
Linux Bootup Time Reduction for Digital Still Camera

Chanju Park
Samsung Electronics, Co.
bestworld@samsung.com

Kyuhyung Kim
Samsung Electronics, Co.

kyuhyung.kim@samsung.com

Youngjun Jang
Samsung Electronics, Co.
yj03.jang@samsung.com

Kyungju Hyun
Samsung Electronics, Co.

kyungju.hyun@samsung.com

Abstract

Bootup time is a very important issue in the
DSC System because customers want to cap-
ture immediately specific image. In this paper,
we present the experience of the implementa-
tion methods and the performance evaluation
results for reduction of bootup time which was
used in SAMSUNG DSC platform. At first
we introduce the DSC platform and develop-
ment environments and next we explain the op-
timization method for the bootloader and the
kernel bootup time. We also describe root file
system, device driver module configuration and
DSC applications initialization for bootup time.
There are various techniques for linux bootup
time reduction and we explain the most impor-
tant differences.

1 Introduction

Recent digital convergence trends drive CE
products to have many functions in single de-
vice. The DSC also follows it that provides
many functions such as MP3, PMP, and net-
work function. Various real time operating
system (RTOS), such as ITRON [1], ZORAN

OS [2], VxWorks [3], etc., have been widely
used for the operating system of DSC. How-
ever, some of RTOSes does not support the ex-
tensibility, adaptability, and flexibility [4]. In
order to support these properties, we adopt the
embedded Linux as an OS in our DSC which
kernel features can be modified freely because
its source codes are opened.

Linux uses standard device driver interfaces
and it supports the POSIX APIs, so it pro-
vides diverse extensibility. Using the Linux
can considerably reduce the long-term develop-
ment cost so that the DSC can strengthen the
one of the most important competitive powers-
“Time to Market”. There are many CE prod-
ucts adopting embedded Linux [5]. However,
in DSC, only a few companies use it, such
as Ricoh Company that made prototype Linux
DSC [6].

There would be various important requirements
to load embedded Linux in the DSC. Among
them, the major requirement would be the real-
time performance, and the bootup time. Re-
cently, embedded Linux provides many fea-
tures for real time and the DSC hardware also
does many works for image processing to re-
duce S/W computation overhead. By H/W and
S/W supporting, we can achieve real-time re-



232 • Linux Bootup Time Reduction for Digital Still Camera

quirement of DSC. However, we still have a
important requirement, the bootup time.

In this paper, we will describe “bootup time
reduction” which is one of the major require-
ments in the Linux DSC. This paper organized
as follows. In the next session, we describe the
boot procedure of the DSC, and then present
the technologies relevant to improving bootup
time for Linux. The last section presents the
results of implementation and future research
direction.

2 Bootup time reduction methods

2.1 Environments

We used the Samsung DSC reference platform
for implementing Linux DSC. It has a 16/32-
bit RISC microprocessor, designed to provide
DSC features—6 mega pixel CCD, powerful
JPEG encoder/decoder, Divx decoder, audio
DSP, 64MB DDR memory controller, Camera
interface, SD Host & Multi-Media Card inter-
face, etc. Especially, it includes an OneNAND
flash memory and no NOR flash memory.

The initial Samsung FPGA DSC platform is
shown in Figure 1.

S5C7380x is the high spec digital camera plat-
form of Samsung, which integrates many pe-
ripherals for fast Image processing.

The major features of the platform are:

• Core: Arm926EJS (16K I/D cache)

• Image processor: Samsung S5C7380x

• System clock: 216Mhz Fclock, 108Mhz
Hclock

Figure 1: Initial Samsung FPGA DSC Platform
using S5C7380x

• Memory: 64MB SDRAM , 64MB One-
NAND flash

• DSC Module: CCD censor, Image Pro-
cessing Unit, AF/Zoom/Shutter/Iris mo-
tor, Digital LCD, JPEG encoder/decoder,
OSD, 3A(AE, AWB, AF) module, etc.

• OS: Linux kernel 2.4.20

• Kernel Size: about 1MB (uncompressed
Image)

• File System: Cramfs for root file system,
Robust File system for OneNAND



2006 Linux Symposium, Volume Two • 233

2.2 DSC Bootup Procedure

The booting of the DSC system is a pro-
cess from power-up to ready-to-shoot. (Af-
ter Ready- to-shoot state, we can capture any
images). It consists of three main operations,
“Boot loader”, “Kernel initialization,” and “Ap-
plication Initialization”. After power up, the
boot loader initializes the system and starts the
system process. Then it copies the kernel im-
age into memory. Once the kernel is loaded,
the kernel initializes many resources and loads
H/W module into memory, then it mounts sev-
eral file systems to the several mount points.

We summarize three steps of the bootup proce-
dure as follows:

• Boot Loader

1. System initialization

2. Kernel image copy to RAM

• Kernel Initialization

1. Init kernel

2. Init device drivers

• Application Initialization

1. Run RC script

2. Run Applications

3. Preview Mode (ready-to-shoot)

2.3 Boot loader

Bootloader is a program that runs just before an
OS really starts its work. It initializes a system
and loads a kernel image into RAM. If we use
NOR flash as a boot device, we can shorten the
bootup time using kernel XIP [7].

However, in our work, we should use the One-
NAND flash memory instead of using NOR

flash for two reasons. Samsung’s OneNAND is
a single chip flash that offers the ultra-high den-
sity of NAND and has the interface to NOR at
very attractive price. The OneNAND is based
on NAND architecture integrating buffer mem-
ory and logic interface. It takes both advantages
from high-speed data read function of NOR
flash and the advanced data storage function of
NAND flash. It is mandatory to make addi-
tional small boot loader for copying the kernel
image to memory.

After loading the kernel image, bootloader con-
tinues loading a RFS(Root File System) image
into RAM. Typically the RFS image is stored
in compressed form (gz), therefore, it must be
loaded from storage and decompressed. But by
making RFS on a cramfs File System, it allows
fast boot time since only used files are loaded
and uncompressed. In addition, we can con-
sider the initializing device drivers. In order
to shorten bootup time, the bootloader loads
driver concurrently as many as it can.

2.4 File system

Root file system (RFS) is essential element for
running kernel on embedded system. There are
many file systems, and these can be used as
Linux root file system. Each file system has
its own functionality, various bootup methods
with different bootup time. There are many
sub works to do for mounting file system. For
example, decompressing the compressed file
system, copying itself from storage device to
memory, searching the file system contents,
searching inodes, journaling, and so on. There-
fore, the reduction of RFS mounting time is
very important.

To minimize mounting time, we adopt the
CRAMFS as root file system. The CRAMFS
is designed for simple and small file system, so
it has smaller bootup time comparing to other



234 • Linux Bootup Time Reduction for Digital Still Camera

file systems. The CRAMFS reads only super
block among entire file system element while it
mounting root file system. We can have rel-
atively short boot time using the CRAMFS.
While the CRAMFS has a shorter boot time, it
has some demerits. It can be used only with
read-only attribute, so it’s recommended that
use the CRAMFS only on boot area, and use
another file system on other area that needs to
read and write operation. But if we use special
options for cramfs, specific directories would
not be compressed, so we can save the mount
time.

2.5 Application Optimization Issues

Loading DSC application module is final se-
quence of bootup procedure In DSC system.
After loading applications, bootup sequence
is finished and the system becomes ready-to-
shoot mode. This section describes about time
consuming part while loading and running ap-
plication on bootup sequence, and time reduc-
tion techniques of application.

1. Init script – After kernel bootup, ker-
nel executes init program which is located
at /sbin/init. This program does
some tasks according to /etc/inittab
script. For optimizing bootup time, it’s
necessary to remove unused service on init
script and to run only necessary applica-
tions. As we mentioned on before, this
init script and applications are included in
root file system, CRAMFS. CRAMFS has
an option which does not compress some
area. By using this option, we can reduce
bootup time.

2. Resource loading time – After initializ-
ing kernel and device drivers, system en-
ters into preview mode, and waits for user

input. So user can capture image when-
ever user wants after DSC init. On pre-
view mode, system displays some infor-
mation about system information, storage
information, image quality, date, etc.

This information is represented as icon,
font, menu images on the LCD display
unit. Because the OSD hardware unit in
DSC use these resources, we call it as
OSD data. All OSD data must be loaded
from permanent storage media to mem-
ory. But it is time wasting job to load all
OSD data during bootup time. We can re-
duce the loading time by selective loading
only necessary resources for booting. If
we need more OSD data, we can load them
later dynamically.

3. Lazy process creation – During DSC sys-
tem operates, many subtasks—like event
processing, resource management, image
processing, power management—are ex-
ecuted. Many processes are invoked for
executing these tasks. When creating a
process, system runs system call named
fork(). But invoking fork() wastes time
about tens of ms. It is an overhead when
used on bootup time. So it is recom-
mended to create processes when they are
needed, not to create them when booting
the system.

2.6 Other Optimization Methods

Until now, many DSC specific methods for re-
ducing bootup time are introduced. In this
section, we introduce some methods, what we
adopted to our DSC system, outperforming in
terms of boot time reduction.

1. Preset loops_per_jiffy – One of well
known method of kernel bootup time re-
duction is ‘preset_LPJ’. At each boot time,



2006 Linux Symposium, Volume Two • 235

the Linux kernel calibrates a delay loop
for estimating system performance. This
measures a loops_per_jiffy (LPJ)
value in calibrate_delay(). By us-
ing a pre-calculated LPJ value, we can re-
duce loop overhead, and save bootup time.

• Improvement: about 250ms

2. Disable Console Output – The output
of kernel bootup messages to the con-
sole takes time, but console output is not
needed on a production system. So we can
remove bootup messages by using ‘quiet’
argument to the kernel command line. For
example:

• Improvement: about 230ms

3. Device Driver Initialization – To con-
trol HW units on DSC system, the ker-
nel device driver are needed. All device
drivers have initialize routines, and these
are called during kernel bootup time. So
optimizing the device driver init routine
will reduce kernel bootup time. The de-
vice driver can be loaded into kernel as
two ways, the static method and the dy-
namic method. During kernel bootup,
only static drivers are loaded, and dy-
namic drivers are loaded as modules af-
ter the bootup sequence. So, if a device
driver is not necessary on system init, it
will be better using dynamic loading rather
than using static loading. By making de-
vice driver as module, we can reduce de-
vice driver init time while booting. On
our DSC system, we made device drivers
that are not used on bootup sequence—
USB, MPEG, STROBE, WDT, TV, etc.—
as modules, and loaded them at runtime.

• Improvement: tens of ms

4. Concurrent driver init – DSC system is
composed of various HW unit like mo-
tor (zoom, focus, iris), image processing

unit, JPEG en/decoder, MPEG en/decoder,
strobo, LCD, CCD, etc. Some of these
units are initialized at bootup time because
they are used right after bootup. Nor-
mally, these static device drivers are ini-
tialized in do_initcalls() function
while bootup time. But some kinds of de-
vices need long initializiation time. For
example, zoom motor has to moved to
some fixed location while system initial-
izing, so it may take 1–2 seconds. This
is a long time on system’s view. If
the zoom motor driver is initialized on
do_initcalls(), it may be the main factor of
boot time delay. So we initialized these
device drivers like zoom motor at boot
loader, the beginning part of whole boot
sequence. By doing so, zoom motor is ini-
tialized in parallel with other bootup code.
This is a device dependent method.

5. Memory allocation – The memory al-
location function like kmalloc() at
kernel or malloc() at application is
time consuming function. If these func-
tions are used during bootup sequence, it
may not be helpful to reducing bootup
time. We improved bootup time by re-
moving memory allocation function on
bootup sequence By allocating memory
after bootup, or by using memory pre-
allocation, we can remove memory allo-
cation function.

• Improvement: tens of ms

2.7 System suspend/resume

Bootup time is very important because DSC
user want to capture the image as quick as pos-
sible, The methods as we shows before are for
system initialization processes. But if we use
the system suspend/resume method, the bootup
time reduction will be implemented very ef-
fectively. The system suspend/resume is also



236 • Linux Bootup Time Reduction for Digital Still Camera

one of the power management method. Sys-
tem suspend means that all power of the system
break down except SDRAM, and in SDRAM
on which we store current system information
like as cpu register, I/O map information. Sys-
tem suspend means that there is no power in
the system except SDRAM and the system re-
members its state in SDRAM like as cpu reg-
isters, I/O device status, runtime global/local
variables, etc.

When system receives specific events like as
power button, the resuming procedure will be
started. The first thing for resuming is sup-
plying power and initializing the CPU, mem-
ory, etc. And next check if current state was
in resume mode and restore all data which
was in SDRAM. If we use the suspend/resume
method, reducing bootup time has good effi-
ciency, because only restoring system infor-
mation from the memory is needed. Addi-
tional works to do is initialize some devices
like as LCD, Motor, CCD, Image Processing
Devices. We can consider next things for sus-
pend/resume.

1. At begging of the bootloader, initialization
is needed for the devices which has long
initialization time like as zoom motor. Of
cause these kinds of devices have the fea-
ture of the concurrent initialization.

2. When system resumed, some user would
modify the DSC state. So it is need to
check system state and change the DSC
application for that state if changed.

3. During the system is in suspend state, the
power consumption has to satisfy the re-
quirement of marketing issues of DSC.

We can consider that if some level of time has
passed, the system would be power off au-
tomatically for low power consumption. Of

course, next time the DSC will be booted us-
ing normal booting.

With Samsung DSC platform, when we using
the suspend/resume method for bootup time re-
duction, total bootup time until review is 500ms
which is faster than motor initialization time.
So, it is need to use faster motor devices for
fast bootup time.

3 Results

3.1 Bootup time results

Using DSC specific and general bootup time
reduction methods which were described be-
fore, we can get following results from Sam-
sung DSC platform.

We show the bootup time results on Samsung
DSC in Table 1. Note: Times are approximate
values and in milliseconds

From this table, we can get the result that the
most time consumption areas are about 4 parts:
Image copy from flash memory to SDRAM at
boot loader, device driver initialization area,
file system related area, and DSC application
initialization area. So if we achieve more
bootup time reduction, we have to concentrate
at above areas.

3.2 System clock speed influence

System clock speed influences not only over-
all performance of system but also bootup time.
Following graph shows that the variation of
system clock speed influences bootup time at
the same DSC H/W platform.

As the results, bootup time is proportionate to
the system clock speed. So it is important to us-
ing maximum clock speed the system supports.



2006 Linux Symposium, Volume Two • 237

Booting Operation time
Bootloader Initialize CPU & RAM & Uboot 50

Copy kernel image (from flash to RAM) 450
Kernel Init setup_arch () 50

setup_arch () 50
trap_init () 10
kmem_cache_init() 10
mem_init () 20
vfs_caches_init () 20
page_caches_init () 10
rest_init() do_basic_setup() 190

prepare_namespace() 20
console_open() 20

Application ready to use file system 480
DSC process (preview mode) 650

total 1980

Table 1: Booting time results

3.3 Flash memory

We have seen in previous section that One-
NAND has the feature of NOR and NAND
flash memory. It supports two kinds of
read/write operation modes. The one is the syn-
chronous burst read mode and the other is asyn-
chronous random read mode. If we use syn-
chronous read mode, the read time will be very
fast. If system support full feature for One-
NAND, like as synchronous and cached mode,
its performance is almost same as the case us-
ing NOR flash.

Figure 3 shows the results of comparison of
OneNAND and NOR flash. The shadowing
means that kernel image will be copied into
memory. This had been tested in another sys-
tem by Samsung and presented at CELF for
Linux NAND file system solutions [11].

S5C7380x does not support synchronous mode,
but as Figure 3 shows, we have to check
whether the system can support OneNAND
synchronous mode when using other systems.

4 Further work

So far, we has introduced various methods for
DSC bootup time reduction using Linux. But
there are many other methods that were not
adopted but already well known [9].

Another user application issue is that we have
to check the remaining space of the card in the
storage device. If there is no space to store
any image, application has to display the in-
formation on LCD and has to processing rel-
evant works. In addition, most DSC applica-
tions using the specific file system format like
as DCF, which defines a common format for
digital cameras for compatibility [12].

The DCF defines also the directory and file
name structure at application booting time. But
If we can store the first Image to internal mem-
ories like as flash or SDRAM, there is no need
to initialize the card device at booting time, so
we can save the time.

At the same time, if we use kernel XIP, there is
no need to copy the kernel image from storage



238 • Linux Bootup Time Reduction for Digital Still Camera

Figure 2: Bootup time about each cpu clocks. All times are in milliseconds

Figure 3: OneNAND booting time comparisons



2006 Linux Symposium, Volume Two • 239

device to memory, so the bootup time will be
reduced dramatically. But this kind of methods
gives a little bit runtime overhead and increas-
ing the costs. There are many other methods for
bootup time reduction: pre-linking, lazy link-
ing, RTC read synch, and so forth. But in this
paper these methods are not introduced [10].

5 Conclusion

The use of embedded Linux is a little bit risky
on DSC for bootup time. When we imple-
mented Linux on the DSC at first, the bootup
time was more than 10 seconds. However,
we get the reasonable bootup time by adopting
suggested methods. Recently, the DSCs which
have other RTOS show a very fast bootup time.
We overcome the slow bootup time of conven-
tional embedded Linux for DSC by using our
methods.

Comparing to the performance of conventional
DSC using RTOS, the DSC with embedded
Linux shows a similar bootup time. As a result,
we can solve the problem of embedded Linux
bootup time for CE devices like the DSC. Of
course, if we apply the additional method for
the bootup time reduction, we can get better re-
sults.

We have to understand the feature of software
and hardware of the DSC, For all of these, we
have to evaluate the performance and the sta-
bility of the system although we can choose
more method. After first version implementa-
tion of the DSC, the bootup time is more than
10 seconds. But when we implement the sug-
gested methods for reduction, the bootup speed
has good results.

In recently, the DSC which had other RTOS
shows a very fast bootup time. And also, Sam-
sung Linux DSC has reasonable results. Of

course if we implement other methods for re-
duction, the bootup time will be faster To sum-
marize, we need to understand both software
and hardware of DSC and have to use the DSC
specific feature. But because we can not adopt
all methods for boot time reduction, we have to
check which should be implemented and evalu-
ate the over all performance results from adap-
tation.

References

[1] The Most Popular Operating System in
the World,
http://technews.acm.org/
articles/2003-5/1017f.html,
Linux Insider (10/15/03); Krikke, Jan

[2] Samsung Digimax V700 incorporates
Zoran Coach 7, http://www.
letsgodigital.org/en/news/
articles/story\2866.html

[3] PLATFORM FOR CONSUMER
DEVICES, VxWorks embedded
real-Time Operating System (RTOS),
Intel, Wind River Systems, Inc.,
www.windriver.com

[4] Embedded Linux startup reports success,
growth,
http://www.linuxdevices.
com/news/NS7176308845.html

[5] Adaptability, Extensibility, and
Flexibility in Real-Time Operating
Systems, Euromicro Symposium on
Digital Systems Design ,DSD’01, 2001

[6] Linux on a Digital Camera, Porting 2.4
Linux kernel to an existing digital camera
Alain Volmat Ricoh Company Ltd.
Proceedings of the Linux Symposium,July
21st-24th, 2004 Ottawa, Ontario Canada



240 • Linux Bootup Time Reduction for Digital Still Camera

[7] Bill Weinberg, Building Intelligent
Devices with MontaVista Linux
Consumer Electronics Edition,
MontaVista Software,
http://www.linuxpundit.com/
cv/docs/wp_cee.pdf

[8] onenand_ebrochure_200503, http:
//www.samsung.com/Products/
Semiconductor/OneNAND

[9] Tim R. Bird, Methods to Improve Bootup
Time in Linux, Sony Electronics
tim.bird@am.sony.com,Proceedings of
the Linux Symposium July 21th-24th,
2004 Ottawa, Ontario Canada

[10] BootupTimeReductionHowto,
http://tree.celinuxforum.
org/CelfPubWiki/
BootupTimeReductionHowto

[11] Case 3—comparing NOR XIP with
OneNAND quick-copy to RAM,
http://tree.celinuxforum.
org/CelfPubWiki/KernelXIP

[12] Design rule for Camera File system,
http://www.exif.org/dcf.PDF



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


