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Abstract

Many enterprise applications such as Database
and File- and Application-Servers have large
text and data footprints. For efficient execution,
these applications need the processor to effi-
ciently cache address translations for many text
and data pages. Translation Lookaside Buffers
(TLBs) are a very critical resource on any pro-
cessor and all effort should be made to use
them as optimally as possible. Linux kernel
uses huge TLBs (x86, IA-64, etc.) for map-
ping its own text and data. HUGETLBFS support
in Linux allows the use of huge TLBs (for ex-
ample 2M/4M on x86, 256MB on IA-64) for
mapping an application’s dynamic data. In this
paper we will describe an approach that lever-
ages HUGETLBFS support in kernel for map-
ping a program’s text region. We will detail
the modifications applied to different compo-
nents (Linux kernel, glibc and binutils) for this
solution, and discuss the performance improve-
ments it delivers on an industry standard trans-
action processing workload.

*Work was done while working at Intel.

1 Introduction

Data footprints for many enterprise workloads
range from several tens of megabytes to a few
terabytes. For supporting these workloads effi-
ciently, it is critical to deploy large amounts of
primary memory to effectively cache their data
working sets. Accesses distributed over wide
ranges of primary memory need to be translated
efficiently as well, and to do so with the lim-
ited translation resources on a processor, many
systems use large granular page mappings so
that a single translation resource can map a
wide range of contiguous data. Significantly,
over successive releases many enterprise appli-
cations have grown steadily in code size and
thus the use of large grained instruction address
translation for their efficient execution has also
become attractive to explore. This paper de-
scribes how to extend the use of HUGETLBFS
mappings in Linux, so that in addition to map-
ping large ranges of data, it is possible also to
cover large spans of program text with few ad-
dress translation resources.

The paper is organized as follows. As back-
ground, Section 2 briefly goes over the ratio-
nale for employing HUGETLBFS to map data,
and offers reasons for using it to map text as
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well. Section 3 describes the changes to pro-
gram linking and loading mechanisms in order
to accomplish code placement in large pages.
Section 4 illustrates the use of the mechanisms
with an example. Section 5 discusses the per-
formance impact, using an industry standard
workload for measurement and analysis. Sec-
tions 6 relates current status and planned work,
and Section 7 concludes the paper.

2 Use of Large Grained Transla-
tions

Enterprise software systems manage vast
amounts of data, maintained usually in com-
plex and highly interconnected information
sets. They also implement many layers of so-
phisticated and concurrent processing of the in-
formation they manage, and are designed for
large scale and mission critical use. Such
systems, which include for example, database
management systems, groupware backends,
web servers, and, supply chain and workflow
systems, commonly need to touch data spread
across large amounts of secondary or tertiary
storage. Generally these systems are config-
ured with large amounts of physical memory,
in order to achieve efficient buffering of I/O.
Accesses to the primary memory, for fetching
either instructions or data, are themselves ac-
celerated by high speed caches that retain re-
cently used information close to the processors.
It is common for present day machines used for
data warehousing to be configured with several
hundred gigabytes of physical memory.

Resource and time efficient addressing of these
large physical memories is also critical to
achieiving good performance. Modern pro-
cessors implement small, high speed transla-
tion caches, also called Translation Lookaside
Buffers (TLBs), to reduce the time it takes to
translate the virtual page addresses for data and

instructions to corresponding physical page ad-
dresses. Programs with good locality of access
benefit from TLB use considerably, while pro-
grams with sparse memory reference character-
istics suffer high TLB miss rates and run less
efficiently as a result. Increasing the number of
the TLBs in order to improve their hit rates is
not a satisfactory solution, as it drives up their
complexity and the number of clocks it takes
to produce translations, and also contributes to
power consumption [7].

The number of TLBs available on most proces-
sors is generally much smaller than the num-
ber of normal sized pages needed to cover
the large data working sets of most enter-
prise applications [2], [3], [7]. To rem-
edy this situation, superpages or huge-pages—
which map physical memory in much larger
grained units than ordinary pages—are now
supported by most processors. Beginning with
the 2.6 kernel, the Linux operating system
introduced HUGETLBFS, a pseudo-file system
through which appropriately privileged entities
can map their data in hugepages [3], [4].

In addition to having large data footprints, these
software systems also have large text working
sets, characteristic of their inherent complex-
ity. It is common, for example, for a database
management system to have a text footprint of
a few hundred megabytes, and a text working
set ranging from several hundred kilobytes to a
few megabytes. In covering these code ranges
with ordinary pages, such software stresses the
translation caches of a modern microproces-
sor. In out-of-order processor pipelines, the
resulting stalls pose a serial bottleneck due to
the in-order instruction issuing front ends [1].
On simultaneously multi-threaded engines such
as Intel’s hyperthreaded processors [5], the di-
vision of TLBs among the logical processors
sharing a core further reduces the number of
TLBs available to each logical processor.

The demand for TLBs is further amplified
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by the frequent need to support text working
set mappings among several concurrent pro-
cesses that do not share a common address
space even as they share the physical pages
that hold the text. For superior performance
and resource sharing, applications that share
the same text image might ideally be recast as
threads; but frequently other considerations—
fault isolation, recoverability, and deployment
flexibility—make the concurrent process model
a preferred approach. In the applications that
use multiple process instances that share text,
the use of large-grained text mappings also
reduces the amount of page table memory
consumed—multiple times, once for each pro-
cess instance. These factors make it very de-
sirable to extend the benefits of large grained
translations to text regions.

In addition to kernel static data, the Linux ker-
nel arranges to have its own text also placed
into large pages. In order to allocate and use
large pages from HUGETLBFS for the purpose
of mapping the text of an enterprise application,
we need to similarly shape the text layout in
the application’s address space. Currently the
HUGETLBFS support in Linux does not provide
a transparent way to let user applications use
huge pages for mapping program text. The so-
lution to this problem is described in the next
section.

3 Large Text Page Implementation

In current Linux, the kernel lays out program
text according to directions encoded into the
executable by the link editor. Once the ker-
nel completes the mapping of a program’s seg-
ments, it passes control to the runtime linker
to complete dynamic resolutions and initial-
izations. Because of this split responsibility
between the kernel and the dynamic linker,
changes are required to each in order to use

HUGETLBFS for text mappings in a natural way.
We considered the alternative of working with
an unmodified kernel and repealing its actions
later in order to relocate the desired segments to
large text mappings, but refrained from pursu-
ing it as we found it cumbersome, error-prone
and maintainence risk.

To create a different layout, our approach is
to capture the placement directive at program
linkage time. The placement directive indicates
whether the application developer prefers that
the program text be laid out in large pages. Sec-
tion 3.1 describes the changes to the applica-
tion binary interface (ABI) and to the linker, to
accomplish this objective. We then act upon
this direction at program load time. The kernel
is extended very modestly. The kernel change,
described in Section 3.2, allows it to defer code
placement for the indicated segments.

The bulk of the modifications are limited to
the dynamic linker, and are described in Sec-
tion 3.3. In Section 3.4, we describe compatible
execution of binaries compiled for large page
placement of code, under the conditions that
large pages are either unavailable or the target
system does not contain the changes described
here.

3.1 ABI and Linker Additions

We added a new segment type, PT_GNU_HUGE_
PAGE, to the program header, in order to spec-
ify the location of a huge page text segment.
An executable cannot have more than one
PT_GNU_HUGE_PAGE segment. A PT_GNU_

HUGE_PAGE segment, if present, must precede
any PT_LOAD segments in the program header.
The PT_GNU_HUGE_PAGE segment, which is
aligned at the huge page size boundary, has
a corresponding PT_LOAD segment, which is
aligned normally.
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A new linker option, -z huge, is added, which
will create a PT_GNU_HUGE_PAGE segment in
executable.

3.2 Kernel

We added three entries to the auxiliary vec-
tor: AT_EXECFILENAME, AT_HUGEPAGESZ,
and AT_HUGEPAGEPHDR. AT_EXECFILENAME
specifies the absolute pathname of the program.
AT_HUGEPAGESZ specifies huge page size and
AT_HUGEPAGEPHDR provides the address of
the PT_GNU_HUGE_PAGE segment entry.

When it sees a PT_GNU_HUGE_PAGE segment,
the kernel does not map in the corresponding
PT_LOAD segment. Instead, it writes the ad-
dress of the PT_GNU_HUGE_PAGE segment en-
try into AT_HUGEPAGEPHDR and the huge page
size into AT_HUGEPAGESZ. The kernel also
places into AT_EXECFILENAME the absolute
pathname of the program, before transferring
control to user.

3.3 Dynamic Linker

We modified the run-time start up code to rec-
ognize the new segment types and take corre-
sponding actions. In the following we describe
the sequence of actions from the dynamic linker
under these modifications:

• Locate the PT_GNU_HUGE_PAGE segment
by checking AT_HUGEPAGEPHDR. If it is
not available, continue with normal pro-
cessing instead of going through the steps
listed below.

• Check the environment variable, LD_GNU_
HUGE_PAGE_FS, for the mounting point
of huge page file system. That directory,
if specified, is used instead of the default
directory of huge page file system.

• Get the absolute pathname of the ex-
ecutable from AT_EXECFILENAME, and
open it for processing.

• If the huge page file system is not config-
ured, or cannot furnish pages, then map
the segment identified by PT_GNU_HUGE_
PAGE as a normal segment, and revert to
normal processing.

• Lock the original executable exclusively to
prevent other processes from mapping its
PT_GNU_HUGE_PAGE segment.

• If a shadow text file does not exist for
the PT_GNU_HUGE_PAGE segment, create
a shadow text file on the huge page file
system with the same permissions as those
of the original executable. We use the
<device_id, inode_num> identity as
the part of the pathname for the shadow
text file.

• Map and copy the PT_GNU_HUGE_PAGE

segment to the shadow text file, if either
there is not a pre-existing shadow text file,
or the original executable has changed. If
this map-and-copy attempt fails for any
reason, then unlock the executable and
map the segment as a normal segment, and
revert again to non-special handling in-
stead of continuing as listed below.

• Map the shadow text file in accordance
with the flags that are associated with the
PT_GNU_HUGE_PAGE segment. Again, if
there is an error from the mapping attempt,
then unlock the executable, and map the
PT_GNU_HUGE_PAGE segment as a nor-
mal segment to continue with normal pro-
cessing.

• Close the shadow text file, set its time
stamps to match those of the executable,
and unlock the executable.
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After the PT_GNU_HUGE_PAGE segment has
been processed, the dynamic linker closes the
executable.

3.4 Compatibility

The above changes are relatively minor, for-
ward compatible, and mostly backward com-
patible as clarified next. An application for
whose text large pages are not desired can be
compiled with either the original or the mod-
ified link editor in the ordinary way. Such an
application is processed uniformly as before,
by either the original or the new kernels and
dynamic linkers. An application that is com-
piled with the new link editor and which is
linked to request large text pages is handled
correctly by an unmodified kernel on the target
system with one exception. The exception is in
case of Intel R© Itanium R©: here, the constraints
of Intel R© Itanium R©’s HUGETLBFS implemen-
tation compel us to use a modified kernel and a
modified linker in order to process a binary that
uses the extended ABI.

Another unavoidable departure from compat-
ible execution is the following. An appli-
cation that has a PT_GNU_HUGE_PAGE seg-
ment cannot run correctly if the kernel supports
PT_GNU_HUGE_PAGE segment but the dynamic
linker doesn’t. We consider it a modest require-
ment that the dynamic linker must be in step
with the changes in the kernel.

4 Usage Example

In this section, we show a simple example to il-
lustrate the use of HUGETLBFS code placement
and execution on x86-64. We describe this ex-
ample in two parts. In the first part, we show the
construction of the executable using the huge

directive. In the second part, we demonstrate
the effect of executing the program, first with,
and then without, the privilege for allocating
HUGETLBFS memory.

The program is shown below as example.c.
It is coded merely to list the mapping under
/proc for its own text segment, and is in-
tended to illustrate the behavior both when the
text segment is mapped as desired (in mem-
ory furnished from HUGETLBFS) and when it
is mapped in ordinary pages.

$ cat example.c
#include <stdio.h>
#include <stdlib.h>

int main () {
char buf [120];
printf ("Huge page text segment"

"map:\n");
sprintf (buf, "grep 00600000- "

"/proc/%d/maps | "
"sed -e \"s/ \\{26\\}//\"",
getpid ());

system (buf);
return 0;

}

We next compile the program as shown below.
Note the use of huge directive during linking.

$ gcc -O -c -o example.o example.c
$ gcc -Wl,-z,huge,-s -o hugex example.o

Next we examine the program headers and the
section to segment mapping, using readelf,

$ readelf -l --wide hugex

For better readability, we select a subset of the
information emitted by readelf, below:

Program Headers:

Type VirtAddr MemSiz Flg Align
PHDR 0x400040 0x0230 R E 0x8
INTERP 0x400270 0x001c R 0x1
GNU_HUGE_PAGE 0x600000 0x031c R E 0x200000
LOAD 0x400000 0x0500 R E 0x100000
LOAD 0x600000 0x031c R E 0x100000
LOAD 0x800000 0x0220 RW 0x100000
DYNAMIC 0x800028 0x0190 RW 0x8
NOTE 0x40028c 0x0020 R 0x4
GNU_EH_FRAME 0x600258 0x0024 R 0x4
GNU_STACK 0x000000 0x0000 RW 0x8
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Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .text .init .fini .rodata .eh_frame_hdr

.eh_frame
03 .interp .note.ABI-tag .hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn

.rela.plt .plt
04 .text .init .fini .rodata .eh_frame_hdr

.eh_frame
05 .ctors .dtors .jcr .dynamic .got .got.plt

.data .bss
06 .dynamic
07 .note.ABI-tag
08 .eh_frame_hdr
09

One can see from the program header and
section-to-segment mapping details that seg-
ments 2 and 4 map to the same set of sections.
The GNU_HUGE_PAGE type for segment 2 iden-
tifies it as the huge page segment that was re-
quested at link time, while the ordinary LOAD
type for segment 4 identifies it as the normal
segment that is provided for backward compat-
ibility.

The HUGETLBFS file system is mounted at
/mnt/hugepagebydefault; but if not, in
this example we proceed to mount it:

# mount none -t hugetlbfs
/mnt/hugepage

# mount | grep -i hugetlb
none on /mnt/hugepage type hugetlbfs (rw)

When the program hugex is run as root (i.e.,
with the privilege for HUGETLBFS use), we
see its text map under /mnt/hugepage,
as expected. The components 5180. . . and
2ce2110. . . in the pathname are derived from
the device identifier and the inode identifier of
the file /tmp/hugex, which is the executable.

# ./hugex
Huge page text segment map:
00600000-00800000 r-xp 00000000 00:15
9166 /mnt/hugepage/5180000000000000/
2ce2110000000000/text

Next we show what happens when the large
grained translations are made unavailable. The
following invocation of the program is as a nor-
mal (unprivileged) user. In this case, large text

mapping will not be available, and the normal
segment (#4) will be used instead for compati-
bility.

$ ./hugex
Huge page text segment map:
00600000-00601000 r-xp 00100000 08:15 1126082
/tmp/hugex

5 Performance

We measured the impact of changes described
in Section 3, on two 64-bit systems. The first
was a 4-processor Intel R© Itanium R© 2, and the
second was a 4-processor Intel R© Pentium R© 4
with Hyperthreading. We employed an in-
dustry standard and fully scaled online trans-
action processing workload and used a work-
load driver that shared the processors with
the database management software, in a sin-
gle tier configuration for convenience of bench-
marking. The buffer pool for the database
was placed in HUGETLBFS-based shared mem-
ory, and was of the same size independent of
whether text pages were mapped with normal-
or large-grained translations.

Both Intel R© Pentium R© and Intel R© Itanium R©

systems showed performance gains with the
use of large text pages for the database soft-
ware. Both systems yielded throughput im-
provements averaging 4.65% as measured by
transactions performed per unit of time. The
table below captures the percent difference in
selected processor event metrics on an Intel R©

Pentium R© machine, between using and not us-
ing large pages for mapping text [6]. In this
table and in the description that follows, ITLB
and DTLB are respectively acronyms for In-
struction and Data TLBs.

While the number of ITLB misses reduced by
5%, they produced a much higher drop in the
number of page table traversals for servicing
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Gain in throughput (transactions per minute) 4.6
Improvement in first level data cache miss ratio 3.0
Improvement in second level data cache miss ratio 5.0
Reduction in ITLB miss handling overhead 50.0
Reduction in number of bus accesses 3.0
Reduction in ITLB misses 5.0
Reduction in second level cache misses 8.0
Reduction in DTLB miss handling overhead 5.0
Reduction in DTLB misses 5.0

Table 1: Percent Improvement from HUGETLBFS Mapped Text

the ITLB misses, since the use of large page
translation removes the need to perform an ad-
ditional traversal level and cuts the overhead of
handling ITLB misses in half.

The large drop in the second level cache misses
comes from a sharp reduction in the number
of page table entries occupying the processor’s
cache. A high value gain reflected in these
event metrics is the reduction in bus accesses,
due to improved cache hit ratios. The number
of hardware threads per die is poised to increase
significantly in coming years. Software driven
improvements in cache efficiencies in present
generation systems can be expected to yield
critical reductions in traffic along shared paths
between the cores on each die, and other caches
or memory modules.

One side benefit of the reduced page table
traversals for servicing the ITLB misses is a
reduction in the number of DTLB misses aris-
ing from the traversals. This yields the 5% re-
duction in DTLB misses and in the DTLB miss
handling overheads.

6 Current Status and Future Work

Our current implementation supports IA-32,
x86-64, and Intel R© Itanium R© processor ar-
chitectures. The kernel, glibc, and binutils

changes described in Section 3 are all avail-
able at: http://www.kernel.org/pub/
linux/devel/hugepage.

We believe that our changes can be easily
extended to other architectures. The kernel
and glibc changes are architecture independent.
Only our linker changes need to be ported.

The current implementation only supports huge
page text in executable. We are looking into
feasibility of supporting huge page text in
shared library. We are also planning a feasibil-
ity study for placing writable data sections into
huge pages and assessing the resulting perfor-
mance impact.

7 Conclusion

In summary, capitalizing upon HUGETLBFS by
mapping code in large pages and thereby im-
proving translation efficiencies of processors
in executable regions helps enterprise applica-
tions with large text footprints. This capability
is achieved with small changes to the linking
and loading framework, and removes a signifi-
cant performance hurdle for such applications.
The resulting page table efficiency improves
ITLB hit ratios, and produces downstream ben-
efits for first and second level caches. By reduc-
ing the stresses on these caches and on other
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hardware resources shared on the same chip,
the use of large grained text pages facilitates
performance scaling with increasing on-chip
concurrencies.
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