention UI application which will display the appro-
priate alert dialog. If the snooze action is chosen for
an event (provided that a snooze action is associated
with the event), the Attention UI application will call
the Alarm manager to schedule a wakeup. The wakeup
will be in the form of a launch or relaunch via the Appli-
cation server. In this model, the attention status gadget
is assumed to be polling the Attention Manager daemon
for active event state and using that information in dis-
playing status. If the attention status gadget is “clicked”
on, it starts the Attention UI through the Application
Server.

6.2 Features

The Attention Manager implements the following major
components:



2007 Linux Symposium, Volume Two • 193

• attention events;

• an API library for posting, updating, deleting, and
querying events;

• a server through which events are posted, retrieved
and managed;

• a UI application that displays the alert dialogs;

• an event database and associated DML API; and

• a status gadget for the status bar.

7 Abstract IPC

The Abstract IPC service provides a lightweight, ro-
bust interface to a simple message-based IPC mecha-
nism. The actual implementation can be layered on top
of other IPC mechanisms. The current implementation
is based on Unix sockets, but this mechanism can be lay-
ered on other IPC mechanisms if required. The current
implementation has a peer-to-peer architecture that min-
imizes context switches, an important feature on some
popular embedded architectures.

The Abstract IPC Service comprises an API for a simple
interprocess communication (IPC) mechanism used by
the framework components described in this paper.

The goals of this design include:

• Independence from underlying implementation
mechanisms (e.g. pipes, sockets, D-BUS, etc.);

• A simple, easy to use send/receive message API;

• Support for marshalling/unmarshalling message
data; and

• Minimization of context switches by sending mes-
sages directly between processes without passing
through an intermediary process.

The IPC mechanism is based on a single server pro-
cess exchanging messages with one or more clients. The
server process creates a channel; clients connect to the
channel and receive a connection pointer they can use to
send/receive messages to the server. The format of the
messages is completely up to the server and clients of
the channel.

Communication can be synchronous or asynchronous.
When done asynchronously, processes receive messages
via a callback mechanism that works through the gLib
main loop.

8 Security Policy Framework and Hiker Secu-
rity Module

The Security Policy Framework (SPF) is the component
which controls the security policy for the device. The
actual policy used by the framework is created by a li-
censee and can be updated. Policy is flexible and sepa-
rate from the mechanisms used to enforce it. The pol-
icy can express a wide (and extensible) range of policy
attributes. Typical elements of a policy address use of
file system resources, network resources, password re-
striction policies, access to network services, etc. Each
policy is a combination of these attributes and is tied to
a particular digital signature.

Applications are checked for a digital signature (includ-
ing no signature or a self-signature) and an appropriate
security policy is applied to the application. One of the
policy decisions that can be made by the framework is
whether the user should be consulted—this allows for
end-users to control access to various types of data on
the device and ensure that malicious applications will
not access this data covertly. Other types of decisions
are allow/deny which may be more appropriate for a car-
rier to use to protect access to network resources, etc.

The Hiker Security Module is a kernel level enforce-
ment component that works in concert with the Secu-
rity Policy Framework. The Security Module controls
the actual access to files, devices and network resources.
Because it is an in-kernel component, the Security Mod-
ule is released under the GPL.

There must be some user control on who is allowed to
connect to the user’s device and request action from it.
Security is mostly based on the user control at the fol-
lowing levels:

• There will be default handlers (implemented, for
example, by in the box PIM applications) for a
bunch of published standard services. In the event
where a third party application would try to register
a duplicate handler, and the first handler declared
it wanted to be unique, the user would be alerted



194 • The Hiker Project: An Application Framework for Mobile Linux Devices

and asked to arbitrate which application should be
the installed handler. The user is the authority that
tells the system which handler wins in case of con-
flict. This security works whichever handler in-
stalls first. In a model where all installed applica-
tions are signed and therefore trusted, we can rely
on what the application do when they register.

• When there is a non-authenticated incoming con-
nection, the user is asked to authorize the connec-
tion. Local is obviously initiated by the user and
is always valid. IR is considered authenticated, as
the user must explicitly direct his device to the ini-
tiator. Paired Bluetooth is authenticated by defini-
tion. SMS is authenticated by the mobile network.
TCP may be considered authenticate if the source
IP address figures in the table of trusted sources (al-
though this may be discussed as it is easy to spoof
the source IP). TCP may also be configured to re-
quire a challenge password before it accepts to read
from the connection.

• Above the connection level authentication, han-
dlers may also require permission from the user
before they perform their action. This is handler
specific. “get vCard” is obviously a very good can-
didate to user authorization.

9 The Exchange Manager

The Exchange Manager is a central broker to manage
inter-application/inter-device communication. Requests
to the Exchange Manager contain verbs (“get”, “store”,
“play”), data (qualified by mime-type) as well as other
parameters used to identify the specific item to be af-
fected by the request. Use cases of the Exchange Man-
ager include beaming a contact to another device, taking
a picture using the camera from an MMS application,
looking up a vCard based on caller ID, viewing an email
attachment, etc.

The Exchange Manager is an extensible framework:
new handlers can be created for new data types and ac-
tions as well as for new transports (e.g. IR, Local, Blue-
tooth, SMS, TCP/IP, etc.).

There is a need for any application to be able to perform
different tasks (such as play, get, store, print, etc.) on
several types of data. This component offers a simple,
yet expandable, API that lets any application defer the

actual handling of the data to whoever declared he was
the handler for this action/type-of-data pair. In addition,
the destination of the request (where the action will actu-
ally be performed) can be specified as the local device or
a remote location. This opens up new universal possibil-
ities such as directly send a vCard to someone through
Internet while being on the phone with him.

This component also implements the legacy Palm OS
“Garnet” Exchange Manager functionality (send data to
a local or remote application). This simply corresponds
to the action store

The Java VM also implements a similar functionality
(JSR211—CHAPI). It is foreseen that the Java and na-
tive components will interoperate. In other words, a Java
application will be able to send a vCard to a remote de-
vice through IR, as well as receive data from a local na-
tive application, for some examples.

9.1 Features

The purpose of this component is to enable an applica-
tion or system component to request the system to per-
form some action on some data, without knowing who
will carry and fulfill the request. In addition, the client
can request that the action be performed either on the lo-
cal device or on some specific other destination (mobile
phone or desktop PC, etc.), using any available trans-
port. This opens up new interesting scenarios that were
not possible to do before.

An application that implements a service it wants to
make available to others registers a handler to tell the
system it can perform this specific action on this spe-
cific type of data. The handler may also specify that it
will accept only local request, or that it will accept all
requests. Each registered handler is valid for only one
combination of action/data type. The action/data type
is defined by a verb, and a MIME type (e.g. “store –
text/vCard”).

Transport modules are responsible to carry the request
from the source to the destination device. When the re-
quest arrives at the destination (which may be the lo-
cal machine), the transport will hand it to the Exchange
Manager who will then invoke the corresponding action
handler to do the actual work. A result may be sent
back to the initiator, which means it is also possible to
use this component to retrieve some data (not only send



2007 Linux Symposium, Volume Two • 195

it), or pass some data and get it back modified in some
way. An obvious use case would be to use your phone
to lookup a contact in your desktop PC address book,
or retrieve a contact’s photo and name given its phone
number.

Handlers can be registered or unregistered at any time.
A board game would register the “moveplayer” action
(a handler to receive other players moves) when it is
launched, and would send its own moves by requesting
this same action from the other user device. The game
would unregister the handler when it quits. Note that
this example does not mean Exchange Manager could
be used as a network media to handle more than peer to
peer exchanges.

An application cannot verify the availability and iden-
tity of a handler and this would not make sense in the
general usage (it is the goal of the Exchange Manager to
be able to have an unknown handler execute a request).
If an application needs to authenticate the handler, then
this means it looks for a very precise handler it knows
and in this case, it could use, for example, data encryp-
tion to ensure only the person with the right key can
understand the request.

Transports are independent modules that can also be
added or removed at any time. Typical transports would
include Local, IrDA, Bluetooth, SMS, and TCP. Non-
Hiker destination systems must run at least an Exchange
Manager daemon and transports as well. Except for the
handler invocation part, this should be the same code for
any Linux platform (the sharedlib, daemon and trans-
ports only use standard Linux and GTK services). It
would be easy, for example, to implement a new en-
crypted transport, should the need arise. The library
provides a standard UI dialog to let the user select a
transport and enter the relevant parameters. If the trans-
port information is missing in the request, the Exchange
Manager will itself pop this UI up at the time it needs
the information. If the transport determines that the des-
tination address is missing, it will also popup an address
selection UI.

Verbs can be accompanied by parameters. Only a few
parameters are common to all verbs (e.g. a human-
readable description of the data that may be used to ask
the user if he accepts what he is receiving). Parame-
ters are passed as a tag/value pair (the value being int
or string). Some are mandatory but most are optional
and depend on the specific handler definition. Using pa-

rameters, the result of an action handler can be precisely
customized to the client needs.

A non-exhaustive list of actions that will be defined in-
clude store, get, print, and play.

Parameters can be used by the action handler to find
out how exactly it should perform its action, or by the
transport module to get the destination address or other
transport-specific information.

An Exchange Manager daemon is started at boot time
(or at any other time). The daemon is used to listen
for incoming action request for all transports. When
a transport has an incoming request ready, the daemon
dispatches it to the right action handler. The action han-
dler then performs its duty, and returns the result back
to the transport. The answer is then sent back to the
originator.

When the originator is local, the user is never asked to
accept the incoming data. When the originator is re-
mote, whether a user confirmation is required will de-
pend on the transport being used. For IrDA, it is as-
sumed that the user implicitly accepts as he directs his
device toward the emitter (it is still to be decided if
we ignore the possibility that someone would be able
to beam something to you without your consent while
you have the device turned on). For Bluetooth, it de-
pends whether the connection is paired or not. For SMS,
the mobile network identifies the originator (in addition,
there is no “connection” with SMS). For TCP, the trans-
port configuration will tell whether the originator IP is
authorized, and it will ask if not.

For handlers that are essentially data consumers and
don’t return anything (like “store”), it may make sense
to let multiple handlers register for the same verb/data.
For this reason, it is left to the handler to specify if it
must be unique or not at registration time. In case it
must be unique and someone tries to register a second
handler for the same verb/data, the user would be no-
tified and he would have the responsibility to arbitrate
which of the two handlers should be the active one.

To maintain transfer compatibility with phones or legacy
Garnet OS devices, the initiator may set a parameter to
tell he wants to use Obex as the transport. In this case,
the only verb allowed is “store.” The transport plug-in
will recognize this parameter and send the data using
the OpenObex daemon. As well, a transport plug-in can
also receive data from the OpenObex daemon. It would



196 • The Hiker Project: An Application Framework for Mobile Linux Devices

treat that like an incoming connectionless “store” action
on the received data.

For all other combinations of action/data type, the trans-
port protocol is ours (or third party in case of third party
transport). Obex protocol is handled by the OpenObex
library. SMS NBS transport is handled in the SMS
component. Some specific Bluetooth profiles (e.g. basic
imaging profile) could also be handled by the Bluetooth
transport in order to maximize compatibility with other
kinds of devices.

An “Exchange request” is the only entity an application
works with. It is an opaque structure that contains all the
information characterizing a request: the verb, the pa-
rameters, the data reference and the destination. There
are APIs to set and get all of them. The data itself can be
specified in multiple ways: file descriptor (data will be
read from this fd by the transport) or URL (URL is sent,
and action handler will access data through the URL).

10 Global Settings

The Global Settings component provides a common API
and storage for all applications and services to access
user preferences (fonts, sizes, themes) and other appli-
cation settings and configuration data. Global Settings
are hierarchical and could be used, e.g., as the basis for
OMA Device Management settings storage. The com-
ponent is designed to support the security requirements
of OMA Device Management. The storage for Global
Settings uses the recently open-sourced libsqlfs project
layered on SQLite. Global Settings provides generic,
non-mobile specific, storage.

The Global Settings service provides functions for stor-
ing user preferences. It provides APIs for the setting
and getting of software configurations (typically key-
value pairs such as “font size: 12 points”). The settings
keys may form a hierarchy like a directory tree, with
each key comparable to a file or directory in a file sys-
tem, e.g. applications/datemanager/fontsize.
Indeed, Global Settings is actually implemented on top
of an abstract POSIX file system: each key has a value
and meta data such as a user id, a group id, and an access
permission.

To accomplish this, Global Settings utilizes libsqlfs, a
service component which creates the abstraction of a
POSIX file system within an SQLite database file. An

initial implementation was attempted using gconf. To
support OMA Device Management requirements, we
dropped the gconf design, which could not provide se-
curity over keys.

The Global Settings service has two parts: the daemon
(aka server) and the client library. You could store set-
tings by simply having a server process. However, to
make it trivial for the clients to talk to the server, we
also provide a client library which handles the IPC to
the server. The client library is linked in with the client
application.

The client library and the daemon communicate via Ab-
stract IPC. The daemon does the actual I/O for the data;
it links with the SQLite library and does the key con-
tent reads and writes on SQLite databases, with the tree
hierarchy actually implemented using relational tables
through SQL. SQLite provides no effective access con-
trol, so the daemon uses Unix file access control on the
database file to exclude everyone else. The daemon also
keeps track of the users and groups that are allowed to
access certain keys, and enforces access control. The
SQLite database files will be only readable and writable
by the daemon process.

10.1 Data Model

1. We expose key/value pairs where values amount to
the “contents” of the key and can be arbitrary data
of arbitrary size.

2. Key descriptions (in multiple languages) are sup-
ported only by convention (see below).

3. We support settings that are user, group, or other
readable/writable (or not); the user and group iden-
tities are based on these of the system and are
granted by the system. The Global Settings ser-
vice does not give special meanings to any specific
group or user id.

The possible key names or key strings form a key space,
which is similar to the space of file paths. The key
strings are also called key paths. Each key path can be
absolute or relative; absolute key or key paths must start
with /, and relative key paths are relative to a “current
directory” or a “cwd.” There are APIs to get and to set
the “cwd.”



2007 Linux Symposium, Volume Two • 197

A “directory” is a key which contains other keys. A di-
rectory is similar to the interior nodes in the OMA De-
vice Management Tree definition. To simplify our de-
sign, we disallow a directory key from having its own
content. So if you add a child key to an existing key
which has no value (or having the null value), that key
becomes a directory and attempts to set the content for
that key will fail in the future. Permissions for directo-
ries thus follow the semantics of POSIX file system.

A directory key can be created in two ways:

• A directory is created if a request is made to create
a key that would be a child or a further descent of
the directory

• Or a key can be created with an explicit API for
this purpose

Key names follow a standard convention to allow group-
ing of similar attributes under the same part of the key
hierarchy. We follow the GConf conventions as closely
as possible for application preferences and system set-
tings, with consideration for device-specific standards
like /dm for OMA Device Management.

Some typical keys are represented below:

• /dm for OMA Device Management

• /capabilities for “is java installed,” “is Gar-
net OS emulation installed,” etc.

• /packages/com.access.apps.app1 for pref-
erences of “app1”

The Global Settings service is not meant for storage
of security-sensitive data such as passwords or private
keys. The data in the Global Settings are only protected
by POSIX file permissions and are not encrypted or oth-
erwise protected!

Global Settings implements the POSIX file permission
(user, group and others, readable, writeable or exe-
cutable) model on the keys and the key hierarchy. So
a run time process has to acquire the appropriate user
or group IDs to access a key the same way it access a
file with the same POSIX permission bits in the host file
system.

Otherwise, Global Settings places no meanings on the
uids and gids, except the uid 0 which has permissions
for everything, as root. The SUID bit is not honored and
ignored for Global Settings.

The x bits in directories determine if the directories can
be entered; the x bits in non-directory keys are ignored
and have no meaning currently.

The uid and gids of keys are modifiable according to the
following rules:

• The owner id cannot be changed except by the root.

• The group id cannot be changed except by the root
or the owner.

Global Settings has reserved rooms for extra attributes
for keys, currently not implemented but these could be
used for access control lists or some other meta data but
I treat such usage as the best to be avoided; if POSIX
permissions provide all that’s needed it is the best as it
is simple and efficient.

With the above convention for keys, it becomes desir-
able for the applications or specific device (drivers) to
create its key hierarchy during the installation time (or
at the point of system image creation). Once created a
hierarchy may be protected from access by applications
other than the designated applications.

The initial key installation follow these steps:

• A group id is pre-assigned to a particular applica-
tion (group). This assignment is to be guaranteed
at run time by the Bundle Manager and system se-
curity.

• After an application is installed, it, or the Bundle
Manager, will use a Global Settings tool or equiv-
alent APIs to copy the key data from the default
settings XML file into the Global Settings database
and properly set the user and the group ids and the
permissions for these keys.

• Later the Global Settings service ensures that the
key hierarchy is accessible only to applications
with the right group membership or the user id.
The Unix file permission style permissions will
be the only security mechanism protecting the key
and key values; Global Settings does not provide
encryption-based protection mechanism.



198 • The Hiker Project: An Application Framework for Mobile Linux Devices

The Global Settings daemon is started at system boot
time. Packages need to include their associated default
preferences and these need to be installed in the correct
fashion for the underlying preferences system.

Clients that wish to be informed of changes in set-
tings can register a callback with the Notification Man-
ager. The Global Settings daemon will send Notifi-
cation Manager a string representing each key that it
changes. Notification Manager will notify each appli-
cation that has registered to be told about changes to
that key. (Notification Manager will notify each appli-
cation that registered for that key, or a prefix of that key.
For example, an application that registered for oma/
apps would be notified when any of the following keys
changed: oma/apps/calendar/fontsize, oma/

apps/date/background-image, or oma/apps.

Following the conventions of the Notification Man-
ager, each key change notification has the “no-
tification type” (or “notify type”) of a string of
the form /alp/globalsettings/keychange/
+ the key string. For example, a change of
the key oma/apps/calendar/fontsize will in-
voke a broadcast notification call with the noti-
fication type /alp/globalsettings/keychange/

oma/apps/calendar/fontsize.

The Notification Manager currently is responsible for
monitoring the key changes in a directory tree; it im-
plements this by checking if a changed key has, as a
prefix, a substring which matches the representative key
of a key subspace being monitored for changes by some
application. For example, the previous key change ex-
ample will invoke change notifications for applications
which want to know key changes in the /oma/apps/
calendar/ key directory. The Notification Manager
is the actual component which checks this and invoke
the notification callback in client applications.

11 Conclusion

Mobile devices, and the applications running on them,
represent a new frontier for open source developers.
Worldwide cell phone sales are approaching one billion
a year, with “smart phones” (that is, phones whose capa-
bilities can be enhanced “post-platform,” subsequent to
their purchase by the consumer) showing the largest rate
of growth. Open source-based operating systems have
been of increasing interest as a foundation for work in
the space.

By 2010, it’s estimated that the number of “smart
phones” sold per year will exceed the number of desktop
systems. As many as half of those phones will be run-
ning Linux-based system, according to some analysts.

Linux and other open source software has taken on in-
creased significance in this context. While a number
of Linux-based phones have been shipped (primarily in
China and other Pacific Rim geographies), few of them
have been truly “open” systems, that is, the ability to de-
velop software for and incorporate it onto such devices
has been terribly limited.

Further, because the usage model for these devices is
so different from the usual desktop-oriented paradigms,
there are significant gaps in service-level functionality,
particularly in areas such as abstraction of varying ex-
ecution environments for the user, packaging of appli-
cations and related resources and metadata, information
interchange between applications as well as between de-
vices, and general approaches to security.

The security component, in particular, is key to the effort
to foster a “third-party developer ecosystem” for mobile
devices. Because of their very nature, as well as the
regulatory structure within which they exist, certain op-
erational characteristics of devices such as cell phones
must be guaranteed. This is true even in the case of er-
rant or malicious additional software being installed on
the device.

A paper of this length can only provide a high-level
overview of the components involved and their poten-
tial characteristics, usage, and interrelationships. A
great deal more detailed information is available on the
project web site.

Hiker is an attempt to address the most significant of the
gaps discussed at the outset of this paper as a way of
reducing fragmentation and encouraging participation
in the mobile applications development context. The
Hiker Project is intended to be a open, community ef-
fort. While ACCESS engineers are responsible for the
initial implementation, the project is intended for the use
of all developers interested in mobile applications devel-
opment, and their participation in improving the frame-
work is invited.

c© 2007 The Hiker Project. Permission to redistribute in ac-
cordance with Linux Symposium submission guidelines is
granted; all other rights are reserved. ACCESS R© is a reg-
istered trademark of ACCESS Co., Ltd. Garnet

TM
is a trade-



2007 Linux Symposium, Volume Two • 199

mark of ACCESS Systems Americas, Inc. UNIX R© is a reg-
istered trademark of The Open Group. Palm OS R© is a regis-
tered trademark of Palm Trademark Holding Company, LLC.
The registered trademark Linux R© is owned by Linus Tor-
valds, owner of the mark in the U.S. and other countries, and
licensed exclusively to the Linux Mark Institute. Mac R© and
OS X R© are registered trademarks of Apple, Inc. All other
trademarks mentioned herein are the property of their respec-
tive owners.



200 • The Hiker Project: An Application Framework for Mobile Linux Devices



Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


