
Collaborative Memory Management in Hosted Linux
Environments

Martin Schwidefsky
IBM Deutschland Entwicklung GmbH
Martin.Schwidefsky@de.ibm.com

Hubertus Franke
IBM T.J. Watson Research Center

frankeh@us.ibm.com

Ray Mansell
IBM T.J. Watson Research Center
Ray.Mansell@us.ibm.com

Himanshu Raj
Georgia Tech

rhim@cc.gatech.edu

Damian Osisek
IBM Systems and Technology Group

dlosisek@us.ibm.com

JongHyuk Choi
IBM T.J. Watson Research Center

jongchoi@us.ibm.com

Abstract

In hosted environments, multiple guest operat-
ing systems are hosted on top of a host operat-
ing system or hypervisor. The problem of over-
committing physical memory is either solved
by dynamically adjusting the memory sizes of
the guests or through transparent host paging.
Both approaches can introduce significant over-
head in heavily overcommitted memory sce-
narios due to frequent resize requests or due
to high paging I/O activity. This paper intro-
duces a novel approach to this problem, called
collaborative memory management (CMM). In
CMM, guests and host operating system ex-
change page usage and residency information.
This information is primarily used by the host
to reduce the amount of paging it needs to do
for the pages of its guests. The CMM design
and the Linux implementation and a prototype
for Linux for zSeries and the z/VM hypervisor
will be discussed.

1 Introduction

With the re-emergence of virtual machines
(VMM) as a means for workload and server
consolidation, memory pressure again has be-
come an important issue to solve. The prob-
lem of memory pressure stems from the fact
that guest operating systems, such as Linux, at-
tempt to utilize any available memory given to
the guest for its own caching purposes. As a re-
sult a static “partitioning” of the system would
significantly be limited by the available mem-
ory in the system. A static memory partitioning
is also contrary to the nature of many system
utilizations seen today, often bursty and with
time varying resource requirements (whether
cpu, memory, or I/O). It is exactly this variabil-
ity that virtualization tends to exploit.

Memory overcommitment is an attribute of the
application mix that runs on a system and as
such can not be eliminated. Ultimately, the
memory pressure resulting from memory over-
commitment has to be dealt with by either

314 • Collaborative Memory Management in Hosted Linux Environments

pushing it back into the guest OS or by resolv-
ing it in the host. Therefore, there is the poten-
tial for a high paging I/O rate in either the host,
the guest, or in both. High paging rates have
nonlinear impact on the application and system
response times and thus can limit the number of
guests that can effectively be hosted. This non-
linear performance impact makes dealing with
memory overcommitment unique as compared
to overcommitting other resources. Neverthe-
less, through proper global memory manage-
ment, one can hope to reduce the symptoms ex-
perienced due to memory overcommitment.

With respect to memory management among
multiple guests, two main approaches to over-
committing memory are commonly deployed:

• Dynamic Partitioning: individually guest
OSes are forced to dynamically change
their memory size to accommodate a
global memory strategy.

• Memory Virtualization: the host
swaps/pages guest memory similar to how
any operating system overcommits its
memory to its applications.

The work in this paper was motivated by IBM’s
Linux virtualization stack for the zSeries,
which virtualizes guest Linux systems over the
z/VM host/hypervisor. Besides the guest mem-
ory paging, z/VM also deploys dynamic par-
titioning. We have seen that customers deploy
hundreds of virtual machines over a single host,
sometimes resulting in unsustainable memory
overcommitments that neither dynamic parti-
tioning nor memory virtualization can satisfy
to meet quality of service expectations with re-
gard to response times.

Dynamic partitioning is the only possible
means when thin, non-paging hypervisors are
deployed. An example is XEN [2], which
para-virtualizes page table, i.e. the hypervisor

merely ensures that the guest creates only valid
mappings for the memory assigned to it. The
dynamicity of the memory sizing is achieved
by a technology known as ballooning [3, 2]. A
balloon driver, operating in each guest, com-
municates with the hypervisor and receives di-
rectives for modifying the guest memory size.
This is accomplished by allocating pages, thus
often forcing the guest’s page reclamation dae-
mon to run, and returning those pages to the hy-
pervisor for allocation to different guests. The
hypervisor disables access to these pages for
the donating guest and enables access to them
for the receiving guest. By growing and shrink-
ing memory balloons, OS memory sizes can be
adopted to deal with changing memory require-
ments by individual operating systems and in
the system overall.

In stable workloads with infrequently changing
guest working set sizes, the ballooning method
is quite adequate to “squeeze” the guests into
their right size. However, in highly overcom-
mitted memory scenarios with rapidly chang-
ing or bursty memory requirements, the bal-
looning approach to memory overcommitment
does pose various shortcomings. A host agent
(typically running at the hypervisor level) has
to constantly estimate working set sizes (for in-
stance through monitoring the page fault rates
and dispatch rate of its guest partitions) and re-
size the guest OS memory sizes. Though mem-
ory size estimation can be done with limited
overhead[3], the time to invoke the guest oper-
ating system (idle or not) and execute the bal-
looning module can lead to reduced response
times at the other guest(s) requiring more mem-
ory. Furthermore, it can pose a scalability
problem when hundreds of guest OSes are to
be hosted. First, the amount of memory har-
vested per image per balloon invocation de-
creases with the number of images. Second, the
achievable overcommitment is limited as guest
images require a minimum amount of memory
to operate and to avoid the dreaded OOM killer.

2006 Linux Symposium, Volume Two • 315

Memory virtualization as realized through host
operating system paging of its guests is the al-
ternative approach to overcommitting memory.
In highly overcommitted scenarios, host pag-
ing can provide a more responsive approach,
because (i) the host swaps guest OS memory
based on a global usage view, able to steal
pages from other guests and (ii) memory can
be overcommitted beyond the sum of the mini-
mal guest sizes. On the other hand host paging
has its own set of problems, most of which are
related to a very high swap rate. For instance,
assume that the host has elected to swap out an
older page. If the guest now decides that this
page needs to be swapped at the guest level, it
needs to be first brought back at the host level.
Other examples are unused guest pages that the
host blindly pages out. This clearly identifies
that there are overheads and unnecessary oper-
ations involved at this end of the spectrum of
dealing with memory pressure.

What is needed is a balanced approach that
allows us to reap the benefits of both ap-
proaches, while avoiding their shortcomings.
Hence, in this paper we introduce the Collab-
orative Memory Management (CMM) frame-
work. CMM deploys “infrequent” ballooning
(we refer to it as CMM1) to apply sufficient
long-term pressure on the various guests. There
is limited focus on this part in this paper, as this
is a well known approach in the literature [3].
Instead, in this paper we focus on the second
component of CMM, namely CMM2, a novel
information-sharing between host and guests
(we refer to it as CMM2). CMM2 enables us
to identify and avoid unnecessary host opera-
tions, thus reducing the host paging rate and
improving response and throughput of memory
allocation requests for a guest OS when overall
system memory is overcommitted.

We have implemented the CMM framework for
IBM’s z/Architecture System z9 and in partic-
ular using the z/VM host and the Linux guest.

The remainder of the paper is organized as fol-
lows. The general framework of CMM is de-
scribed in Section 2. The prototype imple-
mentation of this framework utilizing Linux
guests and the z/VM hypervisor is discussed
in Section 3. The changes we made to the
z/Architecture and the z/VM host are described
in Section 4. The current state of our analysis
is presented in Section 5. Conclusions, ongo-
ing work, and future directions are discussed in
Section 6.

2 Collaborative Memory Manage-
ment Framework

The introduction already identified ballooning
and host paging as the two fundamental ap-
proaches to memory overcommitment. It also
identified their individual drawbacks, namely
overhead and increased latency by inducing
pressure on the guests to release memory in the
case of ballooning, and increased host paging
activity in the case of host paging.

Ultimately, we believe a combined approach
that (i) deploys ballooning to deal with the
longer range shaping of guest memory sizes
and (ii) utilizes host swapping for the short term
oscillations in memory requirements, (iii) uti-
lizes host paging for the case where balloon-
ing can no further reduce the guest memory
sizes due to minimum operating memory re-
quirements by the guests, promises the best re-
sults.

The host deploys its own global host page evic-
tion algorithm (LRU) and can identify pages
that have system-wide aged the most, where as
an individual guest only has a limited view of
its own pages. On the other hand the host does
not have any knowledge about the utilization of
a guest page and as a result it must save the con-
tent of a guest page to the host swap area. The

316 • Collaborative Memory Management in Hosted Linux Environments

basic idea of CMM2 within collaborative mem-
ory management is to allow a highly efficient
mutual sharing of page status information be-
tween the guest and the host operating system
in order to optimize for overall system perfor-
mance and in order to reduce unnecessary swap
operations in the host.

In CMM2, the guest defines and maintains the
page usage state for each of its absolute pages.
By doing so, it indicates the content preserva-
tion requirements for each page expected by
the host page management. Equipped with this
information, the host/hypervisor knows at all
times and precisely whether a guest page that
has been selected for eviction/swapping, needs
to be preserved or not. Furthermore, the host
can make more informed decisions concerning
which guest memory pages to steal, thus min-
imizing the conflicts that otherwise inevitably
arise when two systems both believe they are
solely responsible for managing storage. In the
same manner knowing residency information
of its absolute memory can be utilized during a
guest’s paging operation. For instance, a guest
trying to swap a page that has already been
swapped by the host, creates a scenario known
as dual-swapping, where the guest needs to
have the page resident to swap it to its own
swap device, thus creating two additional I/O
operations. This can be avoided based on hav-
ing access to the residency information.

The page state for each guest absolute mem-
ory page (or its associated host virtual page),
defined by the cross product of the page us-
age state and the page residency state, is main-
tained by and shared through a page hypervisor
assist facility (HVA).

The usage states of a page are as follows:

• Stable (S): This is the default state for
guest memory pages. The content remains
what the guest sets it to; the host is respon-
sible for preserving the page content.

• Unused (U): The page content is meaning-
less to the guest; the host may discard the
page content at will.

• Volatile (V): The guest has indicated that
it can tolerate the loss of the page content;
however, the page still contains data that
may be useful in the future.

• Potential Volatile (P): This state is similar
to the volatile state. The guest can tolerate
the loss of the page content as long as the
page has not been modified. Page modi-
fication is indicated by the page dirty bit.
This bit needs to be accessible by the host.
If the host can not access the dirty bit then
the state machine can be simplified by re-
moving this state.

While the usage state of a page is primarily
modified by the guest, the page residency state
is only to be modified by the host, though the
guest can query it. The residency states of a
page are as follows:

• Resident (r): The page is assigned to a
backing frame in host memory and may be
referenced at machine speed.

• Preserved (p): No frame is associated; the
host has written the page contents to aux-
iliary swap storage.

• Logically zero (z): There is no associated
frame or backed content. The content of
the page is considered to be zero.

Thus the page state can be represented in 4-
bits per page. The details and maintenance of
the HVA, such as the location of the page state
bits and the means to issue the host service
call, are obviously highly architecture depen-
dent. Nevertheless, various constraints must
be satisfied. Only the host must be allowed

2006 Linux Symposium, Volume Two • 317

to modify the residency state; modifications
by the guest would pose a serious functional-
ity and security problem. Certain guest oper-
ations must be conditional based on the host
state. For instance, an operation frequently
used is SetStableIfNotDiscarded which
only makes a page stable if it has not been
discarded. Thus the most obvious implemen-
tation, namely allocating or mapping a page
status vector in the guest with r/w permission
is erroneous. However, separating the guest
and host state poses the problem of atomic ac-
cess, as states need to be modified and ac-
cessed atomically to ensure proper synchro-
nization between guest and host. Allowing a
lock to span across guest and host is a serious
design flaw, as it would allow a faulty guest to
lock up the host. Instead, for atomic accesses a
compare_and_swap needs to be utilized.

Therefore, the most sensible implementation is
to maintain the page state only in the host. The
host can utilize load/store access to the page
state. The guest uses a host service call to
modify the page state. The primitives the host
has to provide to the guest are the following:
SetStable, SetUnused, SetVolatile,
and SetPotentialVolatile which set
the page usage state to the requested target state
(S, U, V, or P), and the already mentioned
SetStableIfNotDiscarded.

The state transition diagram is shown in Fig-
ure 1. There are several noteworthy comments
to be made. The states Vz and Pz mark the
special “discarded” condition of a page entered
through a previous host discard operation. If
a guest accesses a Vz or Pz page, the host
will present a special discard fault to notify the
guest that the page has been removed and that
it needs to be recreated by the guest.

For reasons of symmetry and architectural
completeness, the {S,V,P}p → Up transition
is included in the state diagram. In principle,
a Up state makes little sense, as the backing

Ur Sr Vr Pr

Sp

Uz Sz Vz

guest states

host
states

unused (U) stable (S) volatile (V)
potential
volatile (P)

resident (r)

preserved (p)

zero (z)
discard
page

page
out

page
in

resolve

discard
page
if cleandiscard

page
discard
backing

addressing
exception

page discard
exception

Guest state change
Host state change

Guest reference

Vp Pp

page
out

page
in

page
out

page
in

discard
page

discard
page
if clean

Pz
Discarded

Up

addressing
exception,
discard
backing

(*)

(*) architecture
 dependent

Figure 1: State Transition Diagram

storage for this page would have to be main-
tained despite the fact that the page is unused.
However, in an implementation where the guest
state can be manipulated without the involve-
ment of a host service, this is the only valid
path. Subsequently moving the page into Sp
and accessing it would force a reload of the
page from the host swapping area, in which
case the opportunity for the elimination of a
host swap operation is lost. In contrast, in
implementations where the guest accomplishes
all guest transitions through a host service, the
{S,V,P}p→Uz transition can be immediately
made and at the same time the backing storage
can be freed. In more general terms, if the guest
page state transitions are implemented through
a host service call, we can always tag an im-
plicit host state transition onto that guest page
transition in order to optimize operations like in
the Up vs. Uz case. The other case is also true,
namely that host page transitions can cause im-
plicit guest state transitions. The state machine
can be simplified in several ways if the imple-
mentation for a particular architecture requires
and/or allows it:

• Collapse the two discarded states Vz and
Pz to a single discarded state Vz.

• Remove the Vp state. If the host can not
profit from preserving volatile pages, it

318 • Collaborative Memory Management in Hosted Linux Environments

can always choose to discard pages that
would enter the Vp state.

• Remove the Pp state. Without this state it
depends on the dirty bit what happens with
the page. If the page dirty bit is set, the
host needs to preserve the page and will
set the combined target state to Sp. If the
page is clean the host can discard the page.

• Remove the potentially volatile P page us-
age state. This simplification is necessary
for architectures that do not have hardware
per page dirty bits and no reasonably fast
alternative way to access the page dirty in-
formation from the host system.

Equipped with this framework, CMM2 now re-
quires the guest operating systems to identify
its discardable pages. It is reasonable to ex-
pect that both guest and host deploy some form
of LRU algorithm and that the aging order of
pages established in the guest is also roughly
established by the host. The benefit of CMM2
hence comes from the fact that when the host
discards a page based on its LRU information,
it conceptually does what the balloon driver
would have done (namely identifying an old
page and evicting it). However, it does so with
reduced latency since the guest and its balloon
driver do not have to be scheduled. The fact
that a page was discarded will be recognized
the next time the page is accessed by the guest
(at which point a discard fault is obtained) or
during the guest’s own reclamation process (at
which time no extra cost is incurred).

3 Linux Guest Implementation

The goal of the guest implementation for the
collaborative memory management optimiza-
tion is to mark free pages as unused and to get
as many pages into volatile or potential volatile

state as possible. Since the host can choose
to remove unused and volatile pages anytime
and potential volatile pages if they are not dirty,
there needs to be special cleanup code to deal
with discarded pages if the guest tries to access
them.

For free pages only two state transitions are
needed: the free operation of the buddy allo-
cator sets all pages of the freed block to un-
used, and the allocation operation makes the
pages stable again. A guest access to an unused
page is a programming error, the host imple-
mentation can either return an arbitrary value
to the guest instruction—preferably zero for se-
curity reasons—or present some kind of excep-
tion. No additional code is required to deal with
accesses to unused pages.

The host ensures that all pages of a Linux guest
have an initial page usage state of stable (S). In
case of z/VM as the host, the initial page state is
stable, logically zero (Sz). When the pages are
added to the buddy allocator their page usage
state changes to unused for the first time. All
other pages that are not entered into the buddy
system will always have a page usage state of
stable.

For each class of non-free pages that are con-
sidered for one of the volatile states, additional
code is required to clean up after a discard fault.
For the majority of page allocators in the kernel
the amount of code necessary to deal with the
discard faults makes it hard if not impossible to
make the pages volatile.

3.1 Volatile page and swap cache

The two classes of pages with the biggest po-
tential are the page cache and the swap cache.
The amount of code that is needed for the state
transitions and to deal with the discard faults
is acceptable and usually there are many pages

2006 Linux Symposium, Volume Two • 319

in the page or swap cache that can be made
volatile. All clean page and swap cache pages
that do have a backing on secondary storage are
candidates for one of the volatile states.

In an ideal situation all clean, read-only pages
in the page and swap cache which do have a
backing would be volatile, and all read-write
pages with a backing would be potentially
volatile. There are several conditions that either
preclude or make it hard to keep the pages in a
volatile state. For each user of a cached page
the page either needs to be made stable or there
is code in the discard fault handler that is able to
remove the reference to the page from that user.
For example, each reference to a page in a page
table represents a user of the page. The discard
fault handler is able to remove these entries for
discarded pages. On the other hand each page
address involved in an I/O operation represents
a user as well but the discard fault handler is
not able to remove these entries.

To avoid having to keep track of each indi-
vidual user of a page, a simple strategy is
used. Whenever the Linux memory manage-
ment does something with a page that the dis-
card fault handler can not undo, the page is
made stable. After the memory management
removed a condition that made it necessary to
keep the page in stable state, it is attempted to
make the page volatile again. This attempt can
fail due to the following reasons:

1. The page is reserved. Reserved pages are
special and may never be removed from
memory by the Linux guest, nor discarded
from memory by the host.

2. The page is marked dirty in the Linux in-
ternal page structure. The page content
is more recent than the data on the back-
ing device. The page content needs to get
written to the backing device first before
the page can be removed or discarded.

3. The page is in writeback. The page con-
tent is still needed until the I/O operation
has finished.

4. The page is locked. As long as the page is
locked the code that acquired the lock has
exclusive access to the page.

5. The page is anonymous. The page does
not have a backing, the only copy of the
page content is in memory.

6. The page has no mapping. Again the page
has no backing, the guest can not recreate
the page.

7. The page is not up to date. An I/O oper-
ation to get the page content into memory
has not yet completed. It does not make
sense to discard the page before it has been
up to date once, particularly since the I/O
was likely started due to an access.

8. The page is private. There is additional
information associated with the page via
the page->private pointer, e.g. jour-
naling data. To keep things simple, pages
with private information are kept stable.

9. The page is already discarded.

10. The page map count is not equal to the
page reference count minus one. There
is one reference for the cache itself and
one for each mapping of the page to a user
space process. The discard fault handler
can remove the cache entry and the user
space mappings but not the references of
any other user of the page.

11. The page has writable mappings, but
the platform lacks the potentially volatile
state.

12. The page is mlocked. The semantics of
memory locked pages it that they are avail-
able without doing guest I/O, therefore the
page has to be stable.

320 • Collaborative Memory Management in Hosted Linux Environments

If any of these conditions is true, the page can
not be made volatile. These are the rules for
the state transition to a volatile state, however,
the page state does not necessarily have to be
adjusted if one of the conditions changes. It
depends on the operation that is done with the
page if the page state needs to change. As a rule
of thumb, transitions to stable state are non-
negotiable. Transitions to less stringent states
(volatile or unused) can be done at a more con-
venient time and with the idea in mind to keep
the hot code paths lean.

3.2 Page and swap cache state transitions

The page usage state transitions can be di-
vided into transitions to stable state and the
attempts to do a transition to a volatile state.
For the transition to stable state there is al-
ways a user of a page who requires the stable
state. The prevalent method to get a new refer-
ence to a page is to use find_get_page or
one of its variants. To give back a reference
page_cache_release is used. There are
only three more relevant code paths in regard to
the transition to stable state, namely the get_

user_pages function, and the copy on write
breaks in do_wp_page and do_no_page.
The state transitions are conditional through
the SetStableIfNotDiscarded call, which
only moves a page into stable if the page has
not been discarded. If the page was discarded,
it is removed from the page cache and func-
tions return notfound. In case of the copy
on write breaks, the operations fails with VM_

FAULT_DISCARD and the instruction that trig-
gered the copy-on-write is repeated. This will
cause a standard page fault for a non-existent
page and the page will get loaded again.

The question when to try to move a page into
volatile state is not defined as sharply as the
question when a page needs to be stable. In
principle the attempt to make a page volatile

can be done anytime. To get the maximum
number of pages into volatile state, a check of
all twelve conditions would be required when-
ever one of the conditions becomes false. Due
to concurrent operations in the memory man-
agement this would be difficult to implement
and the resulting code would be slow. We can
afford to be less stringent for the state transi-
tions to volatile, there is no harm done if a small
percentage of the suitable pages are not made
volatile. By experimentation we found that it
is enough to do the checking for the volatile
transition when a page gets unlocked, when it
has finished writeback, when the page refer-
ence counter is decreased, and when the page
map counter is increased.

To get an idea how the state of a page changes
during the lifetime of the page, see the two di-
agrams in Figure 2, which represent the state
transitions based on various events in the ker-
nel for two common types of pages, shared
filemapped pages and anonymous pages. The
diagrams only show the state changes due to
read / write access via memory mapped pages.
There are other triggers for I/O operations that
are not covered in the diagrams, as they would
get too complex.

3.3 Concurrent page state updates

In a multiprocessor system the usage state of
a page can get updated concurrently on dif-
ferent processors. To ensure that the page
has the correct state, a make stable opera-
tion may not “overtake” the attempt to make
it volatile. If the make volatile has already
done all the necessary checking, it will pro-
ceed with a SetVolatile operation. If at
the same time another user of the page does a
SetStableIfNotDiscarded, it depends on
the timing if the page state is volatile or stable
after the two operations complete. The check of
the twelve conditions and the SetVolatile

2006 Linux Symposium, Volume Two • 321

free

Ur/Up/Uz

empty

Sr/Sp/Sz

alloc page
empty

Sr/Sp

file read
in I/O

free
page

uptodate

Vz/Pz

discard

uptodate

Pr

discard

start file
write I/O

end I/O, r/o
uptodateuptodate

uptodate uptodate

read only

Vr/Vp

dirty
Pr/Pp

hw-dirty
Sr/Sp

Sr

r/w
write access

end I/O

r/w or r/o r/w or r/o

r/w or r/o
in I/O

hw dirty bit

transferclean

end I/O
r/w

 r/w
mmap

 r/w
munmap

(a) shared filemapped page.

free

Ur/Up/Uz

alloc
page

empty
swap back.
Sr/Sp/Sz

swap
read

empty

Sr
in I/O

empty

Sr/Sp/Sz

alloc page uptodate

Sr/Sp

clear / copy
rw

free
page

uptodate

Vz/Pz

end I/O

discard

uptodate

ro
Vr/Vp

discard

remove
 from
 swap

hw dirty
bit transfer

write access

end I/O
clean

end I/O
dirty

swap write I/O

add
to swap

remove
from swap

 make
writable

uptodateuptodate

uptodate uptodate

rw, clean
Pr/Pp

rw, hw-dirty

rw, dirty
Sr

rw, in I/O
Sr/Sp

Pr/Pp

swap back. swap back. swap back.

swap back. swap back. swap back. swap back.

(b) anonymous page.

Figure 2: LifeCycle of two common Types of Pages in Linux

need to be done atomically in regard to the
SetStableIfNotDiscarded and one of the
conditions need to evaluate to true before doing
the SetStableIfNotDiscarded. To provide
the atomicity, a new page flag PG_state_
change is used. The function that makes a
page stable will wait until it can acquire the new
page flag to give it exclusive access to the page
state.

The make volatile operation does not have to
wait, it can just return instead. The current im-
plementation does this to avoid a potential dead
lock on the PG_state_change bit. The
worst thing that can happen is another suitable
page not in a volatile state. The end of I/O in-
terrupt usually releases the page lock which re-
sults in a try to make a page volatile. If a cpu
is interrupted while holding the PG_state_
change bit for a page this would be a dead
lock if the make volatile function waits for the
bit as well. The alternative solution would
be to disable the interrupts while holding the
PG_state_change bit. Disabling interrupts
is expensive, therefore the preferable solution is
to let the make volatile function return imme-
diately if the PG_state_change bit is un-
available.

3.4 Memory locked pages

The mlock() system call needs special atten-
tion in regard to discardable pages. A mem-
ory locked page may not be removed from the
page or swap cache. This means that memory
locked pages need to be stable. The function
that tries to make a page volatile needs a way
to check if a page has been locked. This in-
formation is kept in the flags field of the vir-
tual memory areas that refer to the page. To
avoid traversing vma lists, which could signif-
icantly impact performance, a field is added in
the struct address space. This flag field is set in
the mlock() code when a vma of the address
space gets locked. The flag is never removed;
once the address space of a file had an mlocked
vma, all future pages added to it will stay sta-
ble. The already present pages are made stable
with a call to get_user_pages.

3.5 Writable page table entries

For writable pages there is code required that
allows the pages to be put into the correct
state. For platforms without the ability to ac-
cess the guest page dirty bit information from
the host, the correct state is the stable state,
for platforms with the ability, it is the poten-
tially volatile state. In both cases, whenever

322 • Collaborative Memory Management in Hosted Linux Environments

a writable page table entry is created, a call
to a function is required that checks if the
page state needs to be corrected. The state
change has to be done before the first writable
mapping is established. To avoid unnecessary
state transitions or the need for a counter, a
new page flag PG_writable is added, that
is set with the creation of the first writable
mapping. Subsequent writable mappings just
check the bit and skip the state transition if
it is set. To avoid a search over all mappers
of a page for writable page table entries, ev-
ery time a writable page table gets removed the
bit PG_writable stays set until all read-only
mappers of the page have been unmapped as
well. Only then is the PG_writable bit reset
again.

3.6 Minor fault optimization

An important optimization is the avoidance of
page state changes for minor faults. All pro-
cesses start with empty page tables. Each page
accessed by the process gets mapped in reac-
tion to a page fault. In the straightforward im-
plementation, even if the pages required by a
process are already present in the page cache,
each minor fault will cause two page state
changes. find_get_page will force the
page into the stable state for a short period of
time until the page map counter is increased.
Using a special variant of find_get_page
that does not change the page state, it is pos-
sible to handle minor faults without doing a
single state change. If the page has been dis-
carded by the host the first access of the guest
will generate a discard fault which causes the
page cache page to get removed from memory,
including all page table entries referring to the
page.

That removes the state transitions on the mi-
nor fault path. A page that has been mapped
will eventually be unmapped again. On the

unmap path each page that has been re-
moved from the page table is freed with a
call to page_cache_release. In general
that causes an unnecessary page state transi-
tion from volatile to volatile. To avoid this
unnecessary state transition special variants
of put_page_testzero and page_cache_

release are introduced that do not try to make
the page volatile. page_cache_release_

nohv is then used in free_page_and_swap_
cache and release_pages. This makes the
unmapping of pages state transition free.

3.7 Removing discarded pages

Before a discarded page can be freed all refer-
ences to the page have to be released. The di-
rect removal of the references is not possible in
all cases. The discard fault handler can remove
the references of the page cache and all entries
of the page in the page tables. It can not remove
references that are not stored in known places.
Consider a process that wants to access a page
that is cached in the page cache. After the page
has been found in the page cache with a call to
find_get_page, the new reference to that
page is not stored somewhere in memory but
in a dynamic variable of some function. Most
likely it will even be cached in some cpu reg-
ister. If the page gets discarded before the new
reference is stored in a memory location where
the discard fault handler can find it, the refer-
ence will remain valid. That means that after
the discard fault handler completed, the page
might still exist. To prevent that a page gets re-
moved from the page cache more than once, the
discard fault handler marks the page with the
PG_discarded page flag. Any subsequent
discard fault will only remove page table en-
tries. The discard fault handler will remove a
page from the page cache without clearing the
page->mapping field. Due to races in the
memory management, a page can get mapped
to a process after the discard fault has removed

2006 Linux Symposium, Volume Two • 323

the page cache entry for the page. Any discard
fault for a page that occurs after the page has
been removed still needs the mapping informa-
tion to be able to remove the remaining page
table entries.

Further the PG_discarded bit is used to
postpone the freeing of discarded pages. Pages
that have been discarded are added to the dis-
carded page list. The pages on this list are
freed only if the guest is under memory pres-
sure. There are two reasons why this is desir-
able:

1. Before a discarded page can be reused, a
host action is required to provide a new
backing frame for the guest page. It is
faster to use only non-discarded pages
which do not require a host action as long
as the working set of the guest allows it.

2. It depends on the platform which informa-
tion is delivered by a discard fault. If the
discard fault handler gets absolute page
addresses instead of a virtual addresses—
which is the case for z/VM as the host
system—the discard fault handler needs to
make sure to get a valid page reference.
This is only possible if there are no pend-
ing discard faults for a page before the
page is freed. To ensure this, a synchro-
nization is done before the discarded page
list is freed.

4 System z Host Implementation

In this section, we briefly describe what
changes were required in the System z machine
architecture and in the host operating system to
support CMM2.

The prototype implementation on System z
with Linux guests and a z/VM host uses a sim-

plified state machine that collapses the two dis-
carded states Vz and Pz, and does not have the
preserved volatile states Up, Vp and Pp. The
simplified state diagram is shown in Figure 3.

Ur Sr Vr Pr

Sp

Uz Sz Vz

guest states

host
states

unused (U) stable (S) volatile (V)
potential
volatile (P)

resident (r)

preserved (p)

zero (z)

discard
page

page
out

page
in

resolve

discard page
if clean

page out
if dirty

discard
page

discard
backing

discard
backing

addressing
exception

block validity
exception

Guest state change
Host state change

Guest reference

Figure 3: Simplified State Transition Diagram

In order to keep the overhead for the page
state transitions low, the prototype uses a spe-
cial page state transition instruction called Ex-
tract and Set Storage Attributes, in short ESSA.
ESSA has been introduced with IBM’s newest
z/Architecture mainframe System z9 and at this
point is implemented in millicode. Since the
z/Architecture provides separate guest and host
managed page tables, which both are concate-
nated to establish a guest virtual to host abso-
lute mapping, the page states are maintained
within the host translation tables associated
with each respective guest. The ESSA instruc-
tion enables atomic page state changes both
from the guest and the host with a particular
protection domain. This allows the guest tran-
sitions to be issued atomically and without en-
tering into the host domain. Yet for guest tran-
sitions that require/desire an implicit host tran-
sition, the instruction traps into the host and the
entire transition and associated host actions are
performed.

With the introduction of the ESSA facility to
the z Architecture, z/VM [1] was modified to
recognize and handle both the extended stor-
age attributes and new storage access excep-

324 • Collaborative Memory Management in Hosted Linux Environments

tions associated with these page state attributes.
It also virtualizes the entire ESSA assist in
case the ESSA facility is not available on the
system, e.g. on previous System z machines.
Since one of the primary objectives of the new
architecture is to increase the efficiency with
which z/VM utilizes memory, its paging al-
gorithms were extended to recognize the new
memory attributes. For example, when prepar-
ing the list of frames which are candidates for
being stolen, frames for pages in the unused
state are reclaimed immediately. The demand
scan routines—those called to select candidate
pages when z/VM needs to free up frames—are
executed in several passes, the selection crite-
ria being relaxed on each pass. These routines
were changed so that unused pages are uncon-
ditionally selected on the first pass, and volatile
pages are unconditionally selected on the sec-
ond pass, regardless of the current selection cri-
teria. The net effect of these changes is to leave
in memory, for as long as possible, those pages
the guest has identified as being of primary im-
portance, thereby significantly reducing the risk
of stealing a page at random and then finding
that it needs to be paged back in again almost
immediately.

5 Evaluation

In this section we present results from a set
of experiments to establish the overhead and
scalability of CMM. In the first set of experi-
ments, we execute a set of particular workloads
on a single Linux guest without any z/VM host
memory constraints in order to study the fre-
quency with which state transitions are issued
and the amount of discardable pages observed
during the runs. These discardable pages can be
exploited in overcommitted memory scenarios.
For that we have chosen a kernel compile and a
SPECWeb2005 run. We then discuss the over-

head of ESSA instructions and the overhead of
their emulation.

Since specific state transition accounting is not
performed in the millicode instruction, we are
executing this on a previous version of the
z/Architecture that does not have the millicode
enabled. The z/VM host provides an emulation
for the missing instruction, which allows us to
run CMM2 enabled guests on older machines
and to instrument the emulation code to collect
the frequency information.

5.1 States and Transition Frequency

As the first workload we have chosen a linux
kernel build, which is commonly considered as
a quick, yet important benchmark. It rapidly
executes many processes, utilizes the filecache
and issues I/O operations and thus provides a
good exercise of many important kernel sub-
systems. The guest was configured as a 2-
way 256MB linux system. The benchmark is
comprised of two consecutive identical phases
started from a fresh Linux reboot. Each phase
consists of a kernel compile, a kernel clean, fol-
lowed by a search of the entire linux source for
a particular string.

The number of various page state transitions
per second experienced during the run and
represented by their associated ESSA instruc-
tions is shown in Figure 4(a). To dampen
the high frequency oscillations, we have ap-
plied a simple moving average SMA(3) fil-
ter. We can see that state transitions are ap-
proximately at 50K/sec. SetStable(S) and
SetUnused(U) track each other very closely.
This is due to the fact that individual compile
processes have short life times and page alloca-
tions (SetStable) are shortly followed by their
respective frees (SetUnused). The higher num-
ber of SetStableIfNotDiscarded transi-
tions is due to the fact that I/O is performed

2006 Linux Symposium, Volume Two • 325

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 100 200 300 400 500 600

#E
SS

A
O

PS

time (secs)

Total
SetStable
SetUnused
SetVolatile
SetStableIfNotDiscarded

(a) State Transition Frequency (ops/sec)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0 100 200 300 400 500 600

#P
ag

es

time (secs)

Pages
Stable

Unused
Volatile

Potential
Discardable

(b) State Distribution

Figure 4: Anatomy of a Kernel Compile on a 2-way 256M Guest

using read/write operations, which have to
go through the filecache and use the find_
get_page variants.

A utility program executing concurrently on the
guest “scans” the all guest pages every sec-
ond using the ESSA extract instruction to es-
tablish the number of pages in each usage state.
The result (not including the extract ESSA) is
shown in Figure 4(b). Again a SMA(3) filter is
applied for smoothing effects. The thick solid
line defines the number of discardable pages
(U +V), which on average is about half of all
the guest memory. The first kernel compile
slowly increases the number of volatile pages,
which essentially is due to the increased num-
ber of files that have been read from the linux
source and remain in the file cache. At t=267s
the deep source search is initiated which essen-
tially brings the entire source tree into the file
cache depleting the free page pool. In the sec-
ond phase, the kernel source residency is slowly
reduced again as the source gets pushed out of
memory. This causes the decrease of the num-
ber of volatile pages.

To demonstrate the effect of the collabora-
tive memory management in a realistic enter-
prise computing workload, we show the state
transition characteristics of the SPECweb2005

benchmark, which is modeled after typical en-
terprise IT service scenarios in e-commerce,
banking, and corporate customer support Web
servers. In SPECweb2005, workload genera-
tors send HTTP requests to the Web servers
under evaluation at a given concurrency and
observe whether they are capable of handling
them without violating the service level guar-
antee in terms of response time and goodness
of responses.

We configured a Linux guest on z/VM as a
self-contained SPECweb2005 testbed. The sin-
gle guest Linux hosted Apache 2.2 as the front
end Web server, a SPECweb2005 backend sim-
ulator, and SPECweb2005 workload generat-
ing client along with JVM. The guest was
configured to have a single CPU and 1GB
of real memory. The support scenario of
SPECweb2005 was used in the experiment.

Figure 5(a) shows the different state transi-
tion frequencies (as expressed by their asso-
ciated ESSA ops and with a SMA(30) filter)
over a 20 minute run when the JVM is con-
figured with 256MB heap. The run is com-
prised of 3 phases, (i) initialization [0:50] secs,
(ii) rampup [50:230] secs, and (iii) steady state
run [230–]. One can see from the figure, that
the state change rate is rapidly changing in re-

326 • Collaborative Memory Management in Hosted Linux Environments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 200 400 600 800 1000 1200 1400

#E
SS

A
O

PS

time (secs)

SetStable
SetUnused
SetVolatile
SetStableIfNotDiscarded

(a) State Transition Frequency (ops/sec)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 200 400 600 800 1000 1200 1400

#P
ag

es

time (secs)

Pages
Stable

Unused
Volatile

Potential

(b) State Distribution

Figure 5: Anatomy of a SPECweb2005 run on 1-way 1G Guest

sponse to varying request conditions. The aver-
age ESSA rate in steady state is about 15K/sec.

Figure 5(b) shows the dissection of memory
pages seen from the guest for the same run. At
steady state about half of the pages are Stable
while the other half remains Volatile. A large
portion of the stable pages is attributable to the
130M page JVM heap. Volatile pages are com-
prised of the page cache pages for the html files
and the download files of the SPECweb2005
Support benchmark.

The reasonable large amount of volatile pages
observed both in the Kernel Compile as well as
in SPECweb2005 confirms that the collabora-
tive memory management of the host VM will
be able to find discardable pages for fast mem-
ory provisioning in a typical enterprise work-
load. By utilizing this dynamic state transition
information, the host VM is able to reallocate
pages to those guests which need more pages in
order to meet their service level by harvesting
the discardable pages from other guest systems
and without invoking the victim guests. Nev-
ertheless, the high rate of state transitions, con-
cerned us from the start and let us to explore
the architectural support through the ESSA in-
struction.

5.2 Guest State Transition Overhead

We have timed the common non-trapping
ESSA instructions representing the guest tran-
sitions (∗r → ∗r) on a 1.65GHz z9 proces-
sor and obtained the following results: (i) Ex-
tract: 97.9nsecs; (ii) SetStable: 100.8nsecs;
(iii) SetVolatile: 103.7nsecs; (iv) SetUnused:
102.5nsecs; and (v) SetStableIfNotDiscarded:
106.5nsecs. For the kernel compile, which
poses a very high transition rate of 25K/sec per
cpu, the overhead amounts to ~0.25% and for
the SPECweb2005 run it amounts to ~0.15%.

For systems which do not have the ESSA milli-
code enabled, each ESSA instruction must trap
into z/VM and is emulated there. The execu-
tion times of emulating these instructions are
roughly 10 fold. This should give some bounds
on what to expect if this service is implemented
on other architectures through hypervisor traps.

5.3 Scalability

We now present our preliminary data on a
scalability and comparison analysis of various
memory management technologies. To do so,
a z/VM partition with 34 Linux guests was set

2006 Linux Symposium, Volume Two • 327

up. 32 guests each ran an Apache Webserver
that serves a 1200 1MB files. Two guests func-
tion as web clients to continuously request ran-
dom files from random servers. During the runs
on a 4-way host partition, the two clients con-
sumed ~50% of cpu cycles while each server
consumed ~6% of cpu cycles. The trans-
action rate was measured under varying host
physical memory size PM of the z/VM parti-
tion. The relative degradation as we shrank the
host memory size from PM = 64GB to PM =
256MB is shown in Figure 6. We observed the
following memory management strategies:

• Partitioned: physical memory is parti-
tioned equally among all guests. As a re-
sult all memory pressure is local to the
guests.

• HostPaging: the guests remain at a con-
stant guest memory size and overcommit-
ment is handled in the host.

• CMM1/Balooning: guests are dynami-
cally sized, yet host paging is also al-
lowed.

• CMM2: host and guest coordinate
through the HVA facility.

At PM = 64G all methods exhibit the same
performance as no effective difference exists.
First, in the static partitioned scenario, the guest
memory size RMi = PM/32 is varied down to
64MB and there is no effective performance
drop. This suggests that the working set size of
this workload is extremely small and the file-
cache is ineffective. The PM can not be re-
duced any further, as the guests are not able
to boot or run with less then RMi = 64MB.
Next, in the host paging case where clients
are setup with RMi = 1.5GB, the system re-
lies completely on host paging to deal with the
overcommitment. The system became unre-
sponsive beyond an overcommitment ratio of

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 256 512 1024 2048 4096 8192 16384 32768 65536

Re
la

tiv
e

#T
ra

ns
ac

tio
ns

Host Memory Size [MB]

Partitioned
HostPaging(1.5G)
CMM1(1.5G)
CMM2(1.5G)
CMM2(256M)
CMM2(096M)

Figure 6: Relative degradation in transaction
rate for a 32 server Apache benchmark for var-
ious global memory management methods and
under tightening memory constraints

(1.5 ∗ 32)/8 (PM = 8GB). With the existing
z/VM-Linux ballooning method, CMM1, a re-
configuration sample every 30 seconds and a
setting to allow guests to shrink down to RMi =
64MB, we were able to continue to reduce the
PM to 256M at about 50% performance loss
for guests that were configured with the initial
guest maximum guest size of RMmax

i = 1.5GB.
This is due to the fact that the workload is stable
and exhibits a small working set size and bal-
looning can shrink the RMi towards their work-
ing set size. With CMM2 for RMi = 1.5GB, we
can see that performance lacks the CMM1 bal-
looning curve, which is due to the fact that the
guests have to manage a larger amount of mem-
ory (1.5GB) as compared to the ballooning sce-
nario which effectively reduces the memory
that needs to be managed. CMM2 for RMi =
256MB guests very closely tracks the balloon-
ing method. To continue on that path, we ran
CMM2 for RMi = 96MB guests, we see that in
the range of 512M-3GB, CMM2 outperforms
CMM1 ballooning. This underscores that there
is potential in having CMM2 and CMM1 de-
ployed together, namely utilize CMM1 to size
the guests reasonably and then utilize CMM2
for short term overcommitments.

328 • Collaborative Memory Management in Hosted Linux Environments

6 Conclusions and Future Work

In this paper we introduced a novel approach
to collaborative memory management in hosted
operating system environments. We described
the problems that are associated with pure dy-
namic memory partitioning and pure host pag-
ing. We defined an architecture that will al-
low us to reap the benefits of both approaches,
while avoiding the drawbacks. Our approach
relies on an information sharing of guest page
usage and host residency information to facili-
tate and coordinate both the host and the guest
page reclamation process. The framework
has been implemented on IBM’s z/Architecture
running Linux on zSeries guests and the z/VM
host operating system. The information sharing
was implemented as a millicode instruction.

In the current state of our work, we have shown
for various scenarios that we can successfully
identify discardable guest pages in the host and
that the overhead can be kept within 0.25% for
maintaining the state information. We have also
presented our first scalability analysis that has
shown that CMM2 can outperform host paging
and CMM1 ballooning even for a very stable
non-bursty workload, as long as we can rely on
a mechanism to approximately size the guest
images.

The current ongoing work is a comprehensive
scalability analysis of the kernel compile, the
SPECWeb2005 and bursty workloads. In par-
ticular, the latter two we expect to exhibit better
performance with CMM2 as compared to the
other methods. We are also working on an ex-
tension that eliminates double paging faults.

References

[1] D.L.Osisek, K.M.Jackson, and P.H.Gum,
Esa/390 interpretive-execution

architecture - foundation for vm/esa, IBM
Systems Journal 30 (1991), no. 1, 34–51.

[2] I. Pratt, K. Fraser, S. Hand, C. Limpach,
A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, Xen 3.0 and
the Art of Virtualization, Proceedings of
the Ottawa Linux Symposium, 2005.

[3] Carl A. Waldspurger, Memory resource
management in vmware esx server,
SIGOPS Oper. Syst. Rev. 36 (2002),
no. SI, 181–194.

Copyright c© 2006 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

UNIX is a registered trademark of The Open Group
in the United States and other countries.

Linux is a registered trademark of Linus Torvalds
in the United States, other countries, or both. Other
company, product, and service names may be trade-
marks or service marks of others. References in this
publication to IBM products or services do not im-
ply that IBM intends to make them available in all
countries in which IBM operates.

This document is provided “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

