
The Price of Safety: Evaluating IOMMU Performance

Muli Ben-Yehuda
IBM Haifa Research Lab
muli@il.ibm.com

Jimi Xenidis
IBM Research

jimix@watson.ibm.com

Michal Ostrowski
IBM Research

mostrows@watson.ibm.com

Karl Rister
IBM LTC

krister@us.ibm.com

Alexis Bruemmer
IBM LTC

alexisb@us.ibm.com

Leendert Van Doorn
AMD

Leendert.vanDoorn@amd.com

Abstract

IOMMUs, IO Memory Management Units, are hard-
ware devices that translate device DMA addresses to
machine addresses. An isolation capable IOMMU re-
stricts a device so that it can only access parts of mem-
ory it has been explicitly granted access to. Isolation
capable IOMMUs perform a valuable system service by
preventing rogue devices from performing errant or ma-
licious DMAs, thereby substantially increasing the sys-
tem’s reliability and availability. Without an IOMMU
a peripheral device could be programmed to overwrite
any part of the system’s memory. Operating systems uti-
lize IOMMUs to isolate device drivers; hypervisors uti-
lize IOMMUs to grant secure direct hardware access to
virtual machines. With the imminent publication of the
PCI-SIG’s IO Virtualization standard, as well as Intel
and AMD’s introduction of isolation capable IOMMUs
in all new servers, IOMMUs will become ubiquitous.

Although they provide valuable services, IOMMUs can
impose a performance penalty due to the extra memory
accesses required to perform DMA operations. The ex-
act performance degradation depends on the IOMMU
design, its caching architecture, the way it is pro-
grammed and the workload. This paper presents the
performance characteristics of the Calgary and DART
IOMMUs in Linux, both on bare metal and in a hyper-
visor environment. The throughput and CPU utilization
of several IO workloads, with and without an IOMMU,
are measured and the results are analyzed. The poten-
tial strategies for mitigating the IOMMU’s costs are then
discussed. In conclusion a set of optimizations and re-
sulting performance improvements are presented.

1 Introduction

An I/O Memory Management Unit (IOMMU) creates
one or more unique address spaces which can be used
to control how a DMA operation, initiated by a device,
accesses host memory. This functionality was originally
introduced to increase the addressability of a device or
bus, particularly when 64-bit host CPUs were being in-
troduced while most devices were designed to operate
in a 32-bit world. The uses of IOMMUs were later ex-
tended to restrict the host memory pages that a device
can actually access, thus providing an increased level of
isolation, protecting the system from user-level device
drivers and eventually virtual machines. Unfortunately,
this additional logic does impose a performance penalty.

The wide spread introduction of IOMMUs by Intel [1]
and AMD [2] and the proliferation of virtual machines
will make IOMMUs a part of nearly every computer
system. There is no doubt with regards to the benefits
IOMMUs bring. . . but how much do they cost? We seek
to quantify, analyze, and eventually overcome the per-
formance penalties inherent in the introduction of this
new technology.

1.1 IOMMU design

A broad description of current and future IOMMU
hardware and software designs from various companies
can be found in the OLS ’06 paper entitled Utilizing
IOMMUs for Virtualization in Linux and Xen [3]. The
design of a system with an IOMMU can be broadly bro-
ken down into the following areas:

• IOMMU hardware architecture and design.

• Hardware↔ software interfaces.

• 9 •



10 • The Price of Safety: Evaluating IOMMU Performance

• Pure software interfaces (e.g., between userspace
and kernelspace or between kernelspace and hyper-
visor).

It should be noted that these areas can and do affect each
other: the hardware/software interface can dictate some
aspects of the pure software interfaces, and the hardware
design dictates certain aspects of the hardware/software
interfaces.

This paper focuses on two different implementations
of the same IOMMU architecture that revolves around
the basic concept of a Translation Control Entry (TCE).
TCEs are described in detail in Section 1.1.2.

1.1.1 IOMMU hardware architecture and design

Just as a CPU-MMU requires a TLB with a very high
hit-rate in order to not impose an undue burden on the
system, so does an IOMMU require a translation cache
to avoid excessive memory lookups. These translation
caches are commonly referred to as IOTLBs.

The performance of the system is affected by several
cache-related factors:

• The cache size and associativity [13].

• The cache replacement policy.

• The cache invalidation mechanism and the fre-
quency and cost of invalidations.

The optimal cache replacement policy for an IOTLB
is probably significantly different than for an MMU-
TLB. MMU-TLBs rely on spatial and temporal locality
to achieve a very high hit-rate. DMA addresses from de-
vices, however, do not necessarily have temporal or spa-
tial locality. Consider for example a NIC which DMAs
received packets directly into application buffers: pack-
ets for many applications could arrive in any order and at
any time, leading to DMAs to wildly disparate buffers.
This is in sharp contrast with the way applications ac-
cess their memory, where both spatial and temporal lo-
cality can be observed: memory accesses to nearby ar-
eas tend to occur closely together.

Cache invalidation can have an adverse effect on the
performance of the system. For example, the Calgary

IOMMU (which will be discussed later in detail) does
not provide a software mechanism for invalidating a sin-
gle cache entry—one must flush the entire cache to in-
validate an entry. We present a related optimization in
Section 4.

It should be mentioned that the PCI-SIG IOV (IO Vir-
tualization) working group is working on an Address
Translation Services (ATS) standard. ATS brings in an-
other level of caching, by defining how I/O endpoints
(i.e., adapters) inter-operate with the IOMMU to cache
translations on the adapter and communicate invalida-
tion requests from the IOMMU to the adapter. This adds
another level of complexity to the system, which needs
to be overcome in order to find the optimal caching strat-
egy.

1.1.2 Hardware↔ Software Interface

The main hardware/software interface in the TCE fam-
ily of IOMMUs is the Translation Control Entry (TCE).
TCEs are organized in TCE tables. TCE tables are anal-
ogous to page tables in an MMU, and TCEs are similar
to page table entries (PTEs). Each TCE identifies a 4KB
page of host memory and the access rights that the bus
(or device) has to that page. The TCEs are arranged in
a contiguous series of host memory pages that comprise
the TCE table. The TCE table creates a single unique IO
address space (DMA address space) for all the devices
that share it.

The translation from a DMA address to a host mem-
ory address occurs by computing an index into the TCE
table by simply extracting the page number from the
DMA address. The index is used to compute a direct
offset into the TCE table that results in a TCE that trans-
lates that IO page. The access control bits are then used
to validate both the translation and the access rights to
the host memory page. Finally, the translation is used by
the bus to direct a DMA transaction to a specific location
in host memory. This process is illustrated in Figure 1.

The TCE architecture can be customized in several
ways, resulting in different implementations that are op-
timized for a specific machine. This paper examines the
performance of two TCE implementations. The first one
is the Calgary family of IOMMUs, which can be found
in IBM’s high-end System x (x86-64 based) servers, and
the second one is the DMA Address Relocation Table
(DART) IOMMU, which is often paired with PowerPC



2007 Linux Symposium, Volume One • 11

ByteIO Page Number

IO Address

ControlReal Page Number AccessPN1

ControlReal Page Number AccessPN2

AccessPNn Control

ControlReal Page Number AccessPN0

TCE Table

Real Page Number Byte

Host Memory Address

Real Page Number

Figure 1: TCE table

970 processors that can be found in Apple G5 and IBM
JS2x blades, as implemented by the CPC945 Bridge and
Memory Controller.

The format of the TCEs are the first level of customiza-
tion. Calgary is designed to be integrated with a Host
Bridge Adapter or South Bridge that can be paired with
several architectures—in particular ones with a huge ad-
dressable range. The Calgary TCE has the following
format:

The 36 bits of RPN represent a generous 48 bits (256
TB) of addressability in host memory. On the other
hand, the DART, which is integrated with the North
Bridge of the Power970 system, can take advantage of
the systems maximum 24-bit RPN for 36-bits (64 GB)
of addressability and reduce the TCE size to 4 bytes, as
shown in Table 2.

This allows DART to reduce the size of the table by half
for the same size of IO address space, leading to bet-
ter (smaller) host memory consumption and better host

Bits Field Description
0:15 Unused
16:51 RPN Real Page number
52:55 Reserved

56:61 Hub ID
Used when a single TCE table
isolates several busses

62 W* W=1⇒Write allowed
63 R* R=1⇒ Read allowed

*R=0 and W=0 represent an invalid translation

Table 1: Calgary TCE format

cache utilization.

1.1.3 Pure Software Interfaces

The IOMMU is a shared hardware resource, which is
used by drivers, which could be implemented in user-
space, kernel-space, or hypervisor-mode. Hence the
IOMMU needs to be owned, multiplexed and protected



12 • The Price of Safety: Evaluating IOMMU Performance

Bits Field Description
0 Valid 1 - valid
1 R R=0⇒ Read allowed
2 W W=0⇒Write allowed
3:7 Reserved
8:31 RPN Real Page Number

Table 2: DART TCE format

by system software—typically, an operating system or
hypervisor.

In the bare-metal (no hypervisor) case, without any
userspace driver, with Linux as the operating system, the
relevant interface is Linux’s DMA-API [4][5]. In-kernel
drivers call into the DMA-API to establish and tear-
down IOMMU mappings, and the IOMMU’s DMA-
API implementation maps and unmaps pages in the
IOMMU’s tables. Further details on this API and the
Calgary implementation thereof are provided in the OLS
’06 paper entitled Utilizing IOMMUs for Virtualization
in Linux and Xen [3].

The hypervisor case is implemented similarly, with a
hypervisor-aware IOMMU layer which makes hyper-
calls to establish and tear down IOMMU mappings. As
will be discussed in Section 4, these basic schemes can
be optimized in several ways.

It should be noted that for the hypervisor case there
is also a common alternative implementation tailored
for guest operating systems which are not aware of the
IOMMU’s existence, where the IOMMU’s mappings
are managed solely by the hypervisor without any in-
volvement of the guest operating system. This mode
of operation and its disadvantages are discussed in Sec-
tion 4.3.1.

2 Performance Results and Analysis

This section presents the performance of IOMMUs,
with and without a hypervisor. The benchmarks
were run primarily using the Calgary IOMMU, al-
though some benchmarks were also run with the DART
IOMMU. The benchmarks used were FFSB [6] for disk
IO and netperf [7] for network IO. Each benchmark was
run in two sets of runs, first with the IOMMU disabled
and then with the IOMMU enabled. The benchmarks
were run on bare-metal Linux (Calgary and DART) and
Xen dom0 and domU (Calgary).

For network tests the netperf [7] benchmark was used,
using the TCP_STREAM unidirectional bulk data trans-
fer option. The tests were run on an IBM x460 system
(with the Hurricane 2.1 chipset), using 4 x dual-core
Paxville Processors (with hyperthreading disabled). The
system had 16GB RAM, but was limited to 4GB us-
ing mem=4G for IO testing. The system was booted
and the tests were run from a QLogic 2300 Fiber Card
(PCI-X, volumes from a DS3400 hooked to a SAN). The
on-board Broadcom Gigabit Ethernet adapter was used.
The system ran SLES10 x86_64 Base, with modified
kernels and Xen.

The netperf client system was an IBM e326 system,
with 2 x 1.8 GHz Opteron CPUs and 6GB RAM. The
NIC used was the on-board Broadcom Gigabit Ethernet
adapter, and the system ran an unmodified RHEL4 U4
distribution. The two systems were connected through a
Cisco 3750 Gigabit Switch stack.

A 2.6.21-rc6 based tree with additional Calgary patches
(which are expected to be merged for 2.6.23) was
used for bare-metal testing. For Xen testing, the xen-
iommu and linux-iommu trees [8] were used. These are
IOMMU development trees which track xen-unstable
closely. xen-iommu contains the hypervisor bits and
linux-iommu contains the xenolinux (both dom0 and
domU) bits.

2.1 Results

For the sake of brevity, we present only the network re-
sults. The FFSB (disk IO) results were comparable. For
Calgary, the system was tested in the following modes:

• netperf server running on a bare-metal kernel.

• netperf server running in Xen dom0, with dom0
driving the IOMMU. This setup measures the per-
formance of the IOMMU for a “direct hardware ac-
cess” domain—a domain which controls a device
for its own use.

• netperf server running in Xen domU, with dom0
driving the IOMMU and domU using virtual-IO
(netfront or blkfront). This setup measures the per-
formance of the IOMMU for a “driver domain”
scenario, where a “driver domain” (dom0) controls
a device on behalf of another domain (domU).



2007 Linux Symposium, Volume One • 13

The first test (netperf server running on a bare-metal ker-
nel) was run for DART as well.

Each set of tests was run twice, once with the IOMMU
enabled and once with the IOMMU disabled. For each
test, the following parameters were measured or calcu-
lated: throughput with the IOMMU disabled and en-
abled (off and on, respectively), CPU utilization with
the IOMMU disabled and enabled, and the relative dif-
ference in throughput and CPU utilization. Note that
due to different setups the CPU utilization numbers are
different between bare-metal and Xen. Each CPU uti-
lization number is accompanied by the potential maxi-
mum.

For the bare-metal network tests, summarized in Fig-
ures 2 and 3, there is practically no difference between
the CPU throughput with and without an IOMMU. With
an IOMMU, however, the CPU utilization can be as
much as 60% more (!), albeit it is usually closer to 30%.
These results are for Calgary—for DART, the results are
largely the same.

For Xen, tests were run with the netperf server in dom0
as well as in domU. In both cases, dom0 was driving
the IOMMU (in the tests where the IOMMU was en-
abled). In the domU tests domU was using the virtual-
IO drivers. The dom0 tests measure the performance of
the IOMMU for a “direct hardware access” scenario and
the domU tests measure the performance of the IOMMU
for a “driver domain” scenario.

Network results for netperf server running in dom0 are
summarized in Figures 4 and 5. For messages of sizes
1024 and up, the results strongly resemble the bare-
metal case: no noticeable throughput difference except
for very small packets and 40–60% more CPU utiliza-
tion when IOMMU is enabled. For messages with sizes
of less than 1024, the throughput is significantly less
with the IOMMU enabled than it is with the IOMMU
disabled.

For Xen domU, the tests show up to 15% difference in
throughput for message sizes smaller than 512 and up to
40% more CPU utilization for larger messages. These
results are summarized in Figures 6 and 7.

3 Analysis

The results presented above tell mostly the same story:
throughput is the same, but CPU utilization rises when

the IOMMU is enabled, leading to up to 60% more CPU
utilization. The throughput difference with small net-
work message sizes in the Xen network tests probably
stems from the fact that the CPU isn’t able to keep up
with the network load when the IOMMU is enabled. In
other words, dom0’s CPU is close to the maximum even
with the IOMMU disabled, and enabling the IOMMU
pushes it over the edge.

On one hand, these results are discouraging: enabling
the IOMMU to get safety and paying up to 60% more in
CPU utilization isn’t an encouraging prospect. On the
other hand, the fact that the throughput is roughly the
same when the IOMMU code doesn’t overload the sys-
tem strongly suggests that software is the culprit, rather
than hardware. This is good, because software is easy to
fix!

Profile results from these tests strongly suggest that
mapping and unmapping an entry in the TCE table is
the biggest performance hog, possibly due to lock con-
tention on the IOMMU data structures lock. For the
bare-metal case this operation does not cross address
spaces, but it does require taking a spinlock, searching a
bitmap, modifying it, performing several arithmetic op-
erations, and returning to the user. For the hypervisor
case, these operations require all of the above, as well
as switching to hypervisor mode.

As we will see in the next section, most of the optimiza-
tions discussed are aimed at reducing both the number
and costs of TCE map and unmap requests.

4 Optimizations

This section discusses a set of optimizations that have
either already been implemented or are in the process of
being implemented. “Deferred Cache Flush” and “Xen
multicalls” were implemented during the IOMMU’s
bring-up phase and are included in the results presented
above. The rest of the optimizations are being imple-
mented and were not included in the benchmarks pre-
sented above.

4.1 Deferred Cache Flush

The Calgary IOMMU, as it is used in Intel-based
servers, does not include software facilities to invalidate
selected entries in the TCE cache (IOTLB). The only



14 • The Price of Safety: Evaluating IOMMU Performance

Figure 2: Bare-metal Network Throughput

Figure 3: Bare-metal Network CPU Utilization



2007 Linux Symposium, Volume One • 15

Figure 4: Xen dom0 Network Throughput

Figure 5: Xen dom0 Network CPU Utilization



16 • The Price of Safety: Evaluating IOMMU Performance

Figure 6: Xen domU Network Throughput

Figure 7: Xen domU Network CPU Utilization



2007 Linux Symposium, Volume One • 17

way to invalidate an entry in the TCE cache is to qui-
esce all DMA activity in the system, wait until all out-
standing DMAs are done, and then flush the entire TCE
cache. This is a cumbersome and lengthy procedure.

In theory, for maximal safety, one would want to inval-
idate an entry as soon as that entry is unmapped by the
driver. This will allow the system to catch any “use after
free” errors. However, flushing the entire cache after ev-
ery unmap operation proved prohibitive—it brought the
system to its knees. Instead, the implementation trades
a little bit of safety for a whole lot of usability. Entries
in the TCE table are allocated using a next-fit allocator,
and the cache is only flushed when the allocator rolls
around (starts to allocate from the beginning). This op-
timization is based on the observation that an entry only
needs to be invalidated before it is re-used. Since a given
entry will only be reused once the allocator rolls around,
roll-around is the point where the cache must be flushed.

The downside to this optimization is that it is possible
for a driver to reuse an entry after it has unmapped it,
if that entry happened to remain in the TCE cache. Un-
fortunately, closing this hole by invalidating every entry
immediately when it is freed, cannot be done with the
current generation of the hardware. The hole has never
been observed to occur in practice.

This optimization is applicable to both bare-metal and
hypervisor scenarios.

4.2 Xen multicalls

The Xen hypervisor supports “multicalls” [12]. A mul-
ticall is a single hypercall that includes the parameters
of several distinct logical hypercalls. Using multicalls
it is possible to reduce the number of hypercalls needed
to perform a sequence of operations, thereby reducing
the number of address space crossings, which are fairly
expensive.

The Calgary Xen implementation uses multicalls to
communicate map and unmap requests from a domain
to the hypervisor. Unfortunately, profiling has shown
that the vast majority of map and unmap requests (over
99%) are for a single entry, making multicalls pointless.

This optimization is only applicable to hypervisor sce-
narios.

4.3 Overhauling the DMA API

Profiling of the above mentioned benchmarks shows that
the number one culprits for CPU utilization are the map
and unmap calls. There are several ways to cut down on
the overhead of map and unmap calls:

• Get rid of them completely.

• Allocate in advance; free when done.

• Allocate and free in large batches.

• Never free.

4.3.1 Using Pre-allocation to Get Rid of Map and
Unmap

Calgary provides somewhat less than a 4GB DMA ad-
dress space (exactly how much less depends on the sys-
tem’s configuration). If the guest’s pseudo-physical ad-
dress space fits within the DMA address space, one pos-
sible optimization is to only allocate TCEs when the
guest starts up and free them when the guest shuts down.
The TCEs are allocated such that TCE i maps the same
machine frame as the guest’s pseudo-physical address
i. Then the guest could pretend that it doesn’t have an
IOMMU and pass the pseudo-physical address directly
to the device. No cache flushes are necessary because
no entry is ever invalidated.

This optimization, while appealing, has several down-
sides: first and foremost, it is only applicable to a hy-
pervisor scenario. In a bare-metal scenario, getting rid
of map and unmap isn’t practical because it renders the
IOMMU useless—if one maps all of physical memory,
why use an IOMMU at all? Second, even in a hyper-
visor scenario, pre-allocation is only viable if the set
of machine frames owned by the guest is “mostly con-
stant” through the guest’s lifetime. If the guest wishes to
use page flipping or ballooning, or any other operation
which modifies the guest’s pseudo-physical to machine
mapping, the IOMMU mapping needs to be updated as
well so that the IO to machine mapping will again cor-
respond exactly to the pseudo-physical to machine map-
ping. Another downside of this optimization is that it
protects other guests and the hypervisor from the guest,
but provides no protection inside the guest itself.



18 • The Price of Safety: Evaluating IOMMU Performance

4.3.2 Allocate In Advance And Free When Done

This optimization is fairly simple: rather than using the
“streaming” DMA API operations, use the alloc and free
operations to allocate and free DMA buffers and then
use them for as long as possible. Unfortunately this re-
quires a massive change to the Linux kernel since driver
writers have been taught since the days of yore that
DMA mappings are a sparse resource and should only
be allocated when absolutely needed. A better way to
do this might be to add a caching layer inside the DMA
API for platforms with many DMA mappings so that
driver writers could still use the map and unmap API,
but the actual mapping and unmapping will only take
place the first time a frame is mapped. This optimiza-
tion is applicable to both bare-metal and hypervisors.

4.3.3 Allocate And Free In Large Batches

This optimization is a twist on the previous one: rather
than modifying drivers to use alloc and free rather than
map and unmap, use map_multi and unmap_multi wher-
ever possible to batch the map and unmap operations.
Again, this optimization requires fairly large changes
to the drivers and subsystems and is applicable to both
bare-metal and hypervisor scenarios.

4.3.4 Never Free

One could sacrifice some of the protection afforded by
the IOMMU for the sake of performance by simply
never unmapping entries from the TCE table. This will
reduce the cost of unmap operations (but not eliminate
it completely—one would still need to know which en-
tries are mapped and which have been theoretically “un-
mapped” and could be reused) and will have a particu-
larly large effect on the performance of hypervisor sce-
narios. However, it will sacrifice a large portion of
the IOMMU’s advantage: any errant DMA to an ad-
dress that corresponds with a previously mapped and
unmapped entry will go through, causing memory cor-
ruption.

4.4 Grant Table Integration

This work has mostly been concerned with “direct hard-
ware access” domains which have direct access to hard-
ware devices. A subset of such domains are Xen “driver

domains” [11], which use direct hardware access to per-
form IO on behalf of other domains. For such “driver
domains,” using Xen’s grant table interface to pre-map
TCE entries as part of the grant operation will save
an address space crossing to map the TCE through the
DMA API later. This optimization is only applicable to
hypervisor (specifically, Xen) scenarios.

5 Future Work

Avenues for future exploration include support and per-
formance evaluation for more IOMMUs such as Intel’s
VT-d [1] and AMD’s IOMMU [2], completing the im-
plementations of the various optimizations that have
been presented in this paper and studying their effects
on performance, coming up with other optimizations
and ultimately gaining a better understanding of how to
build “zero-cost” IOMMUs.

6 Conclusions

The performance of two IOMMUs, DART on PowerPC
and Calgary on x86-64, was presented, through running
IO-intensive benchmarks with and without an IOMMU
on the IO path. In the common case throughput re-
mained the same whether the IOMMU was enabled or
disabled. CPU utilization, however, could be as much as
60% more in a hypervisor environment and 30% more
in a bare-metal environment, when the IOMMU was en-
abled.

The main CPU utilization cost came from too-frequent
map and unmap calls (used to create translation entries
in the DMA address space). Several optimizations were
presented to mitigate that cost, mostly by batching map
and unmap calls in different levels or getting rid of them
entirely where possible. Analyzing the feasibility of
each optimization and the savings it produces is a work
in progress.

Acknowledgments

The authors would like to thank Jose Renato Santos
and Yoshio Turner for their illuminating comments and
questions on an earlier draft of this manuscript.



2007 Linux Symposium, Volume One • 19

References

[1] Intel Virtualization Technology for Directed I/O
Architecture Specification, 2006,
ftp://download.intel.com/
technology/computing/vptech/
Intel(r)_VT_for_Direct_IO.pdf.

[2] AMD I/O Virtualization Technology (IOMMU)
Specification, 2006, http://www.amd.com/
us-en/assets/content_type/white_
papers_and_tech_docs/34434.pdf.

[3] Utilizing IOMMUs for Virtualization in Linux and
Xen, by M. Ben-Yehuda, J. Mason, O. Krieger,
J. Xenidis, L. Van Doorn, A. Mallick,
J. Nakajima, and E. Wahlig, in Proceedings of the
2006 Ottawa Linux Symposium (OLS), 2006.

[4] Documentation/DMA-API.txt.

[5] Documentation/DMA-mapping.txt.

[6] Flexible Filesystem Benchmark (FFSB) http:
//sourceforge.net/projects/ffsb/

[7] Netperf Benchmark
http://www.netperf.org

[8] Xen IOMMU trees, 2007, http://xenbits.
xensource.com/ext/xen-iommu.hg,
http://xenbits.xensource.com/ext/
linux-iommu.hg

[9] Xen and the Art of Virtualization, by B. Dragovic,
K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer, in
Proceedings of the 19th ASM Symposium on
Operating Systems Principles (SOSP), 2003.

[10] Xen 3.0 and the Art of Virtualization, by I. Pratt,
K. Fraser, S. Hand, C. Limpach, A. Warfield,
D. Magenheimer, J. Nakajima, and A. Mallick, in
Proceedings of the 2005 Ottawa Linux
Symposium (OLS), 2005.

[11] Safe Hardware Access with the Xen Virtual
Machine Monitor, by K. Fraser, S. Hand,
R. Neugebauer, I. Pratt, A. Warfield,
M. Williamson, in Proceedings of the OASIS
ASPLOS 2004 workshop, 2004.

[12] Virtualization in Xen 3.0, by R. Rosen, http://
www.linuxjournal.com/article/8909

[13] Computer Architecture, Fourth Edition: A
Quantitative Approach, by J. Hennessy and
D. Patterson, Morgan Kaufmann publishers,
September, 2006.



20 • The Price of Safety: Evaluating IOMMU Performance



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


