
Linux-VServer
Resource Efficient OS-Level Virtualization

Herbert Pötzl
herbert@13thfloor.at

Marc E. Fiuczynski
mef@cs.princeton.edu

Abstract

Linux-VServer is a lightweight virtualization system
used to create many independent containers under a
common Linux kernel. To applications and the user of a
Linux-VServer based system, such a container appears
just like a separate host.

The Linux-Vserver approach to kernel subsystem con-
tainerization is based on the concept of context isola-
tion. The kernel is modified to isolate a container into
a separate, logical execution context such that it can-
not see or impact processes, files, network traffic, global
IPC/SHM, etc., belonging to another container.

Linux-VServer has been around for several years and its
fundamental design goal is to be an extremely low over-
head yet highly flexible production quality solution. It
is actively used in situations requiring strong isolation
where overall system efficiency is important, such as
web hosting centers, server consolidation, high perfor-
mance clusters, and embedded systems.

1 Introduction

This paper describes Linux-VServer, which is a virtu-
alization approach that applies context isolation tech-
niques to the Linux kernel in order to create lightweight
container instances. Its implementation consists of a
separate kernel patch set that adds approximately 17K
lines of code to the Linux kernel. Due to its architec-
ture independent nature it has been validated to work on
eight different processor architectures (x86, sparc, al-
pha, ppc, arm, mips, etc.). While relatively lean in terms
of overall size, Linux-VServer touches roughly 460 ex-
isting kernel files—representing a non-trivial software-
engineering task. Linux-VServer is an efficient and flex-
ible solution that is broadly used for both hosting and
sandboxing scenarios.

Hosting scenarios such as web hosting centers provid-
ing Virtual Private Servers (VPS) and HPC clusters need
to isolate different groups of users and their applications
from each other. Linux-VServer has been in production
use for several years by numerous VPS hosting centers
around the world. Furthermore, it has been in use since
2003 by PlanetLab (www.planet-lab.org), which is a ge-
ographically distributed research facility consisting of
roughly 750 machines located in more than 30 countries.
Due to its efficiency, a large number of VPSs can be
robustly hosted on a single machine. For example, the
average PlanetLab machine today has a 2.4Ghz x86 pro-
cessor, 1GB RAM, and 100GB of disk space and typi-
cally hosts anywhere from 40-100 live VPSes. Hosting
centers typically use even more powerful servers and it
is not uncommon for them to pack 200 VPSes onto a
single machine.

Server consolidation is another hosting scenario where
isolation between independent application services
(e.g., db, dns, web, print) improves overall system ro-
bustness. Failures or misbehavior of one service should
not impact the performance of another. While hypervi-
sors like Xen and VMware typically dominate the server
consolidation space, a Linux-VServer solution may be
better when resource efficiency and raw performance are
required. For example, an exciting development is that
the One Laptop Per Child (OLPC) project has recently
decided to use Linux-VServer for their gateway servers
that will provide services such as print, web, blog, void,
backup, mesh/wifi, etc., to their $100 laptops at school
premises. These OLPC gateways servers will be based
on low cost / low power consuming embedded systems
hardware, and for this reason a resource efficient solu-
tion like Linux-VServer rather than Xen was chosen.

Sandboxing scenarios for generic application plugins
are emerging on mobile terminals and web browsers to
isolate arbitrary plugins–not just Java lets–downloaded
by the user. For its laptops OLPC has designed a secu-
rity framework, called bitfrost [1], and has decided to

152 • Linux-VServer

utilize Linux-VServer as its sandboxing solution, isolat-
ing the various activities from each other and protecting
the main system from all harm.

Of course, Linux-VServer is not the only approach to
implementing containers on Linux. Alternatives in-
clude non-mainlined solutions such as OpenVZ, Vir-
tuozzo, and Ensim; and, there is an active commu-
nity of developers working on kernel patches to incre-
mentally containerize the mainline kernel. While these
approaches differ at the implementation level, they all
typically focus in onto a single point within the over-
all containerization design spectrum: system virtualiza-
tion. Benchmarks run on these alternative approaches to
Linux-VServer reveal non-trivial time and space over-
head, which we believe are fundamentally due to their
focus on system virtualization. In contrast, we have
found with Linux-VServer that using a context isola-
tion approach to containerize critical kernel subsystems
yields neglible overhead compared to a vanilla kernel—
and in most cases performance of Linux-VServer and
Linux is indistinguishable.

This paper has two goals: 1) serve as a gentle intro-
duction to container-based system for the general Linux
community, and 2) highlight both the benefits (and
drawbacks) of our context isolation approach to kernel
containerization. The next section presents a high-level
overview of container-based systems and then describes
the Linux-VServer approach in further detail. Section 3
evaluates efficiency of Linux-VServer. Finally, Sec-
tion 4 offers some concluding remarks.

2 Linux-VServer Design Approach

This section provides an overview of container-based
systems, describes the general techniques used to
achieve isolation, and presents the mechanisms with
which Linux-VServer implements these techniques.

2.1 Container-based System Overview

At a high-level, a container-based system provides a
shared, virtualized OS image, including a unique root
file system, a set of system executables and libraries,
and resources (cpu, memory, storage, etc.) assigned to
the container when it is created. Each container can be
“booted” and “shut down” just like a regular operating
system, and “rebooted” in only seconds when necessary.

Host Context

Admin

Host Services

/proc
/hom

e
/usr
/dev
...

Guest 1

Apache
MySQL

PHP

Guest Admin

/proc
/hom

e
/usr
/dev
...

Guest N

Quake Srv.
Postgresql

...

Guest Admin

/proc
/hom

e
/usr
/dev
...

...

Shared OS Image

H
o

stin
g

 P
latfo

rm

V
irtu

al P
latfo

rm

Figure 1: Container-based Platform

To applications and the user of a container-based sys-
tem, the container appears just like a separate linux sys-
tem.

Figure 1 depicts a container-based system, which is
comprised of two basic platform groupings. The host-
ing platform consists essentially of the shared OS image
and a privileged host context. This is the context that
a system administrator uses to manage containers. The
virtual platform is the view of the system as seen by the
guest containers. Applications running in a guest con-
tainer work just as they would on a corresponding non-
container-based system. That is, they have their own
root file system, IP addresses, /dev, /proc, etc.

The subsequent sections will focus on the main contri-
butions that Linux-VServer makes, rather than being ex-
haustively describing all required kernel modifications.

2.2 Kernel Containerization

This section describes the kernel subsystem enhance-
ments that Linux-VServer makes to support contain-
ers. These enhancements are designed to be low over-
head, flexible, as well as to enhance security in order
to properly confine applications into a container. For
CPU scheduling, Linux-VServer introduces a novel fil-
tering technique in order to support fair-share, work-
conserving, or hard limit container scheduling. How-
ever, in terms of managing system resources such as
storage space, io bandwidth, for Linux-VServer it is
mostly an exercise of leveraging existing Linux resource
management and accounting facilities.

2.2.1 Guest Filesystems

Guest container filesystems could either be imple-
mented using loop-back mounted images—as is typical

2007 Linux Symposium, Volume Two • 153

for qemu, xen, vmware, and uml based systems—or by
simply using the native file systems and using chroot.
The main benefit of using a chroot-ed filesystem over
the loop-back mounted images is performance. Guests
can read/write files at native filesystem speed. How-
ever, there are two drawbacks: 1) chroot() information is
volatile and therefore only provides weak confinement,
and 2) chroot-ed filesystems may lead to significant du-
plication of common files. Linux-VServer addresses
both of these problems, as one of its central objectives is
to support containers in a resource efficient manner that
performs as well as native Linux.

Filesystem Chroot Barrier
Because chroot() information is volatile, it is simple
to escape from a chroot-ed environment, which would
be bad from a security perspective when one wants to
maintain the invariant that processes are confined within
their containers filesystem. This invariant is nice to have
when using containers for generic hosting scenarios, but
clearly is required for sandboxing scenario. To appreci-
ate how easy it is to escape conventional chroot() con-
finement, consider the following three simple steps: a)
create or open a file and retain the file-descriptor, b) ch-
root into a subdirectory at equal or lower level with re-
gards to the file, which causes the ‘root’ to be moved
‘down’ in the filesystem, and then c) use fchdir() on the
file descriptor to escape from that ‘new’ root, which lets
the process escape from the ‘old’ root as well, as this
was lost in the last chroot() system call.

To address this problem Linux-VServer uses a special
file attribute called the chroot barrier. The above trick
does not work when this barrier is set on the root direc-
tory of a chroot-ed filesystem, as it prevents unautho-
rized modification and escape from the chroot confine-
ment.

Filesystem Unification
To appreciate the second drawback mentioned above,
consider that systems with dozens or maybe even hun-
dreds of containers based on the same Linux distribution
will unnecessarily duplicate many common files. This
duplication occurs simply to maintain a degree of sepa-
ration between containers, as it would be difficult using
conventional Linux filesystem techniques to ensure safe
sharing of files between containers.

To address this problem Linux-VServer implements a
disk space saving technique by using a simple unifi-
cation technique applied to whole files. The basic ap-

proach is that files common to more than one container,
which are rarely going to change (e.g., like libraries
and binaries from similar OS distributions), can be hard
linked on a shared filesystem. This is possible because
the guest containers can safely share filesystem objects
(inodes).

The only drawback with hard linking files is that without
additional measures, a container could (un)intentionally
destroy or modify such shared files, which in turn would
harm/interfere other containers.

This can easily be addressed by adding an immutable
attribute to the file, which then can be safely shared be-
tween two containers. In order to ensure that a container
cannot modify such a file directly, the Linux capability
to modify this attribute is removed from the set of capa-
bilities given to a guest container.

However, removing or updating a file with immutable
link attribute set from inside a guest container would be
impossible. To remove the file the additional “permis-
sion to unlink” attribute needs to be set. With this alone
an application running inside a container could manu-
ally implement a poor man’s CoW system by: copying
the original file, making modifications to the copy, un-
linking the original file, and renaming the copy the orig-
inal filename.

This technique was actually used by older Linux-
VServer based systems, but this caused some incom-
patibilities with programs that make in-place modifica-
tions to files. To address this problem, Linux-VServer
introduced CoW link breaking which treats shared hard-
linked files as copy-on-write (CoW) candidates. When
a container attempts to mutate a CoW marked file, the
kernel will create a private copy of the file for the con-
tainer.

Such CoW marked files belonging to more than one
container are called ‘unified’ and the process of finding
common files and preparing them in this way is called
Filesystem Unification. Unification is done as an out-of-
band operation by a process run in the root container—
typically a cron job that intelligent walks all of the con-
tainers’ filesystems looking for identical files to unify.

The principal reason for doing filesystem unification is
reduced resource consumption, not simplified adminis-
tration. While a typical Linux distribution install will
consume about 500MB of disk space, our experience is
that after unification the incremental disk space required

154 • Linux-VServer

when creating a new container based on the same distri-
bution is on the order of a few megabytes.

It is straightforward to see that this technique reduces re-
quired disk space, but probably more importantly it im-
proves memory mappings for shared libraries, reduces
inode caches, slab memory for kernel structures, etc.
Section 3.1 quantifies these benefits using a real world
example.

2.2.2 Process Isolation

Linux-VServer uses the global PID space across all con-
tainers. Its approach is to hide all processes outside a
container’s scope, and prohibits any unwanted interac-
tion between a process inside a container and a process
belonging to another container. This separation requires
the extension of some existing kernel data structures in
order for them to: a) become aware to which container
they belong, and b) differentiate between identical UIDs
used by different containers. To work around false as-
sumptions made by some user-space tools (like pstree)
that the init process has to exist and have PID 1,
Linux-VServer also provides a per container mapping
from an arbitrary PID to a fake init process with PID 1.

When a Linux-VServer based system boots, by default
all processes belong to the host context. To simplify sys-
tem administration, this host context acts like a normal
Linux system and doesn’t expose any details about the
guests, except for a few proc entries. However, to allow
for a global process view, Linux-VServer defines a spe-
cial spectator context that can peek at all processes at
once. Both the host and spectator context are only log-
ical containers—i.e., unlike guest containers, they are
not implemented by kernel datastructures.

A side effect of this approach is that process migration
from one container to another container on the same host
is achieved by changing its container association and up-
dating the corresponding per-container resource usage
statistics such NPROC, NOFILE, RSS, ANON, MEM-
LOCK, etc.

The benefit to this isolation approach for the systems
process abstraction is twofold: 1) that it scales well with
a large number of contexts, 2) most critical-path logic
manipulating processes and PIDs remain unchanged.
The drawback is that one cannot as cleanly implement
container migration, checkpoint and resume, because

it may not be possibly to re-instantiate processes with
the same PID. To overcome this drawback, alternative
container-based systems virtualize the PID space on a
per container basis.

We hope to positively influence the proposed kernel
mainlining of containerized PID space support such that
depending on the usage scenario it is possible to choose
Linux-VServer style isolation, virtualization, or a hybrid
thereof.

2.2.3 Network Isolation

Linux-VServer does not fully virtualize the networking
subsystem. Rather, it shares the networking subsystem
(route tables, IP tables, etc.) between all containers, but
restricts containers to bind sockets to a subset of host
IPs specified either at container creation or dynamically
by the host administrator. This has the drawback that it
does not let containers change their route table entries
or IP tables rules. However, it was a deliberate design
decision, as it inherently lets Linux-VServer containers
achieve native networking performance.

For Linux-VServer’s network isolation approach several
issues have to be considered; for example, the fact that
bindings to special addresses like IPADDR_ANY or the
local host address have to be handled to avoid having
one container receive or snoop traffic belonging to an-
other container. The approach to get this right involves
tagging packets with the appropriate container identifier
and incorporating the appropriate filters in the network-
ing stack to ensure only the right container can receive
them. Extensive benchmarks reveal that the overhead of
this approach is minimal as high-speed networking per-
formance is indistinguishable between a native Linux
system and one enhanced with Linux-VServer regard-
less of the number of concurrently active containers.

In contrast, the best network L2 or L3 virtualization ap-
proaches as implemented in alternative container-based
systems impose significant CPU overhead when scaling
the number of concurrent, high-performance containers
on a system. While network virtualization is a highly
flexible and nice feature, our experience is that it is not
required for all usage scenarios. For this reason, we be-
lieve that our network isolation approach should be a
feature that high-performance containers should be per-
mitted to select at run time.

2007 Linux Symposium, Volume Two • 155

Again, we hope to positively influence the proposed ker-
nel mainlining of network containerization support such
that depending on the usage scenario it is possible to
choose Linux-VServer style isolation, virtualization, or
a hybrid thereof.

2.2.4 CPU Isolation

Linux-VServer implements CPU isolation by overlay-
ing a token bucket scheme on top of the standard Linux
CPU scheduler. Each container has a token bucket that
accumulates tokens at a specified rate; every timer tick,
the container that owns the running process is charged
one token. A container that runs out of tokens has its
processes removed from the run-queue until its bucket
accumulates a minimum amount of tokens. This to-
ken bucket scheme can be used to provide fair sharing
and/or work-conserving CPU reservations. It can also
enforce hard limits (i.e., an upper bound), as is popu-
larly used by VPS hosting centers to limit the number of
cycles a container can consume—even when the system
has idle cycles available.

The rate that tokens accumulate at in a container’s
bucket depends on whether the container has a reser-
vation and/or a share. A container with a reservation
accumulates tokens at its reserved rate: for example, a
container with a 10% reservation gets 100 tokens per
second, since a token entitles it to run a process for
one millisecond. A container with a share that has
runnable processes will be scheduled before the idle task
is scheduled, and only when all containers with reser-
vations have been honored. The end result is that the
CPU capacity is effectively partitioned between the two
classes of containers: containers with reservations get
what they’ve reserved, and containers with shares split
the unreserved capacity of the machine proportionally.
Of course, a container can have both a reservation (e.g.,
10%) and a fair share (e.g., 1/10 of idle capacity).

2.2.5 Network QoS

The Hierarchical Token Bucket (htb) queuing disci-
pline of the Linux Traffic Control facility (tc) [2] can
be used to provide network bandwidth reservations and
fair service. For containers that have their own IP ad-
dresses, the htb kernel support just works without mod-
ifications.

However, when containers share an IP address, as is
done by PlanetLab, it is necessary to track packets in or-
der to apply a queuing discipline to a containers flow of
network traffic. This is accomplished by tagging pack-
ets sent by a container with its context id in the kernel.
Then, for each container, a token bucket is created with
a reserved rate and a share: the former indicates the
amount of outgoing bandwidth dedicated to that con-
tainer, and the latter governs how the container shares
bandwidth beyond its reservation. The htb queuing
discipline then allows each container to send packets
at the reserved rate of its token bucket, and fairly dis-
tributes the excess capacity to other containers in pro-
portion to their shares. Therefore, a container can be
given a capped reservation (by specifying a reservation
but no share), “fair best effort” service (by specifying a
share with no reservation), or a work-conserving reser-
vation (by specifying both).

2.2.6 Disk QoS

Disk I/O is managed in Linux-VServer using the stan-
dard Linux CFQ (“completely fair queuing”) I/O sched-
uler. The CFQ scheduler attempts to divide the band-
width of each block device fairly among the containers
performing I/O to that device.

2.2.7 Storage Limits

Linux-VServer provides the ability to associate limits to
the amount of memory and disk storage a container can
acquire. For disk storage one can specify limits on the
maximum number of disk blocks and inodes a container
can allocate. For memory, a variety of different limits
can be set, controlling the Resident Set Size and Virtual
Memory assigned to each context.

Note that fixed upper bounds on RSS are not appro-
priate for usage scenarios where administrators wish to
overbook containers. In this case, one option is to let
containers compete for memory, and use a watchdog
daemon to recover from overload cases—for example
by killing the container using the most physical mem-
ory. PlanetLab [3] is one example where memory is a
particularly scarce resource, and memory limits with-
out overbooking are impractical: given that there are
up to 90 active containers on a PlanetLab server, this
would imply a tiny 10MB allocation for each container

156 • Linux-VServer

on the typical PlanetLab server with 1GB of memory.
Instead, PlanetLab provides basic memory isolation be-
tween containers by running a simple watchdog dae-
mon, called pl_mom, which resets the container con-
suming the most physical memory when swap has al-
most filled. This penalizes the memory hog while keep-
ing the system running for everyone else, and is effective
for the workloads that PlanetLab supports. A similar
technique is apparently used by managed web hosting
companies.

3 Evaluation

In a prior publication [5], we compared in further de-
tail the performance of Linux-VServer with both vanilla
Linux and Xen 3.0 using lmbench, iperf, and dd as mi-
crobenchmarks and kernel compile, dbench, postmark,
osdb as synthetic macrobenchmarks. Our results from
that paper revealed that Linux-VServer has in the worst
case a 4 percent overhead when compared to an unvir-
tualized, vanilla Linux kernel; however, in most cases
Linux-VServer is nearly identical in performance and
in a few lucky cases—due to gratuitous cache effects—
Linux-VServer consistently outperforms vanilla kernel.
Please consult our other paper [5] for these details.

This section explores the efficiency of Linux-VServer.
We refer to the combination of scale and performance
as the efficiency of the system, since these metrics cor-
respond directly to how well the virtualizing system or-
chestrates the available physical resources for a given
workload. All experiments are run on HP Proliant
servers with dual core processors, 2MB caches, 4GB
RAM, and 7.2k RPM SATA-100 disks.

3.1 Filesystem Unification

As discussed in Section 2.2.1, Linux-VServer supports
a unique filesystem unification model. The reason for
doing filesystem unification is to reduce disk space con-
sumption, but more importantly it reduces system re-
source consumption. We use a real world example to
demonstrate this benefit from filesystem unification.

We configure guest containers with Mandriva 2007. The
disk footprint of a non-unified installation is 150MB per
guest. An activated guest runs a complement of dae-
mons and services such as syslog, crond, sshd, apache,
postfix and postgresql—a typical configuration used in
VPS hosting centers.

We evaluate the effectiveness of filesystem unification
using two tests. The first consists of starting 200 sepa-
rate guests one after the other measuring memory con-
sumption. The second test is identical to the first, except
before all guests are started, their filesystems are unified.
For the latter test, the disk footprint of each unified guest
reduces from 150MB to 10MB, resulting in 140MB of
common and thus shared data on disk.

Tables 1 and 2 summarize the results for this test, cat-
egorizing how much time it takes for the guest to start
up and how much memory it consumes categorized by
memory type such as active, buffer, cache, slab, etc.
What these columns in the two tables reveal is that the
kernel inherently shares memory for shared libraries, bi-
naries, etc. due to the unification (i.e., hard linking) of
files.

Table 3 compares the rows with the 200th guest, which
shows the difference and overhead percentage in con-
sumed memory as well as the time required to start the
same number of guest container. These differences are
significant!

Of course, techniques exist to recoup redundant memory
resources (e.g., VMware’s content-based memory shar-
ing used in its ESX product line [6]). However, such
techniques require the system to actively seek out redun-
dant memory by computing hash keys page data, etc.,
which introduces non-trivial overhead. In contrast, with
the filesystem unification approach we inherently obtain
this benefit.

As a variation of our prior experiment, we have also
measured starting the 200 guest containers in parallel.
The results for this experiment are shown in Figure 2.
The first thing to note in the figure is that the paral-
lel startup of 200 separate guests causes the machine to
spend most of the very long startup (approx. 110min)
paging in and out data (libraries, executeables, shared
files), which causes the cpu to hang in iowait most of
the time (light blue area in the cpu graphs) rendering
the system almost unresponsive. In contrast, the same
startup with 200 unified guests is rather fast (approx.
20min), and most of the startup time is spent on actual
guest processes.

3.2 Networking

We also evaluated the efficiency of network operations
by comparing 2.6.20 based kernels, one unmodified ker-
nel, and one patched with Linux-VServer 2.2. Two sets

2007 Linux Symposium, Volume Two • 157

Guest Time Active Buffers Cache Anon Mapped Slab Recl. Unrecl.
001 0 16364 2600 20716 4748 3460 8164 2456 5708
002 7 30700 3816 42112 9052 8200 11056 3884 7172
003 13 44640 4872 62112 13364 12872 13248 5268 7980
. .
198 1585 2093424 153400 2399560 849696 924760 414892 246572 168320
199 1593 2103368 151540 2394048 854020 929660 415300 246324 168976
200 1599 2113004 149272 2382964 858344 934336 415528 245896 169632

Table 1: Memory Consumption—Separate Guests

Guest Time Active Buffers Cache Anon Mapped Slab Recl. Unrecl.
001 0 16576 2620 20948 4760 3444 8232 2520 5712
002 10 31368 4672 74956 9068 8140 12976 5760 7216
003 14 38888 5364 110508 13368 9696 16516 8360 8156
. .
198 1304 1172124 88468 2492268 850452 307596 384560 232988 151572
199 1313 1178876 88896 2488476 854840 309092 385384 233064 152320
200 1322 1184368 88568 2483208 858988 310640 386256 233388 152868

Table 2: Memory Consumption—Unified Guests

Attribute Difference Overhead
Time 277 s 21.0 %
Active 928848 k 79.5 %
Buffers 60724 k 70.7 %
Cache 100012 k -4.2 %
Anon 632 k 0.0 %
Mapped 623680 k 203.0 %
Slab 29340 k 7.8 %
Recl. 12572 k 5.4 %
Unrecl. 16768 k 11.4 %

Table 3: Overhead Unified vs. Separate

158 • Linux-VServer

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0

 100

 200

 300

 400

 500

 600

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 short mid long running sleeping/2

20:10 20:20 20:30

 0

 100

 200

 300

 400

 500

 600

 700

 800

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 short mid long running

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0

 50

 100

 150

 200

 250

 300

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 syst user wait

20:10 20:20 20:30

 0

 50

 100

 150

 200

 250

 300

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 syst user wait

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0.5 G

 1.0 G

 1.5 G

 2.0 G

 2.5 G

 3.0 G

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 slab mapped buffers active

20:10 20:20 20:30

 0.5 G

 1.0 G

 1.5 G

 2.0 G

 2.5 G

 3.0 G

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 slab mapped buffers active

17:10 17:20 17:30 17:40 17:50 18:00 18:10 18:20 18:30 18:40 18:50 19:00

 0.0

 0.2 M

 0.4 M

 0.6 M

 0.8 M

 1.0 M

 1.2 M

 1.4 M

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 pagein pageout activate deactivate

20:10 20:20 20:30

 0.0

 0.2 M

 0.4 M

 0.6 M

 0.8 M

 1.0 M

 1.2 M

 1.4 M

R
R

D
T

O
O

L / T
O

B
I O

E
T

IK
E

R

 pagein pageout activate deactivate

Figure 2: Parallel Startup of 200 Guests—Separate (left) vs. Unified (right)

2007 Linux Symposium, Volume Two • 159

of experiments were conducted: the first measuring the
throughput of packets sent and received over the net-
work for a CPU bound workload, and the second as-
sessing the cost of using multiple heavily loaded Linux-
VServer containers concurrently. While the former eval-
uates the ability of a single container to saturate a high-
speed network link, the latter measures the efficiency
of Linux-VServer’s utilization of the underlying hard-
ware. In both experiments, fixed-size UDP packets were
exchanged between containers and a remote system on
the local network. HP Proliant servers were used for
both the sender and receiver, connected through a Giga-
bit network, equipped with 2.4Ghz Xeon 3060.

The first set of experiments demonstrated that the per-
formance of Linux-VServer is equivalent to that of
vanilla Linux. This is in line with our prior iperf-based
TCP throughput results [5].

The second set of experiments involved continually
increasing the number of clients confined in Linux-
VServer based containers sending UDP packets as in
the previous experiment. We made two observations:
1) the CPU utilization of Linux-VServer containers for
packet sizes with which the network was saturated was
marginally higher (77% as opposed to 72%), and 2)
the increase in the CPU utilization of Linux-VServer,
and the threshold beyond which it saturated the CPU
was identical to that of Native Linux as containers were
added.

These experiments suggest that for average work-
loads, the degradation of performance using the Linux-
VServer network isolation approach is marginal. Fur-
thermore, Linux-VServer can scale to multiple concur-
rent containers exchanging data at high rates with a per-
formance comparable to native Linux.

3.3 CPU Fair Share and Reservations

To investigate both CPU isolation of a single resource
and resource guarantees, we use a combination of CPU
intensive tasks. Hourglass is a synthetic real-time ap-
plication useful for investigating scheduling behavior at
microsecond granularity [4]. It is CPU-bound and in-
volves no I/O.

Eight containers are run simultaneously. Each container
runs an instance of hourglass, which records contiguous
periods of time scheduled. Because hourglass uses no

I/O, we may infer from the gaps in its time-line that
either another container is running or the virtualized
system is running on behalf of another container, in a
context switch for instance. The aggregate CPU time
recorded by all tests is within 1% of system capacity.

We evaluated two experiments: 1) all containers are
given the same fair share of CPU time, and 2) one of
the containers is given a reservation of 1/4th of overall
CPU time. For the first experiment, VServer for both
UP and SMP systems do a good job at scheduling the
CPU among the containers such that each receive ap-
proximately one eights of the available time.

For the second experiment we observe that the CPU
scheduler for Linux-VServer achieves the requested
reservation within 1%. Specifically, the container
having requested 1/4th of overall CPU time receives
25.16% and 49.88% on UP and SMP systems, respec-
tively. The remaining CPU time is fairly shared amongst
the other seven containers.

4 Conclusion

Virtualization technology in general benefits a wide va-
riety of usage scenarios. It promises such features as
configuration independence, software interoperability,
better overall system utilization, and resource guaran-
tees. This paper described the Linux-VServer approach
to providing these features while balancing the tension
between strong isolation of co-located containers with
efficient sharing of the physical resources on which the
containers are hosted.

Linux-VServer maintains a small kernel footprint, but it
is not yet feature complete as it lacks support for true
network virtualization and container migration. These
are features that ease management and draw users to
hypervisors such as Xen and VMware, particularly in
the server consolidation and hosting scenarios. There
is an active community of developers working towards
adding these features to the mainline Linux kernel,
which we expect will be straightforward to integrate
with Linux-VServer.

In the mean time, for managed web hosting, PlanetLab,
the OLPC laptop and gateway server, embedded sys-
tems, etc., the trade-off between isolation and efficiency
is of paramount importance. We believe that Linux-
VServer hits a sweet spot in the containerization design

160 • Linux-VServer

space, as it provides for strong isolation and it performs
equally with native Linux kernels in most cases.

References

[1] Ivan Krstic. System security on the One Laptop per
Child’s XO laptop: the Bitfrost security platform.
http://wiki.laptop.org/go/Bitfrost.

[2] Linux Advanced Routing and Traffic Control.
http://lartc.org/.

[3] Larry Peterson, Andy Bavier, Marc E. Fiuczynski,
and Steve Muir. Experiences building planetlab. In
Proceedings of the 7th USENIX Symposium on
Operating System Design and Implementation
(OSDI ’06), Seattle, WA, November 2006.

[4] John Regehr. Inferring scheduling behavior with
hourglass. In In Proceedings of the Freenix Track
of the 2002 USENIX Annual Technical Conference,
June 2002.

[5] Stephen Soltesz, Herbert Pötzl, Marc E.
Fiuczynski, Andy Bavier, and Larry Peterson.
Container-based operating system virtualization: A
scalable, high-performance alternative to
hypervisors. In Proc. 2nd EUROSYS, Lisboa,
Portugal, March 2007.

[6] Carl Waldspurger. Memory resource management
in vmware esx server. In Proc. 5th OSDI, Boston,
MA, Dec 2002.

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

