
cpuidle—Do nothing, efficiently. . .

Venkatesh Pallipadi
Shaohua Li

Intel Open Source Technology Center
{venkatesh.pallipadi|shaohua.li}@intel.com

Adam Belay
Novell, Inc.

abelay@novell.com

Abstract

Most of the focus in Linux processor power manage-
ment today has been on power managing the processor
while it is active: cpufreq, which changes the proces-
sor frequency and/or voltage and manages the proces-
sor performance levels and power consumption based on
processor load. Another dimension of processor power
management is processor ‘idling’ power.

Almost all mobile processors in the marketplace today
support the concept of multiple processor idle states
with varying amounts of power consumed in those idle
states. Each such state will have an entry-exit latency
associated with it. In general, there is a lot of at-
tention shifting towards idle platform power and new
platforms/processors are supporting multiple idle states
with different power and wakeup latency characteristics.
This emphasis on idle power and different processors
supporting different number of idle states and different
ways of entering these states, necessitates the need for a
generic Linux kernel framework to manage idle proces-
sors.

This paper covers cpuidle, an effort towards a generic
processor idle management framework in Linux kernel.
The goal is to have a clean interface for any proces-
sor hardware to make use of different processor idle
levels and also provide abstraction between idle-drivers
and idle-governors allowing independent development
of drivers and governors. The target audiences are the
developers who are keen to experiment with new idle
governors on top of cpuidle, and developers who
wants to use the cpuidle driver infrastructure in vari-
ous architectures, and any one else who is keen to know
about cpuidle.

1 Introduction

Almost all the mobile processors today support multiple
idle states and the trend is spreading as processor power

management and system power management gain im-
portance for a variety of reasons.

In typical system usage models, processor(s) spend a lot
of their time idling (like while you are reading this paper
on your laptop, with your favorite pdf-reader). Thus any
power saved when system is idle will have big returns in
terms of battery life, heat generated in the system, need
for cooling, etc.

But there is a trade-off between idling power and
amount of state a processor saves and the amount of
time it takes to enter and exit from this idle state. The
idle enter-exit latency, if it is too high, may be visible
with media applications like a DVD player. Such usage
models will limit the usage of a particular idle state on
the processor running this application, even though the
idle state is power efficient. Similarly, if a processor idle
state does not preserve the the contents of the proces-
sor’s cache, some particular application which has some
idle time may notice a performance degradation when
this particular idle state is used.

In order to manage this trade-off effectively, the kernel
needs to know the characteristics of all idle states and
also should understand the currently running applica-
tions, and should take a well-informed decision about
what idle state it wants to enter when processor goes to
idle.

To do this effectively and cleanly, there is a preliminary
requirement of having clean and simple interfaces. Such
an interface can provide consistent information to the
user and ease the innovation and development in the area
of processor idle management.

cpuidle is a an effort in this direction and this pa-
per provides insight into cpuidle. We start section
2 with a background on processor power management
and idle states. Section 3 provides the design descrip-
tion of cpuidle. Section 4 talks about all the develop-

• 119 •

120 • cpuidle—Do nothing, efficiently. . .

ments and advancements happening in cpuidle and
some conclusions in section 5.

2 Background

2.1 Processor Power management

Processor power management can be broadly classified
into two classes.

Processor active – various states a processor can be in
while actively executing and retiring instructions.
Processor frequency scaling, in which a proces-
sor can run at different frequencies and or voltages
falls under this class. So does processor thermal
throttling, where processor runs slower due to duty
cycle throttling.

Linux cpufreq, extensively discussed in [4], [6],
and [5], is a generic infrastructure that handles
CPU frequency scaling.

Processor idle – various states a processor can be in
while it is idle and not retiring any instructions.
The states here differ in amount of power the pro-
cessor consumes while being in that state and also
the latency to enter-exit this low-power idle state.
There may also be other differences like preserv-
ing the processor state across these idle states, etc.
based on a specific processor. For example, a pro-
cessor may only flush L1 cache in one idle state,
but may flush L1 and L2 caches in another idle
state. There can also be differences around when
an idle state can be entered and what its impact
will be on other logical or physical processors in
the system.

2.2 Processor idle states

Currently, most of the processors in mobile and hand-
held segments support multiple idle states. The prime
objective here is to provide a more power-efficient sys-
tem with longer battery life or fewer cooling require-
ments. This feature is slowly moving up the chain into
desktops and servers. This is much like processor fre-
quency scaling which was mostly present in mobile pro-
cessors a few years back, to most of the servers support-
ing that feature today. Recent EnergyStar idle power
regulations [2] are tending to make this faster, making
this feature more common across a range of systems.

2.3 Current Processor idle state support

Below is a short summary of current processor idle state
management in Linux 2.6.21 [3].

ACPI based idle states For the remainder of this sec-
tion we restrict our attention to idle state support as
in i386 (and x86-64) architectures.

In i386 (and x86-64) architectures, there is support
for ACPI-based [1] processor idle states. These
states are referred to as C-states in ACPI termi-
nology. Each of the ACPI C-states is charac-
terised by its power consumption and wakeup la-
tency, and also based on preservation of the pro-
cessor state, while in this C-state. ACPI-based plat-
forms will report processor idle capability to Linux
using ACPI interfaces. A platform can dynamically
change the number of C-states supported, based on
different platform parameters such as whether it is
running on battery or AC power.

The current Linux support for such idle states is
fully embedded in the drivers/acpi directory
along with all ACPI support code. Code here de-
tects the C-states available at boot time, handles
any changes to the number of C-states during run
time, and has simplistic policy to choose a par-
ticular C-state to enter into whenever a CPU goes
idle. This code includes various platform-specific
bits, specific workarounds for platform ACPI bugs,
and also a /proc-based interface exporting the C-
state-related information to userspace.

Arch specific idle—i386 and x86-64 i386 and x86-64
(and also ia64) have some architecture-specific
processor idle management that does not depend on
ACPI. On i386 and x86-64, it includes support for
poll_idle, halt_idle, and mwait_idle.
poll_idle is a polling-based idle loop, which
is not really power efficient, but will have very lit-
tle wakeup overhead. halt_idle is based on
the x86 hlt instruction, and mwait_idle is
based on the monitor mwait pair of instruc-
tions. There are specific static rules regarding
which of these idle routines will be used on any
system, based on boot options and hardware capa-
bilities. Further, boot options across x86 and x86-
64 are not the same for these three idle routines.

Arch-specific idle—other architectures There are
various other architectures that have their own

2007 Linux Symposium, Volume Two • 121

code for processor idle state management. This
includes ia64 with PAL halt and PAL light halt,
Power with nap and doze modes, and idle support
for different platforms in the ARM architecture.
Each of these types of support for idle states also
comes with its own set of boot parameters and/or
/proc or /sys interfaces to user-space.

Bottom line There is very little sharing of code and
sharing of idle management policies across archi-
tectures. Processor idle state management and var-
ious boot options, etc., are duplicated; this re-
sults in code duplication and maintenance over-
head. This, as well as the increasing focus on pro-
cessor idle power in platforms, highlights the need
for a generic processor idle framework in Linux
kernel.

3 Basic cpuidle infrastructure

Figure 1 gives a high-level overview of the cpuidle
architecture. The basic idea behind cpuidle is to sep-
arate the idle state management policies from hardware-
specific idle state drivers. At this level, the cpuidle
model has similarities with cpufreq [6].

3.1 cpuidle core

The cpuidle core provides a set of generic interfaces
to manage processor idle features.

3.1.1 cpuidle data structures

A per-cpu cpuidle_device structure holds informa-
tion about the number of idle states supported by each
processor, information about each of those idle state (in
an array of cpuidle_state struct), and the sta-
tus of this device, among other things.

cpuidle_state is a structure that contains informa-
tion about each individual state, power usage, exit la-
tency, usage statistics of the state, etc.

cpuidle core maintains separate linked lists of all reg-
istered drivers, all registered governors, and all detected
devices.

cpuidle_lock is the lone mutex that handles all
SMP orderings within cpuidle.

3.1.2 Initialization and Registration

Drivers can register and unregister with cpuidle core
using cpuidle_register_driver and cpuidle_

unregister_driver. Governors can register and un-
register using cpuidle_register_governor and
cpuidle_unregister_governor. Each cpu de-
vice gets detected on cpu add_device callback of
cpu_sysdev. If there is a currently active governor
and active driver, then the device gets initialized with
those governor and driver.

3.1.3 Idle handling

cpuidle core has an idle handler, cpuidle_idle_
call(), that gets plugged into an architecture-
independent pm_idle function pointer, that will be
used by each individual processor when it goes idle. Just
before going into idle, the governor selects the best idle
state to go into. And then cpuidle invokes the entry
point for that particular state in the cpuidle driver. On
returning from that state, there is an optional governor
callback for the governor to capture information about
idle state residency.

3.1.4 Handling system state change

The number and type of idle states can vary dynami-
cally based on a given system state, like battery- or AC-
powered, etc. Such a system state change notification
goes to the idle driver, which will invoke cpuidle_
force_redetect() in the cpuidle core. This re-
sults in the idle handler being temporarily uninstalled
and the idle states being re-detected by the driver, fol-
lowed by re-initialization of the governor state to take
note of this change.

3.2 Design guidelines

There were few conscious design decisions/trade-offs in
cpuidle.

3.2.1 cpu_idle_wait

To make sure we do not take a lock during the normal
idle routine entry-exit, and to be able to safely change

122 • cpuidle—Do nothing, efficiently. . .

Generic cpuidle infrastructure

ladder menu

/sys/devices/system/cpu/cpuidle

/sys/devices/system/cpu/cpuX/cpuidle

acpi-cpuidle

ACPI processor driver

User-level

interfaces

governors

drivers halt_idle

arch/platform specific drivers

Figure 1: cpuidle overview

the governor/driver at run time, cpu_idle_wait was
used. Note that changing of drivers/governors is an un-
common event which will not be performance-sensitive.

3.2.2 system-level governor and driver

Should cpuidle support a single driver and single
governor for the whole system, or should they be per-
cpu? Considering the advantage of keeping things sim-
ple with a system-level governor and driver with respect
to usage of per-cpu-based governor and driver, it was de-
cided to have a single system-level governor and driver.

3.2.3 No cpu_hotplug_lock in cpuidle

Learning from experiences of cpufreq and cpu_
hotplug_lock, cpuidle avoids using cpu_
hotplug_lock in the entire subsystem. This in fact
resulted in a cleaner self-contained SMP and hotplug
synchronization model for cpuidle.

3.2.4 Runtime governor/driver switching

Even though runtime switching of the governor and
driver can result in potential wrong usages by the end-
users, cpuidle supports runtime switching of the gov-
ernor or driver, mostly to help developers and testers of

cpuidle. In the future, this switching of driver and
governor can be disabled by default, in order to avoid
incorrect usage.

3.3 driver interface

The cpuidle_register_driver uses a structure
that defines the cpuidle driver interface:

struct cpuidle_driver {
char name[CPUIDLE_NAME_LEN];
struct list_head driver_list;

int (*init) (struct cpuidle_device *dev);
void (*exit) (struct cpuidle_device *dev);
int (*redetect) (struct cpuidle_device *dev);

int (*bm_check) (void);

struct module *owner;
};

init() is a callback, called by cpuidle to initial-
ize each device in the system with this specific driver.
exit() is called to exit this particular driver for each
device. The redetect() callback is used to re-
detect the device states, on certain system state changes.
bm_check() is used to note the bus mastering status
on the device. In init(), the driver has to initialize all
the states for the particular device and handle the total
state count for that device.

2007 Linux Symposium, Volume Two • 123

struct cpuidle_state {
char name[CPUIDLE_NAME_LEN];
void *driver_data;

unsigned int flags;
unsigned int exit_latency; /* in US */
unsigned int power_usage; /* in mW */
unsigned int target_residency; /* in US */

unsigned int usage;
unsigned int time; /* in US */

int (*enter) (struct cpuidle_device *dev,
struct cpuidle_state *state);

struct kobject kobj;
};

enter() is the callback used to actually enter this idle
state. exit_latency and power_usage will be
characteristic of the idle state. flags denote generic
capabilities, features, and bugs of the idle state. usage
is the count of times this idle state is invoked, and time
is time spent in this state.

cpuidle_register_driver() and cpuidle_

unregister_driver() are used to register and
unregister (respectively) a driver with cpuidle.
cpuidle_force_detect() is used by the driver
to force the cpuidle core to re-detect all the device
states (e.g., after a system state change).

3.4 governor interface

struct cpuidle_governor {
char name[CPUIDLE_NAME_LEN];
struct list_head governor_list;

int (*init) (struct cpuidle_device *dev);
void (*exit) (struct cpuidle_device *dev);
void (*scan) (struct cpuidle_device *dev);

int (*select) (struct cpuidle_device *dev);
void (*reflect) (struct cpuidle_device *dev);

struct module *owner;
};

init() is a callback, called by cpuidle, to initialize
each governor with a specific device. exit() is called
to exit this governor for a device.

scan() is called on a re-detect of the states in the de-
vice. This provides an opportunity for the governor to
note the changes in states during a driver re-detect.

select() is called before each idle entry by a de-
vice, for the governor to make a state selection for

the idle call. reflect() is called after an idle
exit, for the governor to capture information about idle
state residency. Note that time spent in the governor’s
reflect() is in the critical path (on exit from idle,
before starting the work) and hence has to be fast.

cpuidle_register_governor() and cpuidle_

unregister_governor() are used to register and
unregister (respectively) a governor with cpuidle.
cpuidle_get_bm_activity() gets the informa-
tion about bm activity, which can be used by the gover-
nor during its select routine.

3.5 Userspace interface

cpuidle userspace interfaces are split at the following
two places in /sys.

3.5.1 System-generic information

This information is under /sys/devices/system/

cpu/cpuidle/.

available_drivers is a read-only interface that
lists all the drivers that have successfully registered
with cpuidle.

current_driver is a read-write interface that con-
tains the current active cpuidle driver. By writ-
ing a new value to this interface, the idle driver can
be changed at run time.

available_governors is a read-only interface
that lists all the governors that have successfully
registered with cpuidle.

current_governor is a read-write interface that
contains the current active cpuidle governor. By
writing a new value to this interface, the idle gov-
ernor can be changed at run-time.

Note there can be single governor and single driver
for all processors in the system.

3.5.2 Per-cpu information

This information is under /sys/devices/system/

cpu/cpuX/cpuidle/ where X=0,1,2,.... For
each idle state Y supported by the current driver, the fol-
lowing read-only information can be seen under sysfs.

124 • cpuidle—Do nothing, efficiently. . .

stateY/usage: Shows the count of number of
times this idle state has been entered since the last
driver init or redetect.

stateY/time: Shows the amount of time spent
in this idle state in uS. itemstateY/latency:
Shows the wakeup latency for this state.

stateY/power: Shows the typical power consumed
when CPU enters this state in mW.

3.6 Configuring and using cpuidle

To configure cpuidle, select:

Main Kernel Config
Power management options (ACPI, APM) --->

CPU idle PM support --->
[] CPU idle PM support

Once CPU idle PM is selected, there will be further
options for various governors supported in the kernel,
which can then be selected.

<*> ’ladder’ governor (NEW)
<*> ’menu’ governor (NEW)

Currently cpuidle is supported only on i386 and x86-
64, with an ACPI-based idle driver.

4 cpuidle advancements

The current cpuidle changes are the beginning of
things to come. There are a few things under develop-
ment and discussion.

4.1 New governors

The ladder governor takes a step-wise approach to se-
lecting an idle state. Although this works fine with pe-
riodic tick-based kernels, this step-wise model will not
work very well with tickless kernels. The kernel can go
idle for a long time without a periodic timer tick and it
may not get a chance to step-down the ladder to the deep
idle state whenever it goes idle.

A new idle governor to handle this, called the menu
governor, is being worked on. The menu governor looks
at different parameters like what the expected sleep time

is (as seen by dyntick), latency requirements, previous
C-state residency, max_cstate requirement, and bm
activity, etc., and then picks the deepest possible idle
state straight away. This governor aims at getting max-
imum possible power advantage with little impact on
performance.

4.2 Power data

Power/Performance data with various idle policies will
be provided at the time of presentation of this paper.

4.3 Future Work

Below is some of the items from the cpuidle to-do
list. The list below is not exhaustive. Specifically, if you
don’t find your favorite architecture mentioned here and
you would like to use cpuidle on your architecture, let
the authors of this paper know about it.

Today, CPU logical offline does not take CPU to its
deepest idle state. There are thoughts about using
cpuidle to enter the deepest idle state when a CPU
is logically offlined.

cpuidle needs to be more flexible with regards to dif-
ferent non-ACPI-based idle drivers supported, and also
support run-time switching across these drivers.

Make cpuidle simple by default, and make it use the
right driver and right governor for a platform by using a
rating scheme for drivers and governors. This will avoid
all the issues with users/distributions needing to config-
ure cpuidle at every boot.

Experiment with different governors to find the most
power/performance efficient governor for specific plat-
forms. This will be an ongoing exercise as more plat-
forms support multiple idle states and use the cpuidle
infrastructure.

5 Conclusion

The authors hope that cpuidle infrastructure enables
Linux to have a platform-independent, generic infras-
tructure for processor idle management. Such an in-
frastructure will simplify support of idle states on spe-
cific hardware by making it possible to write a simple
plug-in driver. Additionally, such an infrastructure will

2007 Linux Symposium, Volume Two • 125

simplify the writing of idle governors, and hopefully
will increase experimentation and innovation in idle
governors—something similar to the frequency gover-
nors that resulted from the cpufreq infrastructure.

6 Acknowledgements

Thanks to the developers and testers in the community
who took time to comment on, report issues with, and
contribute to cpuidle in various ways. Special thanks
to Len Brown for providing the feedback, directions,
and constant support.

References

[1] Acpi in linux.
http://acpi.sourceforge.net.

[2] Energy star - office equipment - computers.
http://www.energystar.gov.

[3] Linux 2.6.21. http://www.kernel.org.

[4] Linux kernel cpufreq subsystem.
http://www.kernel.org/pub/linux/
utils/kernel/cpufreq/cpufreq.html.

[5] Dominik Brodowski. Current trend in linux kernel
power management, linuxtag 2005. http:
//www.free-it.de/archiv/talks_
2005/paper-11017/paper-11017.pdf.

[6] Venkatesh Pallipadi and Alexey Starikovskiy. The
ondemand governor, ols 2006.
http://www.linuxsymposium.org/
2006/linuxsymposium_procv2.pdf.

This paper is (c) 2007 by Intel. Redistribution rights are
granted per submission guidelines; all other rights reserved.
* Other names and brands may be claimed as the property of
others.

126 • cpuidle—Do nothing, efficiently. . .

Proceedings of the
Linux Symposium

Volume Two

June 27th–30th, 2007
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.

