
HTTP-FUSE Xenoppix

Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima†

Kenji Kitagawa†† Shuichi Tashiro†††

National Institute of Advanced Industrial Science and Technology†

Alpha Systems Inc.††

Information-Technology Promotion Agency, Japan†††

{k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp

kitagake@alpha.co.jp, tashiro@ipa.go.jp

Abstract

We developed “HTTP-FUSE Xenoppix” which
boots Linux, Plan9, and NetBSD on Virtual
Machine Monitor “Xen” with a small bootable
(6.5MB) CD-ROM. The bootable CD-ROM in-
cludes boot loader, kernel, and miniroot only
and most part of files are obtained via Internet
with network loopback device HTTP-FUSE
CLOOP. It is made from cloop (Compressed
Loopback block device) and FUSE (Filesys-
tem USErspace). HTTP-FUSE CLOOP can re-
construct a block device from many small block
files of HTTP servers. In this paper we describe
the detail of the implementation and its perfor-
mance.

1 Introduction

We have studied boot methods which make
easy-to-use OSes and applications with small
change of PC. One solution is a CD-bootable
OS, but it requires downloading a big file (ap-
proximately 700MB ISO image) and burning

a CD-ROM. Furthermore it requires remaking
the entire CD-ROM when a bit of data is up-
dated. The other solution is a Virtual Machine
which enables us to install many OSes and ap-
plications easily. However, that requires in-
stalling virtual machine software.

We have developed “Xenoppix” [1], which
is a combination of CD/DVD bootable Linux
“KNOPPIX” [2] and Virtual Machine Monitor
“Xen” [3, 4]. Xenoppix boots Linux (KNOP-
PIX) as Host OS and NetBSD or Plan9 as Guest
OS with a bootable DVD only. KNOPPIX
is advanced in automatic device detection and
driver integration. It prepares the Xen environ-
ment and Guest OSes don’t need to worry about
lack of device drivers. For example, Plan9 is
an advanced OS but has few device drivers.
Xenoppix enables us to try easily such a spe-
cial OS.

Unfortunately Xenoppix is still a DVD-
bootable OS. It has a drawback of update dif-
ficulty. We wanted to get rid of the root file
system from the Xenoppix DVD and manage it
on an Internet server. It is a kind of thin client,
but it aims that anonymous users can use sev-



380 • HTTP-FUSE Xenoppix

eral OSes if they have a PC and Internet con-
nectivity. It also makes for easy maintenance
of OSes and applications because they are up-
dated on the server.

There are several ways to expose a root file sys-
tem on the Internet. There are NFS4 [5], Open-
AFS [6], SFS [7, 8], SFSRO [9], and SHFS [10]
as network file systems, and iSCSI [11] as
network block device. Unfortunately most of
them require special server software and spe-
cial ports which are closed by a firewall. They
also aren’t considered to be opened public for
anonymous users and have security problems.

To solve the problem we proposed a network
loopback device, HTTP-FUSE CLOOP. The
loopback device consists of small split and
compressed block files which are exposed on an
HTTP server. The block files are downloaded
by the loopback device driver when the relevant
address is accessed. The downloaded block
files are decompressed and mapped to loopback
device. These block files can be saved at a local
storage as a cache.

The mapping of block address to a block file
is done by an indexing table. The file name of
block files is MD5 value of its contents. The
indexing table has a list of MD5 file names.
When a block is updated, a new block file is
created with a new MD5 file name and the in-
dexing table is renewed. The old block files
don’t need to erase. We can easily rollback with
an old indexing table and block files. MD5 file
names are used to increase security. The down-
loaded files are validated by file names. Fur-
thermore, some block regions which have the
same contents are represented by a file and re-
duce the total volume of virtual block device.
This idea is resemble to Venti [13] of Plan9. In
a later section, we compare it to our method.

We made HTTP-FUSE Xenoppix which in-
cludes HTTP-FUSE CLOOP. The size of
bootable CD is 6.5MB and boots KNOPPIX

as Host OS and NetBSD and Plan9 as Guest
OS on Xen. In this paper we describe the
detail of HTTP-FUSE Xenoppix. In section
2 we introduce Xenoppix. The detail of net-
work block device “HTTP-FUSE CLOOP” is
described in Section 3. The current implemen-
tation of HTTP-FUSE Xenoppix is presented
in Section 4 and its performance is reported in
Section 5. We discuss related works and future
plans in Section 6, and conclude in Section 7.

2 Xenoppix

In this section we describe the detail of Xenop-
pix. Xenoppix is a combination of KNOPPIX
and Xen.

2.1 KNOPPIX

KNOPPIX [2] is a bootable CD/DVD Linux
with a collection of GNU/Linux software. It
is not necessary to install anything on a hard
disk, and it enables running GNU/Linux on any
PC. KNOPPIX can be used as a normal desktop
Linux because it includes a powerful graphical
desktop environment (KDE), office software
(OpenOffice.org), Web browsers (Konqueror
and Mozilla), image manipulation software
(GIMP), many games, etc. CD-bootable Linux
isn’t an exclusive feature of KNOPPIX. There
are many distributions: DemoLinux, Mepis,
Slax, Adios, etc. Among them, KNOPPIX is
a leading, popular CD bootable Linux, because
its automatic hardware detection/configuration
(AutoConfig) and compressed loopback device
(cloop) are excellent.

2.1.1 AutoConfig

AutoConfig function of KNOPPIX detects
individual devices and loads suitable de-
vice drivers. AutoConfig is achieved by



2006 Linux Symposium, Volume Two • 381

the /etc/init.d/knoppix-autoconfig

script at boot time. The script consists of a
hardware detection part and a driver setup part.
Hardware detection is done by the hwsetup
binary which is based on kudzu [12], the Red
Hat Linux hardware probing library. After
hardware detection, drivers are set up by setup-
scripts like mkxf86config. If a network
card is detected and DHCP is available, an IP
address is automatically set up.

2.1.2 cloop

Cloop is a compressed loopback device which
supports file system independence, transparent
decompression, and read only mounts. It re-
duces the space needed on the CD to about
50% down to 25% of the original file system.
KNOPPIX stores its root file system to a cloop
file and mounts it at boot time. 700MB vol-
ume of CD-ROM is almost occupied by a cloop
file /KNOPPIX/KNOPPIX. The rest of the vol-
ume is files for boot. Figure 1 shows the image
of KNOPPIX CD-ROM. Cloop reduces access
data of CD and make data-read fast with a help
of on-the-fly decompression.

Figure 1: The contents of KNOPPIX

2.2 Xen

Xen [3, 4] is a virtual machine monitor (VMM)
for x86 that supports execution of multiple

Guest OSes with close-to-native performance
and resource isolation.

Xen uses a very different technique than
the traditional virtualization, namely para-
virtualization. In paravirtualization, the Guest
OS is ported to an idealized hardware layer
which completely virtualizes all hardware in-
terfaces. When the OS updates hardware data
structures, such as the page table, or initiates
a DMA operation, it makes calls into an API
that is offered by VMM. The VMM keeps
stack of all changes made by the OS and op-
timally decides how to modify the hardware
on any context switch. VMM is mapped into
the address space of each Guest OS, minimiz-
ing the context switch time between any OS
and VMM. Finally, by co-operatively working
with the Guest OSes, VMM gains additional
insight into the intentions of the OS, and can
make the OS aware of the fact that it has been
virtualized. The para-virtualization is enabled
by small patched to the Host and Guest OSes.
On Xen-2.0.6, available Host OS is Linux and
Guest OSes are Linux, Free BSD, NetBSD, and
Plan9, which are all open source OSes.

2.3 Xenoppix = KNOPPIX + Xen

We customized KNOPPIX to include a virtual
machine monitor Xen. We call it Xenoppix.
Xenoppix sets up device drivers using Auto-
Config function of KNOPPIX and enables to
boot a Guest OS on Xen. The X Window Sys-
tem is prepared by KNOPPIX and the GUI of
Guest OS is mapped to X Windows using VNC
full-screen mode. It shows that Guest OS boots
as a standalone OS. Furthermore the Guest OS
can work as a server because it gets IP address
from external DHCP with VIF-Bridge of Xen.

The update of files are covered by UNIONFS
[14] on Host OS and Device Mapper [16] on
Guest OS. UNIONFS is a stackable file system



382 • HTTP-FUSE Xenoppix

Linux Xen VMM 0.12MB
2.6.12 kernel with Xen patch 1.3MB
(Domain0) miniroot 0.89MB

Root File System 870MB
NetBSD kernel with Xen patch 1.7MB
(DomainU) Root File System 140MB
Plan9 kernel with Xen patch 1.9MB
(DomainU) Root File System 140MB

Table 1: Size of files in Xenoppix DVD
(1.1GB)

which allows us CopyOnWrite on read only file
system. Device mapper is a Linux kernel mod-
ule for logical volume management. It enables
us to CopyOnWrite on the device level.

Figure 2: The contents of Xenoppix

Current Xenoppix includes 2 Guest OSes;
NetBSD and Plan9. Figure 2 shows the
contents of Xenoppix DVD which based on
KNOPPIX 4.0.2 CD version and Xen 2.0.6. Ta-
ble 1 shows the size of main files on Xenoppix
DVD. The boot loader “isolinux” is replaced by
“GRUB” because Xen requires loading VMM
before Linux kernel. Linux kernel and miniroot
is loaded as 2nd and 3rd modules by GRUB.
The Linux kernel with Xen patch boot at first
and prepare device drivers with AutoConfig of
KNOPPIX. After that Guest OS is booted on
Xen.

3 HTTP-FUSE CLOOP: A Net-
work Loopback Device of split
and compressed block files

We developed a network loopback device of
split and compressed block files. It is based
on a compressed loopback device “cloop” and
a user-space file system “FUSE” [15]. So we
call it HTTP-FUSE CLOOP.

3.1 cloop: Compressed Loopback Device

Cloop is a compressed loopback device which
saves virtual block device in a file. A cloop file
is made from a block device which has already
included root file system on it (Figure 3). The
block device is split by a fixed size (KNOP-
PIX’s default is 64KB) and compressed by zlib.
The data are saved in a cloop file with a header
which is a index of compressed blocks.

CD KNOPPIX has a 700MB cloop file which
stores 2GB block device. Cloop is a block de-
vice level abstraction and doesn’t care about the
file system. So any file systems can be saved to
cloop file, for example iso, ext2, etc. We adapt
the ext2 file system (block size of file system is
4KB) as default.

A cloop file is setup as a loopback device at
/dev/cloop* and the file system is mounted
(Figure 3). When a read request is issued from
the file system, cloop driver read a relevant
cloop block data from a cloop file using in-
dex header and decompresses the data at cloop
driver’s cache (64KB). Cloop driver returns re-
quest block unit (4KB) data of EXT2 from the
cache. The cached date doesn’t erase and is
used when the next read request is fit to the
cloop block.



2006 Linux Symposium, Volume Two • 383

Figure 3: Cloop of KNOPPIX

3.2 Drawback and Improvement of Cloop

Coop is convenient because it saves block de-
vice to a file and makes small. However a cloop
file itself becomes a big file. The size of tradi-
tional CD-KNOPPIX is about 700MB. It must
be treated as one file and takes much time to
download. Furthermore a big cloop file has to
re-build when a bit of date is updated.

To solve this problem, we develop a new block
device. Data of a block device is divided by a
fixed block size and saved to many small block
files. Saved data are also compressed. Block
files are treated as network transparent between
local and remote. So block files are location
free. Local storage acts as a cache. The feature
of the network loopback device follows:

• A block file is made of each 256KB block
device. A block data is compressed by zlib
and saved to a block file.

– The block split size “64KB” is too
small and makes too many files.

• Block files are mapped to a loopback de-
vice with index.idx file. index.idx
acts a header of cloop file.

• The loopback device is a virtual device.
The mapping of block file is done when
a relevant read request is issued.

– After mapping, the block file is
erasable from local storage, because
it can be re-downloaded from Inter-
net.

• A name of block file is the hash value of
MD5. If the block contents are same, they
are held together a same name file and re-
duce total file size. The block contents be-
come identifiable because it is confirmed
by the MD5 file name.

• Block files are downloadable from HTTP
server because HTTP is expected to be
strong file delivery infrastructure. For ex-
amples, mirror servers and proxy servers.

We used virtual file system “FUSE” (File sys-
tem in USEr-space) [15] to implement the vir-
tual loopback device. This situation resembles
to loopback device which is a virtual block de-
vice on a file system. The merit of virtualiza-
tion is to make easy to treat low level device.



384 • HTTP-FUSE Xenoppix

Figure 4: Structure of HTTP-FUSE CLOOP

Figure 4 shows structure of HTTP-FUSE
CLOOP. The driver is implemented as a part
of FUSE wrapper program. Block files and
index.idx are also made from a block de-
vice which includes root file system. The block
files and index.idx are downloadable by
HTTP server.

index.idx file is downloaded at first be-
cause it is used to setup HTTP-FUSE CLOOP.
When a read request is issued, HTTP-FUSE
CLOOP driver searches a relevant block file
with index.idx file. If a relevant file exists
on a local storage, the file is used. If not, the file
is downloaded from Internet. The download
program is implemented by “libcurl” and is in-
cluded in the FUSE wrapper. The downloaded
block file is stored in RAM-Disk or local stor-
age. If the storage space is not enough (more
than 80% is used), the previous downloaded
files are removed by LIFO of water mark al-
gorithm.

3.3 Update by difference blocks

The addressing of HTTP-FUSE CLOOP
is managed by the mapping table of

index.idx. So the update of HTTP-
FUSE CLOOP is done by adding updated
block files and renewing index.idx. The
rest block files are reusable. To achieve this
function, the file system on HTTP-FUSE
CLOOP have to treat block unit update as
EXT2 file system. “iso9660” is not suitable
because partial update of iso9660 changes the
location of following blocks. The updated
block is saved to a file with new file name of
MD5. Collision of file name will be rarely
happened. Even if a collision happens, we can
check and fix before uploading the block files.

Figure 5 shows an example of update of HTTP-
FUSE CLOOP. It is useful to update applica-
tions of KNOPPIX, especially for security up-
date. Furthermore we can rollback to an old
file system if old index.idx and block files
exist.

4 Implementation of HTTP-FUSE
Xenoppix

We adapt HTTP-FUSE CLOOP to Xenoppix.
HTTP-FUSE CLOOP driver and setup soft-
ware are included in a miniroot because they



2006 Linux Symposium, Volume Two • 385

Figure 5: Update of HTTP-FUSE CLOOP

are used before mounting the root file system.
The software to boot initial Host OS environ-
ment is stored in 6.5MB ISO image. The root
file system of Host OS is downloaded via In-
ternet with HTTP-FUSE CLOOP. The files for
Guest OS are also downloaded via Internet on
demand. Figure 6 shows the usage model of
HTTP-FUSE Xenoppix.

The downloaded block files are saved at a lo-
cal storage if it is available. The local stor-
age works as a cache. If the all block files are
saved to a local storage, HTTP-FUSE Xenop-
pix doesn’t need to download anymore. So
HTTP-FUSE Xenoppix can boot from local
storage as well as HTTP server.

4.1 Drawback and Settlement

Access request is passed as the following steps
on HTTP-FUSE CLOOP.

ext2 → cloop → FUSE →
(HTTP Internet) → block-file

Cloop is a virtual block device and the access
request is sequential. It means only one read
request is issued to cloop. It turns to download

Figure 6: Usage model of HTTP-FUSE KNOP-
PIX

a small block file. So HTTP-FUSE CLOOP
is vulnerable to network latency and causes
narrow band width. It can’t make bandwidth
extension with multi-connections, which is a
technique used by NFS, because it can’t accept
multiple read requests. Especially boot time
has no cue to hide latency and suffers affect of
latency.

To solve this problem, we add two functions,
netselect and DLAHEAD. Netselect enables
us to find the best site and DLAHEAD enables
us to download the necessary block files in ad-
vance.

4.1.1 netselect

netselect is a software that selects the
shortest latency site among candidates by us-
ing ping. We prepare several HTTP sites for
HTTP-FUSE Xenoppix and add a boot option
of netselect to find nearest site automati-
cally. Figure 7 shows the location of the sites.
We arranged the sites to be dispersed across the
globe as possible as we could. However the
sites are centered in North America and Japan
because of the cost to keep sites.

netselect is expected to make fast boot of



386 • HTTP-FUSE Xenoppix

Figure 7: Web Sites for HTTP-FUSE Xnoppix

HTTP-FUSE Xenoppix. However it can’t esti-
mate the bandwidth and traffic congestion. So
it doesn’t always find the best site.

4.1.2 DLAHEAD

We develop a function named DLAHEAD
(download ahead). DLAHEAD downloads the
necessary block files in advance. The list of
necessary block files is made from the boot pro-
file of HTTP-FUSE Xenoppix. DLAHEAD es-
tablishes multiple connections and downloads
block files in parallel. The default number of
connections is four. The downloaded block
files are saved to a local storage. The files work
as a cache and omit download of HTTP-FUSE-
CLOOP driver.

DLAHEAD is reasonable settlement but isn’t
almighty. It doesn’t cover all read request.
For examples, special boot options or unex-
pected device drivers. At that time, download is
done by HTTP-FUSE-CLOOP driver and suf-
fers network latency.

5 Performance Evaluation

We evaluated performance of HTTP-FUSE
Xenoppix at boot time. We analyzed the effect
of DLAHEAD and affect of network latency.

loopback Number of Size of Amount
file block files block file of files

HostOS Max 262,230
(KNOPPIX) 7,483 Min 277 6800 MB
680MB Ave 94,740
GuestOS Max 253,977
(NetBSD) 1,559 Min 277 130 MB
140MB Ave 86,642
GuestOS Max 262,230
(Plan9) 1,346 Min 277 94 MB
140MB Ave 73,161

Table 2: Feature of block files (256KB split)

We prepared test environment for this evalua-
tion. The server machine was Dell PowerEdge
1600SC with Pentium Xeon 2.8GHz, 1000M
MIC and 4GB memory. It ran apache2 as a
HTTP server. The client machine was IBM
ThinkPAD T23 with Pentium III 1GHz, 100M
NIC, 1GB memory, and 24x CD-ROM drive.
To synthesize network latency we used “dum-
mynet” of FreeBSD. We prepared FreeBSD
machine which had 2 NICs and acted as a net-
work bridge. The synthesized network latency
was 100msec.

At first we analyzed the feature of block files
of HTTP-FUSE Xenoppix. Table 2 shows the
size of block files. DLAHEAD downloads 729
block files (62MB) with four extra HTTP con-
nections.

5.1 Boot Time

The boot time was measured from prompt of
“GRUB” to the end of GUI setup. KNOPPIX
(Host OS) requires much time because the de-
fault desktop manager, KDE, is rich and needs
many block files. NetBSD and Plan9 boot as a
Guest OS on Xen. When a Guest OS is booted,
the Host OS (KNOPPIX) prepares X Windows
only. X Windows is used by full screen VNC
of Guest OS. On the VNC, NetBSD boots un-
til XDM (X Display Manager) and Pan9 boots
until its login console.

Table 3 shows boot time of each OS of HTTP-
FUSE Xenoppix. Each boot time includes



2006 Linux Symposium, Volume Two • 387

Xenoppix No Latency No Latency 100msec Latency 100msec Latency
DVD +DLAHEAD +DLAHEAD

KNOPPIX 184 173 157 (16, 9%) 432 282 (150, 35%)
94% 85% 235% 153%

NetBSD on Xen 162 176 166 (10, 6%) 384 231 (153, 40%)
108% 102% 237% 143%

Plan9 on Xen 127 135 130 (5, 4%) 340 200 (140, 41%)
106% 102% 268% 157%

Table 3: Boot Time (Sec). Upper part shows boot time and lower part shows percentage compared
to boot time of Xenoppix DVD. The value in parenthesis shows time and percent shortened by
DLAHEAD.

the time consumed to setup of HTTP-FUSE
CLOOP. The setup took 44 seconds on IBM
ThinkPAD T23. The table shows the time of
DVD Xenoppix as a reference.

The boot time of HTTP-FUSE Xenoppix was
almost same to DVD boot time when the net-
work latency is not synthesized. This re-
sult means that HTTP-FUSE Xenoppix is valid
at LAN environment, because HTTP-FUSE
Xenoppix makes easy to maintenance. At this
environment the effect of DLAHEAD was lit-
tle. It was less than 10%.

However it became prominent at 100msec la-
tency. It made 35%, 40%, and 41% faster than
no DLAHEAD on KNOPPIX, NetBSD, and
Plan9 respectively. The total boot time of each
OS was more than 2 times of DVD Xenoppix
when DLAHEAD is not enabled. But it became
about 1.5 times when DLAHEAD is enabled.
The results show necessity of DLAHEAD on
Internet.

5.2 Trace of Traffic and Throughput

We made graphs of traffic and throughput at
boot time. Figures 8 and 9 show the results.
From these results we found the amounts of
download were 110MB, 84MB and 69MB for
KNOPPIX, NetBSD and Plan9 respectively,
when DLAHEAD was not enabled. They were
115MB, 92MB, and 77MB when DLAHEAD

was enabled. DLAHEAD increased the total
amount of download because the block list was
a general and included some unused block files.

To compare Figure 8-A and 9-A we found the
affect of network latency. This results show
original HTTP-FUSE CLOOP was sensitive of
network latency. The peak throughput was
about 40 Mbps at no latency (Figure 8-C) but
they became only 4Mpbs at 100msec latency
(Figure 9-C). This results show importance to
find the nearest download site.

To compare Figures 8-D and 9-D we found
the effect of DLAHEAD. On each case the
DLAHEAD makes throughput wide but the ef-
fect is different. At no latency the peak band
throughput was about 100Mpbs. It was a maxi-
mum throughput at the environment and DLA-
HEAD finished at 10 second. The boot process
doesn’t catch up. So the total boot time is not
shortened so much. This results show the ad-
vantage of DLAHEAD will be not recognized
at LAN environment. However DLAHEAD
shows the effect at 100msec latency. The peak
throughput became 16Mbps (Figure 9-D). It
was four times of the case of no DLAHEAD.
The peak throughput continued till the end of
DLAHEAD. At this time downloaded block
files were took over to boot process and cut the
affect of network latency.

Unfortunately DLAHEAD is a kind of counter
measure. After the use of downloaded block



388 • HTTP-FUSE Xenoppix

A. Traffic without DLAHEAD B. Throughput without DLAHEAD

C. Traffic with DLAHEAD D. Throughput with DLAHEAD

Figure 8: Network Traffic and Throughput of Boot of HTTP-FUSE Xenoppix at No Latency

A. Traffic without DLAHEAD B. Throughput without DLAHEAD

C. Traffic with DLAHEAD D. Throughput with DLAHEAD

Figure 9: Network Traffic and Throughput of Boot of HTTP-FUSE Xenoppix at 100 msec Latency



2006 Linux Symposium, Volume Two • 389

files, the HTTP-FUSE driver has to download
with a single connection. Network latency con-
cerned to all download. So it is much important
to prepare worldwide HTTP servers as candi-
dates of netselect and find a short latency one.

6 Discussions

6.1 Venti of Plan9

“Venti” [13] is an archival block storage server
for Plan9. In this system, a unique hash of a
block’s contents acts as the block identifier for
read and write operations. This approach en-
forces a write-once policy, preventing acciden-
tal or malicious destruction of data. In addition,
duplicate copies of a block can be coalesced,
reducing the consumption of storage and sim-
plifying the implementation of clients. Venti
is a building block for constructing a variety
of storage applications such as logical backup,
physical backup, and snapshot file systems.

On HTTP-FUSE CLOOP, block data are also
managed by a unique hash MD5. However
each block data is saved as a file. File is a logi-
cal storage and easy to treat. It is easy to make
copies of block files and distribute them. So we
could use HTTP servers to distribute them via
Internet.

In comparison with Venti, the overhead of
HTTP-FUSE KNOPPIX seems to take much
time, especially it uses user-space file system
FUSE. However the most overhead was caused
by downloading a block file on Internet. This
point would be cared by netselect and DLA-
HEAD partially. But it’s not enough. We will
make an improvement of download method.
The native overhead of the driver is mentioned
in following section.

6.2 Deployment of Virtual Machine for OS
migration

There are several researches of deployment of
virtual machine for OS migration. “soulPads”
and “XenFS” have close relations to HTTP-
FUSE Xenoppix.

SoulPads [17] is same concept as Xenoppix. It
uses AutoConfig of KNOPPIX to prepare Host
OS environment and VMware Workstation to
run Guest OS. It is reasonable implementa-
tion but requires commercial license. Even if
VMware Workstation is replaced with VMware
Player, it is not re-distributed without permis-
sion. Furthermore SoulPads is based on potable
disk device and doesn’t have extension like a
HTTP-FUSE Xenoppix of 6.5MB CD-ROM.

XenFS [18] is project sharing disk image of
Xen. Unfortunately it is under development.
According project plan, the implementation of
XenFS is tightly coupling to API of Xen and
aims high performance. The target is same
to HTTP-FUSE Xenoppix but it uses a device
level abstraction HTTP-FUSE CLOOP. So it
doesn’t concern to File System.

6.3 How to distribute block files

Current implementation used fixed HTTP
servers to distribute block files. They were use-
ful but have to be maintained all servers when
block files are updated. So the cost to keep
servers is not small. We want to distribute
block files automatically with a help of P2P.
The candidates are “coral” [19, 20] and “Di-
jjer” [21]. Unfortunately their current imple-
mentations are not good at keeping quick re-
sponse and distributing many small files.



390 • HTTP-FUSE Xenoppix

6.4 Trusted boot by TPM

The block files are confirmed its contents by the
MD5 file names. However there is no warranty
of index file. If a user gets a fraud index file,
current HTTP-FUSE Xenoppix has no way to
check. So, we want to integrate the trusted boot
method offered TPM (Trusted Platform Mod-
ule) chip [22]. It will help to upgrade security
level.

6.5 Overhead of HTTP-FUSE CLOOP

The overhead of HTTP-FUSE CLOOP on
Xenoppix doesn’t look reasonable. It seems
to be some affects from Linux kernel patch of
Xen, because HTTP-FUSE CLOOP on normal
Linux kernel showed better performance. Un-
fortunately we have not found the reason yet.
We will analyze the behavior of HTTP-FUSE
CLOOP driver and improve the performance.

7 Conclusions

We developed a network loopback device
“HTTP-FUSE CLOOP” which is constructed
with split-and-compressed block files from
HTTP servers. We adopted it to Xenoppix and
made HTTP-FUSE Xenoppix which enabled to
boot Linux as a Guest OS and NetBSD and
Plan9 as a Guest OS with 6.5MB boottalbe CD.

The boot time of HTTP-FUSE Xenoppix was
almost same to original DVD Xenoppix at LAN
environment. Unfortunately it became worse at
Internet environment. It would be more than
two times of original DVD boot time when the
latency was 100msec. However we developed
methods to improve performance, netselect and
DLAHEAD. When DLAHEAD is enabled, the
boot time was improved about 40%.

The implementation hasn’t matured yet. To
make good performance we have to improve
the driver of HTTP-FUSE CLOOP as well as
block file distribution methods. We also have
to increase security. Furthermore we want to
try dynamic OS migration using HTTP-FUSE
Xenoppix in near future.

References

[1] Xenoppix,
http://unit.aist.go.jp/itri/

knoppix/xen/index-en.html

[2] KNOPPIX,
http://www.knopper.net/knoppix

[3] Xen, http://www.cl.cam.ac.uk/
Research/SRG/netos/xen/

[4] I. Pratt, Xen 3.0 and the Art of
Virtualization, Ottawa Linux Symposium
2005

[5] NFS4, http://www.nfsv4.org/

[6] Open-AFS,
http://www.openafs.org/

[7] SFS, http://www.fs.net/sfswww

[8] D. Maziéres, Self-certifying file system,
PhD thesis, MIT, 2000

[9] K. Fu, M.F. Kaashoek, and D. Maziéres,
Fast and secure distributed read-only file
system, ACM Transactions on Computer
Systems 20(1), 2002

[10] SHFS,
http://shfs.sourceforge.net/

[11] iSCSI, http:
//www.ietf.org/rfc/rfc3720.txt



2006 Linux Symposium, Volume Two • 391

[12] kudzu; Red Hat Linux hardware probing
library, http:
//rhlinux.redhat.com/kudzu/

[13] S. Quinlan and D. Dorward, Venti: a new
approach to archival storage, USENIX
Conference on File and Storage
Technologies 2002

[14] UNIONFS,
http://www.fsl.cs.sunysb.edu/

project-unionfs.html

[15] FUSE,
http://fuse.sourceforge.net/

[16] DeviceMapper,
http://sources.redhat.com/dm/

[17] R. Cáceres, C. Carter,
C. Narayanaswami, and M. Raghunath,
Reincarnating PCs with Portable
SoulPads, 3rd International Conference
on Mobile Systems, Applications, and
Services, 2005

[18] XenFS, http://wiki.xensource.
com/xenwiki/XenFS

[19] Coral Project,
http://www.coralcdn.org/

[20] M.J. Freedman, E. Freudenthal, and
D. Maziéres, Democratizing Content
Publication with Coral, USENIX
Symposium on Networked Systems
Design and Implementation 2004

[21] Dijjer Project,
http://www.dijjer.org/

[22] TPM of Trusted Computing Group,
https:

//www.trustedcomputinggroup.

org/groups/tpm/



392 • HTTP-FUSE Xenoppix



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


