
Evolution in Kernel Debugging using Hardware
Virtualization With Xen

Nitin A. Kamble
nitin.a.kamble@intel.com

Jun Nakajima
jun.nakajima@intel.com

Asit K. Mallick
asit.k.mallick@intel.com

Open Source Technology Center, Intel Corporation

Abstract

Xen’s ability to run unmodified guests with the
virtualization available in hardware opens new
doors of possibilities in the kernel debugging.
Now it’s possible to debug the Linux kernel or
any other PC operating system similar to de-
bugging a user process in Linux. Since hard-
ware virtualization in-processor enables Xen
to implement full virtualization of a guest OS,
there is no need to change the kernel in any way
to debug it.

This paper demonstrates the new evolutionary
debug techniques using examples. It also ex-
plains how the new technique actually works.

1 Introduction

The Xen[1] open source virtual machine moni-
tor initially started with software virtualization
by modifying the guest OS kernel. Since Xen
3.0, it also supports the Intel R© Virtualization
Technology R© [2] to create and run unmodified

guests. This Xen capability to run unmodified
Linux OS or any other unmodified OS also pro-
vides a new opportunity to debug an unmodi-
fied OS using the Xen VMM.

With this guest debug capability, it is possible
to trap into an unmodified guest such as any
Linux, Windows, DOS, or any other PC OS;
and check the register state, modify registers,
set debug breakpoints anywhere including in
the kernel, read and write memory, or inspect or
modify the code currently being executed. This
new method uses gdb[3] as the front end for
debugging. With gdb also comes the source-
level debugging of an unmodified Linux kernel.
There are some advantages of using this debug
approach compared to other kernel debug op-
tions, such as the Linux kernel stays unmodi-
fied, and ability of setting of breakpoints any-
where in the code. In fact it is also possible to
set breakpoints in the boot loader such as grub
[4] or inside the guest BIOS code.

2 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

2 The Architecture and Design of
debugging of an unmodified guest

The virtualization technology in the processor,
and Xen’s ability to take advantage of it, let an
unmodified OS run inside a virtual machine.

The following sections first briefly describe the
virtualization technology in the Intel IA32 pro-
cessors, and how Xen[5] hypervisor utilizes
this hardware virtualization to create virtual
machines (domain) for unmodified guests.

2.1 Intel Virtualization Technology for
IA32 Architecture

Virtualiztion Techinology in the Intel proces-
sors augment the IA32 architecture by pro-
viding new processor operation modes called
VMX operations. And the Virtual-Machine
Control Structure controls the operation of the
virtual machine running in the VMX operation.

The following subsections introduce the VMX
Operation and the Virtual-Machine Control
Structure briefly.

2.1.1 Introduction to VMX operation

VT processor support for virtualization is pro-
vided by a new form of processor operation
called VMX operation. There are two kinds
of VMX operations: VMX root operation and
VMX nonroot operation. The Xen VMM runs
in VMX root operation and guest software runs
in VMX non-root operation. Transitions be-
tween VMX root operation and VMX non-root
operation are called VMX transitions. There
are two kinds of VMX transitions. Transitions
into VMX non-root operation are called VM en-
tries. Transitions from VMX non-root opera-
tion to VMX root operation are called VM ex-

Guest 0 Guest 1

VM Monitor VMXOFFVMXON

VM ExitVM Entry

VM Exit

VM Entry

Figure 1: Interaction of Virtual-Machine Mon-
itor and Guests

its. Figure 1 depicts the interactions between
the VMX root and VMX nonroot operations.

Processor behavior in VMX root operation is
very much as it is outside VMX operation or
without the VT feature in the processor. The
principal differences are that a set of new in-
structions (the VMX instructions) is available
and that the values that can be loaded into cer-
tain control registers are limited. Processor be-
havior in VMX non-root operation is restricted
and modified to facilitate virtualization. Instead
of their ordinary operation, certain instructions
(including the new VMCALL instruction) and
events cause VM exits to the VMM. Because
these VM exits replace ordinary behavior, the
functionality of software in VMX non-root op-
eration is limited. It is this limitation that al-
lows the VMM to retain control of processor
resources.

Because VMX operation places these restric-
tions even on software running with current
privilege level (CPL) 0, guest software can run
at the privilege level for which it was originally
designed.

2.1.2 Virtual-Machine Control Structure

VMX non-root operation and VMX transitions
are controlled by a data structure called a vir-
tual machine control structure (VMCS). Ac-

2006 Linux Symposium, Volume Two • 3

cess to the VMCS is managed through a com-
ponent of processor state called the VMCS
pointer (one per logical processor). The
value of the VMCS pointer is the 64-bit ad-
dress of the VMCS. The VMCS pointer can
be read and written using the instructions
VMPTRST and VMPTRLD. The VMM con-
figures a VMCS using other instructions: VM-
READ, VMWRITE, and VMCLEAR.

Please refer to the latest IA-32 SDM[6] for
more details on the Virtual Machine Extensions
(VMX) in the Intel Processor.

2.2 Xen support for unmodified Guest us-
ing the Hardware Virtualization

The processor state of the running vcpu is
stored in the VMCS area. Xen uses a differ-
ent VMCS for each unmodified guest vcpu. So
when it is scheduling from one VMX guest to
another VMX guest, it switches the VMCS to
save and load the processor context automati-
cally. To get into the hypervisor, paravirtual-
ized Guests use hyper calls, similar to a pro-
cess doing sys-call into OS for privileged op-
erations. On Xen, unmodified guests run in
restricted mode (VMX nonroot operation). In
that mode all the virtualization-related proces-
sor instructions and events cause a VM Exit,
switching to the hypervisor. With the VM Ex-
its there is no need to modify the guest OS to
add the hyper calls in the kernel.

The unmodified guest OS thinks that it is in
control of its physical memory management,
such as page tables, but the Xen hypervi-
sor is monitoring the guest page table usage.
Xen handles the page faults, TLB flush in-
structions for the Guest OS, and maintains
shadow-translated page tables for the unmod-
ified guests.

2.3 Internals of debugging an unmodified
guest on Xen

Figure 3 shows the interactions happening in
various Xen components when an unmodi-
fied guest is being debugged. Both gdb
and gdbserver-xen are processes running
in the Xen-paravirtualized service OS, also
known as domain-0. gdb is totally unmodi-
fied. gdbserver is a gdb tool used for re-
mote debug. gdbserver-xen is a modified
gdbserver for utilizing Xen hyper call based in-
terfaces available in domain-0.

The following sections describe interactions
and implementation details for the the Xen
components exercised while debugging a un-
modified guest OS.

2.3.1 gdb and gdbserver-xen interactions

The gdbserver [7] is a standard tool available to
use with gdb for remote gdb. It uses a ASCII
protocol over the serial line or over the network
to exchange debug information. See Figure 2
for a pictorial view of this interaction.

The gdbserver implements target_ops

for Linux remote debugging. And
gdbserver-xen basically extends the
standard Linux gdbserver by implementing the
target_ops specific to Xen. The interaction
between gdb and gdbserver-xen is no different
than gdb and the standard gdbserver.

2.3.2 Communication between gdbserver-
xen and libxenctrl library

The target_ops from the gdbserver-xen
such as linux_fetch_registers, linux_
store_registers, linux_read_memory,
and linux_write_memory use the xc_

4 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

Linux Kernel

gdbserver

Serial or
network
device
driver

Serial or
network
device
driver

gdb

Linux Kernel

Platform Hardware

Serial or

network device

Serial or

network device

Physical Link

Host 1 Host 2

Platform Hardware

Target
Process

ptrace attach

user

kernel

Platform
devices

Figure 2: Typical use of gdbserver to remotely
debug a Linux process

ptrace interface from the libxenctrl li-
brary to exchange the processor state or mem-
ory contents for the VMX domain. The xc_

ptrace() function implements the ptrace-like
mechanism to control and access the guest.

2.3.3 libxenctrl and dom0 privcmd device
interactions

Gdb’s request to get and set processor registers
is implemented in the libxenctrl library by
xc_ptrace() calls like PTRACE_GETREGS,
PTRACE_SETREGS, PTRACE_GETFPREGS,
PTRACE_SETFPREGS, PTRACE_GETFPXREGS,
and PTRACE_SETFPXREGS. Inside the
xc_ptrace(), the registers are fetched by
the calling fetch_regs() and changed
by calling xc_vcpu_setcontext()

functions. fetch_regs() uses the
dom0_op(DOM0_GETVCPUCONTEXT) Xen
hyper call to get the context of the guest
vcpu. The hyper call is performed by making
IOCTL_PRIVCMD_HYPERCALL ioctl on the
/proc/xen/privcmd domain-0 xen device.

For gdb’s request to get or change code (text)

and data memory, the xc_ptrace requests like
PTRACE_POKETEXT, PTRACE_POKEDATA are
used. These ptrace requests use the map_

domain_va() function to map the guest mem-
ory in the gdbserver-xen process’s address
space, and do the read/write operations on that
mapped memory. The map_domain_va()

function is also part of the libxenctrl li-
brary. It finds out the mode the guest vcpu is
running in, like real mode or 32-bit protected
paging disabled, or paging enabled or paging
with PAE enabled, or 64-bit IA32e mode (long
mode). If the guest processor is in paging-
disabled mode such as real mode then it can get
the machine physical address for the address
gdb has requested directly using the page_

array[] for the domain.1

Xen Hypervisor

Dom0 Guest VMX guest

gdbservergdb

dom0_op

Guest vCPU state

VMCS data

VMexit/VMresume

User

Hypervisor

xc_ptrace

lib

Kernel

Platform hardware devices

local loop

network device

Figure 3: Unmodified guest debug interactions

Then the xc_map_foreign_range() func-
tion is used to map the machine page frame of

1The page_array[] is an array of the physical
page frames numbers allocated to the guest in the guest
physical address order. It is built at the time of creating a
new domain. page_array[guest_physical_
pfn] gives corresponding machine_physical_
pfn. The page_array[] for the guest domain
is obtained by making DOM0_GETMEMLIST dom0_
op() hyper call.

2006 Linux Symposium, Volume Two • 5

the guest page in the gdbserver-Xen’s address
space. It uses IOCTL_PRIVCMD_MMAP ioctl on
the privcmd domain-0 xen device to map the
machine page frames into the the gdbserver-
xen process’s address space. Once it is mapped
in the gdbserver-xen process’s address space, it
then performs simple memory reads or writes
to access the guest memory contents.

map_domain_va() determines if the guest
vcpu is running in paging-enabled mode or not,
by looking at control registers received from
the fetch_regs() call for the guest vcpu.
The control registers CR0 and CR4 tells which
mode the guest vcpu is running such as real,
protected paging disabled, protected paging en-
abled, PAE, or IA32e mode. The control reg-
ister CR3 points to the guest physical address
of the current page table the guest vcpu is
using. The IA32 architecture has different-
format page tables for different processor pag-
ing modes.

The libxenctrl library implements map_

domain_va_32, map_domain_va_pae, and
map_domain_va_64 functions to handle these
different page table formats. The map_

domain_va_64() handles page tables for
both 4k and 2M pages in the IA32e mode.

After getting the guest physical address for the
gdb requested virtual address by traversing the
guest page tables, then the rest of the func-
tionality to map the guest page frame and per-
form read/write is implemented similar to the
paging-disabled situation described above.

2.3.4 privcmd domain-0 device and the
Xen hyper visor Interactions

The /proc/xen/privcmd device is imple-
mented as a device driver in the dom0’s par-
avirtualized kernel. For the device, the IOCTL_

PRIVCMD_MMAP ioctl is implemented by mak-
ing a HYPERVISOR_mmu_update hyper-call in
Xen. And like all the other hyper calls, the
IOCTL_PRIVCMD_HYPERCALL ioctl is imple-
mented by making a call at right the offset in
the hypercall_page.

The hypervisor_page has the handlers for
the hyper calls with various parameters. And it
is initialized by the Xen hypervisor at the do-
main creation time. The initialization of the
hypercall_page involves writing the appro-
priate code in the page for hyper call handlers.
For x86_64 domain-0 the hypercall_page is
initialized with syscall handlers; for i386 it
is it is initialized with int 0x82 calls. For
supervisor_mode_kernel i386 domain-0
kernel it is initialized with the long call in-
struction. All these methods get the proces-
sor execution control into the Xen hypervi-
sor, and call the appropriate function from the
hypercall_table. After the execution of the
hyper call function, the hypervisor returns con-
trol to the next instruction after the hyper call in
the dom0, by making an iret or long call,
or sysret instruction.

2.3.5 The Xen hyper visor infrastructure
for debugging

The get and set of vcpu context dom0_ops

described in Section 2.3.3 provide gdb with
read/write access to the guest vcpu registers.
All the dom0_op hyper calls are handled by
the do_dom0_op() function in the Xen hyper-
visor. The DOM0_GETVCPUCONTEXT dom0_op
gets the vcpu register context of the guest vcpu
by reading the per-vcpu context information for
the guest domain stored in the hypervisor. Not
all information is available there, because some
of the guest register state is stored in VMCS for
faster access. It needs to get the register state
information from the VMCS to get the com-
plete register state of the guest vcpu.

6 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

In a multi-processor system, the domain-0 vcpu
running the dom0_op can be different than the
guest domain vcpu being debugged. And the
VMCS structures are per logical processor; one
processor can not operate on other processor’s
VMCS. So if the processors backing these two
vcpus are different, then the vcpu running the
dom0_op() sends an IPI (InterProcessor Inter-
rupt) to ask the other vcpu to provide its VMCS
guest registers’ context state. The VMCS reg-
isters’ context state is obtained by temporarily
loading the VMCS for the guest vcpu and per-
forming VMREAD instructions for the guest
registers.

The DOM0_GETVCPUCONTEXT dom0_op is im-
plemented similarly using the VMWRITE in-
struction.

The guest memory access is enabled by map-
ping the guest memory in the gdbserver-xen’s
address space using the mmu_update hyper
call; this is described in Section 2.3.4. The
mmu_update hyper call is implemented in the
hypervisor by modifying the page table entries
of the gdbserver-xen process running in par-
avirtualized domain-0, such that the requested
virtual address maps to the machine frame
number of the requested guest memory loca-
tion.

The PIT (Programable Interrupt Timer) vir-
tulization for the the unmodified guests is also
altered in the Xen hypervisor for so that it does
not try to inject the timer ticks guest has missed
due to debugger stopping the guest.

2.3.6 Setting breakpoint in the gdb

Gdb sets breakpoints in the guest by placing
an int3 instruction at the breakpoint location.
Whenever the processor encounters the int3
instruction while executing, a #BP exception is

raised, resulting in a VMexit into the hypervi-
sor. The hypervisor handles VMExits based on
the exit reason, and for the breakpoint excep-
tion VMexit, it simply pauses the guest domain.

Meanwhile the gdbserver is waiting for the
guest domain to pause. Once it discovers that
it has paused, it uses the xc_ptrace interfaces
to get the processor register state of the guest
domain’s vcpu, and passes it on to gdb. gdb
was waiting for a response from the gdbserver.
Once it gets the response, it shows where the
guest is paused, by looking at the eip/rip

from the guest vcpu register state. At this point,
the gdb user can issue various gdb commands
to access and manipulate the guest processor
and memory state.

When the user asks gdb to continue the de-
bugged guest, gdbserver unpauses the guest do-
main, and waits for it to get into paused state
again. The gdbserver also handles the CTRL-C
press from its terminal, pausing the domain and
returning control to gdb.

3 Current Limitations

There are two types of limitations. One is limi-
tation in the use of gdb, because not all the gdb
commands are implemented in the gdbserver-
xen. And then there are limitations due to the
Xen environment of the unmodified guests.

3.1 Limitations on gdb use

Currently breakpoints are implemented only
using the int3 instruction and traps. The pro-
cessor debug registers are not touched. This
puts some limitations on the guest debugging.

Currently these gdb capabilities are missing
from the gdbserver-xen for debugging an un-
modified guest:

2006 Linux Symposium, Volume Two • 7

• hardware breakpoints

• watchpoints

• single stepping

3.2 Limitations on the guest driver debug-
ging

The unmodified guests running on the Xen sees
only those hardware devices emulated by Xen.
And as of now, unmodified guests running on
Xen can not access the platform devices di-
rectly. Hence this debug capability can not
be used to debug any arbitrary device driver.
Only the device driver for the virtualized de-
vices Xen shows to the unmodified guests can
be debugged.

In the future with the Intel Virtualization Tech-
nology for Directed I/O [8] and Xen’s capabil-
ity to assign machine devices directly to the
unmodified guests, it will be possible to use
this debug capability to also debug the device
drivers for the platform’s devices.

4 Comparison with other Linux
Kernel debuggers

There are other debugging [9] options available
for debugging the Linux Kernel, such as soft-
ware debuggers: KDB [10], KGDB [11], and
hardware JTAG based debuggers: Arium In-
target probe [12].

4.1 KDB

The Linux Kernel Debugger (KDB) is a patch
for the Linux kernel and provides a means of
examining kernel memory and data structures
while the system is operational.

4.1.1 Advantages compared to KDB

• No modification to the Linux kernel is
needed. KDB needs a KDB enabled/
patched Linux kernel. If the KDB patch
for the desired kernel is not available, then
there will be more effort to port the KDB
patch to the desired Linux kernel.

• Not only Linux, any PC operating system
can debugged.

• Can set breakpoint anywhere in the kernel,
even in the interrupt handlers. With KDB,
the kernel code used by KDB can not be
debugged.

• Source-level debugging. KDB does not
support source-level debugging.

• Can also debug boot loader or the guest
BIOS code.

4.1.2 Disadvantages compared to KDB

• Requires a system with a VT-capable pro-
cessor.

• With today’s Xen, arbitrary device drivers
can not be debugged.

• Single-step is currently not supported. In-
stead, breakpoints can be used.

• Does not support extra kernel-aware com-
mands. For example, KDB supports ps,
btp, and bta commands to show the run-
ning processes and their back traces.

4.2 KGDB

KGDB is a remote host Linux kernel debugger
through gdb and provides a mechanism to de-
bug the Linux kernel using gdb.

8 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

4.2.1 Advantages compared to KGDB

• The Linux kernel can be debugged with
just one system. KGDB needs two sys-
tems, one running the Linux kernel, and
another controlling it.

• Not only Linux, any PC operating system
can debugged.

• No modification to the Linux kernel is
needed. KGDB also needs a KGDB en-
abled/patched Linux kernel. If the KGDB
patch for the desired kernel is not avail-
able, then there will be more effort to port
the KGDB patch to the desired Linux ker-
nel.

• Can also debug boot loader or the guest
BIOS code.

4.2.2 Disadvantages compared to KGDB

• Requires a system with a VT-capable pro-
cessor.

• With today’s Xen, arbitrary device drivers
can not be debugged.

• Single-step is currently not supported. In-
stead, breakpoints can be used.

5 Debug environment setup

The following sections provide information on
what you need and how to set up your own en-
vironment for debugging the linux kernel using
Xen and hardware virtualization and use it ef-
fectively.

5.1 Requirements

1. Hardware: In order to run modified guest
domains on Xen, first you need a system
with processor capable of Intel Virtualiza-
tion Technology. There is a page [13] set
up on the xen wiki here for currently re-
leased VT-enabled processors; it can help
you in finding the right processor. Going
forward, all future Intel processors will in-
corporate Virtualization Technology.

2. Xen VMM: then you need to get a
Xen with the gdbserver changes. Any
version of Xen after revision 9496:

e08dcff87bb2 dated 31 March 2006
should work. Instructions on how to build
and install on your Linux box can be found
in the Xen user manual [14]. Instead of
building, you can take the ready-built 3.0.2
(or newer) rpm from the download section
[15] of the Xensource website.

3. gdbserver-xen: this is the remote agent
used to attach gdb to a running, unmodi-
fied guest. The sources for gdbserver-xen
are part of the Xen source code. The
tools/debugger/gdb/README file
from the Xen source code provides infor-
mation on how to build gdbserver-xen.

4. gdb: If you are running x86_64 Xen, then
you need 64-bit gdb. If you are running
x86_32 or i386 Xen, then you need 32-
bit gdb. gdb should be provided by your
distribution. Xen allows running a 32-bit
OS on the 64-bit Xen using VT—in that
case, you will need to use the 64-bit ver-
sions of gdb and gdbserver.

5.2 Setting up the debug environment

Once you have all the required components,
then you can go ahead with the setup as fol-
lows.

2006 Linux Symposium, Volume Two • 9

1. Start the unmodified guest normally on top
of xen. If you are not familiar with Xen,
you can refer to the Xen user manual [14].

2. get the domain_id for the running guest
from the xm list command in the ser-
vice domain (domain 0).

3. attach gdbserver-xen to the run-
ning guest with this command:
gdbserver-xen localhost:9999

--attach <domain_id>

4. Then start gdb in domain 0 or on a remote
host. If you have the binary file with sym-
bols for the guest kernel, you can pass it to
gdb.
gdb -s vmlinux

You can get this symbol file for various re-
leased distributions. Appendix A has more
information about it.

If you do not have such a symbol file for
the running guest kernel, you still can de-
bug it by running gdb with no arguments,
but you will not be able operate with sym-
bols from gdb.

5. Enter the gdb command as shown in Ta-
ble 1 at the gdb prompt to set up the
right environment for gdb. With this, gdb
uses the appropriate protocol to commu-
nicate with the gdbserver-xen to exchange
the architecture state. These initialization
gdb commands can also be placed in the
.gdbinit configuration file.

6. Enter this at the gdb prompt to attach to
the remote gdbserver:
target remote <host_running_

gdbserver>:9999

Now you should see the eip/rip where the
guest is stopped for debugging. Figure 4 shows
the screen shot from starting the gdbserver and
gdb connection. It would be more convenient

to use separate terminals for the gdbserver-xen
and gdb, because you can stop execution of the
running guest any time by pressing CTRL-C in
the gdbserver-xen terminal.

Now from gdb you can try these commands:

• get registers

info all-registers
info registers
info registers eax

• set registers

set $rip=$rip+2
set $edi=$esi

• look at memory contents

p /4d 0xc00abd23
p page_array

• change memory contents

set *(long *)0xc01231bf=-1
set my_struct[5].my_member=5
set *(long)($rbp +8) = 0

• look at the disassembly code

x /10i $rip
x /10i $eip
x /10i my_function

• look at the back trace

bt
where

• set breakpoints

break *$rip+0x10
break my_function

10 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

• If you are running on a x86_64 Xen, set the 64-bit architecture in gdb:
set architecture i386:x86-64:intel

• If you are running on a 32-bit Xen, set the 32-bit architecture in gdb:
set architecture i386:intel

Table 1: gdb environment setup for gdbserver-xen

• In one terminal start the gdbserver-xen

[root@localhost ~]# xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 1024 4 r----- 132.7
ExampleHVMDomain 2 512 1 -b---- 11.7

[root@localhost ~]./gdbserver-xen localhost:9999 --attach 2
Attached; pid = 2
Listening on port 9999

• In another terminal start the gdb

[root@localhost ~]# gdb
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".

(gdb) set architecture i386:x86-64:intel
The target architecture is assumed to be i386:x86-64:intel

(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
0x00000000c0109093 in ?? ()
(gdb)

Figure 4: starting the gdsberver-xen and gdb connection

2006 Linux Symposium, Volume Two • 11

• continue to get the breakpoints hit

cont

• delete breakpoints

delete 1

• advance to some location

advance my_function

• jump execution to some other location

jump *0xffffffff8010940f
jump crash.c:90
jump my_function

6 Examples

• Figure 5 shows how to get the debuginfo
for the stock Red Hat Enterprise Linux 3
Update 5 kernel, and use it with gdb to de-
bug the kernel at source level.

• Figure 6 shows a custom-compiled
x86_64 2.6.16 Linux kernel debugged at
source level on 64-bit Xen.

• Figure 7 shows a freedos beta9rc5 debug-
ging without the symbols information.

7 Summary and Conclusion

The paper describes unmodified Linux kernel
debugging at source level using Xen on plat-
forms with hardware virtualization processors.
It describes how the gdb commands gets im-
plemented in the various components of Xen.
It shows how to set up this debug environment
and provides a high-level comparison between
other Linux kernel debuggers.

Appendix A

Debug info for stock distribution kernels. Fig-
ure 5 show how to use this kernel-debuginfo
rpm to debug the Linux kernel at source level.

• Red Hat Fedora Core Distributions:
http://download.fedora.
redhat.com/pub/fedora/linux/
core/{1,2,3,4,5}/{i386,x86_
64}/debug/

• Red Hat Enterprise Linux Distribu-
tions: http://updates.redhat.
com/enterprise/{3AS,3ES,
3WS,3desktop,4AS,4ES,4WS,
4Desktop}/en/os/Debuginfo/
{i386,x86_64}/RPMS/

• SuSE Linux 10.1 ftp://ftp.suse.
com/pub/projects/kernel/
kotd/{i386,x86_64}/SL101_
BRANCH/

• Other Linux Distributions: I could not find
the debuginfo rpms for other distributions.

Acknowledgments

Thanks to my colleagues at Intel Open Source
Technology Center and friends in the open
source community for their continuous support.

Thanks to Keir Fraser and Ian Pratt for
providing me comments and suggestions for
my gdbserver-related patches for unmodfied
(VMX or HVM) guests to Xen.

Thanks to John W. Lockhart for helping me for-
mat this paper in LATEX.

12 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

[root@localhost ~]# wget http://updates.redhat.com/enterprise/3AS/en/os/Debuginfo\
/i386/RPMS/kernel-debuginfo-2.4.21-32.EL.i686.rpm
[root@localhost ~]$ wget http://updates.redhat.com/enterprise/3AS/en/os/\
> Debuginfo/i386/RPMS/kernel-debuginfo-2.4.21-32.EL.i686.rpm
--11:22:49-- http://updates.redhat.com/.../kernel-debuginfo-2.4.21-32.EL.i686.rpm

=> ‘kernel-debuginfo-2.4.21-32.EL.i686.rpm’
Length: 48,079,241 [application/x-rpm]
100%[====================================>] 48,079,241 304.66K/s ETA 00:00
11:25:27 (297.27 KB/s) - ‘kernel-debuginfo-2.4.21-32.EL.i686.rpm’ saved [48,079,241/48,079,241]

[root@localhost ~]# rpm -ivh kernel-debuginfo-2.4.21-32.EL.i686.rpm
warning: kernel-debuginfo-2.4.21-32.EL.i686.rpm: Header V3 DSA signature: NOKEY, key ID db42a60e
Preparing... ### [100%]

1:kernel-debuginfo ### [100%]
[root@localhost ~]# gdb -s /usr/lib/debug/boot/vmlinux-2.4.21-32.EL.debug
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu"...
Using host libthread_db library "/lib64/libthread_db.so.1".

(gdb) set architecture i386:x86-64:intel
The target architecture is assumed to be i386:x86-64:intel
(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
default_idle () at process.c:96
96 }
(gdb) list
91 if (!need_resched())
92 safe_halt();
93 else
94 __sti();
95 }
96 }
97
98 /*
99 * On SMP it’s slightly faster (but much more power-consuming!)
100 * to poll the ->need_resched flag instead of waiting for the
(gdb) p /x swapper_pg_dir
$2 = {{pgd = 0x0} <repeats 768 times>, {pgd = 0x102063}, {pgd = 0x103063}, {

pgd = 0x104063}, {pgd = 0x105063}, {pgd = 0x1063}, {pgd = 0x2063}, {
pgd = 0x3063}, {pgd = 0x4063}, {pgd = 0x5063}, {pgd = 0x6063}, {
pgd = 0x7063}, {pgd = 0x8063}, {pgd = 0x9063}, {pgd = 0xa063}, {
pgd = 0xb063}, {pgd = 0xc063}, {pgd = 0xd063}, {pgd = 0xe063}, {
pgd = 0xf063}, {pgd = 0x10063}, {pgd = 0x11063}, {pgd = 0x12063}, {
pgd = 0x13063}, {pgd = 0x14063}, {pgd = 0x15063}, {pgd = 0x16063}, {
pgd = 0x17063}, {pgd = 0x18063}, {pgd = 0x19063}, {pgd = 0x1a063}, {
pgd = 0x1b063}, {pgd = 0x1c063}, {pgd = 0x1d063}, {pgd = 0x1e063}, {
pgd = 0x1f063}, {pgd = 0x20063}, {pgd = 0x21063}, {pgd = 0x22063}, {
pgd = 0x23063}, {pgd = 0x24063}, {pgd = 0x25063}, {pgd = 0x26063}, {
pgd = 0x27063}, {pgd = 0x28063}, {pgd = 0x29063}, {pgd = 0x2a063}, {
pgd = 0x2b063}, {pgd = 0x2c063}, {pgd = 0x2d063}, {pgd = 0x2e063}, {
pgd = 0x2f063}, {pgd = 0x30063}, {pgd = 0x31063}, {pgd = 0x32063}, {
pgd = 0x33063}, {pgd = 0x34063}, {pgd = 0x35063}, {pgd = 0x36063}, {
pgd = 0x37063}, {pgd = 0x38063}, {pgd = 0x39063}, {pgd = 0x3a063}, {
pgd = 0x3b063}, {pgd = 0x3c063}, {pgd = 0x0}, {pgd = 0x0}, {
pgd = 0x1bb0067}, {pgd = 0x0} <repeats 185 times>, {pgd = 0x3e067}, {
pgd = 0x0}, {pgd = 0x0}, {pgd = 0x3d067}}

(gdb)

Figure 5: An Example of source-level debugging of a 32-bit Red Hat RHEL3 Update 5 stock Linux
kernel on 64-bit Xen.

2006 Linux Symposium, Volume Two • 13

[root@localhost linux-2.6.16]$ gdb -s vmlinux
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu"...
(no debugging symbols found)
Using host libthread_db library "/lib64/libthread_db.so.1".

The target architecture is assumed to be i386:x86-64:intel
[New Thread 0]
[Switching to Thread 0]
0x000000000040046f in ?? ()
(gdb) break schedule
Breakpoint 6 at 0xffffffff803c3044
(gdb) cont
Continuing.

Breakpoint 6, 0xffffffff803c3044 in schedule ()
(gdb) x /5i $rip
0xffffffff803c3044 <schedule+4>: push %r15
0xffffffff803c3046 <schedule+6>: push %r14
0xffffffff803c3048 <schedule+8>: push %r13
0xffffffff803c304a <schedule+10>: push %r12
0xffffffff803c304c <schedule+12>: push %rbx
(gdb) delete 6
(gdb) break pcnet32_start_xmit
Breakpoint 7 at 0xffffffff80288590
(gdb) cont
Continuing.

Breakpoint 7, 0xffffffff80288590 in pcnet32_start_xmit ()
(gdb) x /5i $rip
0xffffffff80288590 <pcnet32_start_xmit>: sub $0x48,%rsp
0xffffffff80288594 <pcnet32_start_xmit+4>: mov %r15,0x40(%rsp)
0xffffffff80288599 <pcnet32_start_xmit+9>: mov %rbx,0x18(%rsp)
0xffffffff8028859e <pcnet32_start_xmit+14>: mov %rsi,%r15
0xffffffff802885a1 <pcnet32_start_xmit+17>: mov %rbp,0x20(%rsp)
(gdb) delete 7
(gdb) break ret_from_intr
Breakpoint 8 at 0xffffffff8010af64
(gdb) cont
Continuing.

Breakpoint 8, 0xffffffff8010af64 in ret_from_intr ()
(gdb) delete 8
(gdb) cont
Continuing.

Figure 6: Example of source-level debugging of a 64-bit custom-compiled 2.6.16 Linux kernel on
64-bit Xen.

14 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

[root@localhost linux-2.6.16]$ gdb -s vmlinux
[root@ljrl4 ~]# gdb
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu".
(gdb) set architecture i386:intel
The target architecture is assumed to be i386:intel
(gdb) target remote localhost:9999
Remote debugging using localhost:9999
[New Thread 0]
[Switching to Thread 0]
0x000001eb in ?? ()

(gdb) x/10i $eip
0x1eb: lock push %ebx
0x1ed: incl (%eax)
0x1ef: lock push %ebx
0x1f1: incl (%eax)
0x1f3: lock push %ebx
0x1f5: incl (%eax)
0x1f7: lock push %ebx
0x1f9: incl (%eax)
0x1fb: lock push %ebx
0x1fd: incl (%eax)
(gdb) info registers
eax 0x301e1 197089
ecx 0x40006 262150
edx 0x6 6
ebx 0x35a 858
esp 0xa2c 0xa2c
ebp 0xd0a38 0xd0a38
esi 0x4b0 1200
edi 0xd04b0 853168
eip 0x1eb 0x1eb
eflags 0x23246 143942
cs 0x70 112
ss 0xcf 207
ds 0x70 112
es 0xcf 207
fs 0xf000 61440
gs 0xf000 61440
(gdb) x /16x 0x10*$ds + $esi
0x175a: 0x007004b0 0x147c0a94 0x0aa0fd8e 0x0a7e21b5
0x176a: 0x73eb000e 0x14220700 0x007e145c 0x147c0000
0x177a: 0x218f218f 0x90909090 0xfd8e0000 0x218f147c
0x178a: 0xfd8e0203 0x0000218f 0x00000000 0x00000000
(gdb) cont
Continuing.

Figure 7: Example of debugging freedos beta9rc5 on 32-bit Xen.

2006 Linux Symposium, Volume Two • 15

References

[1] The xen virtual machine monitor.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/.

[2] Intel virtulization technology.
http://www.intel.com/
technology/computing/vptech/.

[3] Gdb: The gnu project debugger. http:
//www.gnu.org/software/gdb.

[4] Grub: Gnu grand unified bootloader. http:
//www.gnu.org/software/grub/.

[5] Xen architecture and design documents.
http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/
architecture.html.

[6] Ia-32 intel R©architecture software developer’s
manual, volume 3b, chapters 19-23.
http://developer.intel.com/
design/mobile/core/
duodocumentation.htm.

[7] Remote debugging with gdb. http://www.
kegel.com/linux/gdbserver.html.

[8] Intel virtualization technology for directed i/o
architecture. ftp://download.intel.
com/technology/computing/
vptech/Intel(r)_VT_for_Direct_
IO.pdf.

[9] Steve Best. Linux debugging techniques
article. Technical report, IBM Linux
Technology Center. http://www-128.
ibm.com/developerworks/linux/
library/l-debug/.

[10] Kdb: Built-in kernel debugger. http:
//oss.sgi.com/projects/kdb/.

[11] Kgdb: Linux kernel source level debugger
using gdb conenction over serial line.
http://sourceforge.net/
projects/kgdb.

[12] Arium in-taget probe.
http://www.arium.com/products/
ecmxdpice.html.

[13] Intel processors with vt feature.
http://wiki.xensource.com/
xenwiki/IntelVT.

[14] Xen user manual. http://www.cl.cam.
ac.uk/Research/SRG/netos/xen/
readmes/user/user.html.

[15] Xen readymade rpms.
http://xensource.com/xen/
downloads/index.html.

Disclaimer

The opinions expressed in this paper are those of the
author and do not necessarily represent the position
of the Intel Corporation.

Linux is a registered trademark of Linus Torvalds.

Intel is a registered trademark of Intel Corporation.

All other trademarks mentioned herein are the prop-
erty of their respective owners.

16 • Evolution in Kernel Debugging using Hardware Virtualization With Xen

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

