
tgt: Framework for Storage Target Drivers

Tomonori FUJITA
NTT Cyber Solutions Laboratories

tomof@acm.org

Mike Christie
Red Hat, Inc.

michaelc@cs.wisc.edu

Abstract

In order to provide block I/O services, Linux
users have had to modify kernel code by hand,
use binary kernel modules, or purchase spe-
cialized hardware. With the mainline kernel
now having SCSI Parallel Interface (SPI), Fibre
Channel (FC), iSCSI, and SCSI RDMA (SRP)
initiator support, Linux target framework (tgt)
aims to fill the gap in storage functionality by
consolidating several target driver implementa-
tions and providing a SCSI protocol indepen-
dent API that will simplify target driver cre-
ation and maintenance.

Tgt’s key goal and its primary hurdle has been
implementing a great portion of tgt in user
space, while continuing to provide performance
comparable to a target driver implemented en-
tirely in the kernel. By pushing the SCSI state
machine, I/O execution, and the management
components of the framework outside of the
kernel, it enjoys debugging, maintenance and
mainline inclusion benefits. However, it has
created new challenges. Both traditional ker-
nel target implementations and tgt have had
to transform Block Layer and SCSI Layer de-
signs, which assume requests will be initiated
from the top of the storage stack (the request
queue’s make_request_fn()) to an archi-
tecture that can efficiently handle asynchronous
requests initiated by the the end of the stack
(the low level drivers interrupt handler), but
tgt also must efficiently communicate and syn-

chronize with the user-space daemon that im-
plements the SCSI target state machine and per-
forms I/O.

1 Introduction

The SCSI protocol was originally designed to
use a parallel bus interface and used to be tied
closely to it. With the increasing demands of
storage capacity and accessibility, it became
obvious that Direct Attached Storage (DAS),
the classic storage architecture, in which a host
and storage devices are directly connected by
system buses and parallel cable, cannot meet
today’s industry scalability and manageabil-
ity requirements. This lead to the invention
of Storage Area Network (SAN) technology,
which enables hosts and storage devices to be
connected via high-speed interconnection tech-
nologies such as Fibre Channel, Gigabit Ether-
net, Infiniband, etc.

To enable SAN technology, the SCSI-3 archi-
tecture, as can be seen in Figure 1, brought an
important change to the division of the stan-
dard into interface, protocol, device model, and
command set. This allows device models and
command sets with various transports (physi-
cal interfaces), such as Fibre Channel, Ether-
net, and Infiniband. The device type specific
command set, the primary command set, and
transport are independent of each other.



304 • tgt: Framework for Storage Target Drivers

SCSI Primary command set (for all device types)

Interlock

Protocol

Parallel

Interface

Fibre

Channel

Protocol

Fibre

Channel

RDMA

Protocol

InfiniBand

iSCSI

Internet

Block

commands

(disk)

Stream

Commands

(tape)

Multi-Media

Commands

(CD, DVD) 

Controller

Commands

(RAID)

Interconnects

Transport

Protocols

Device Type

Specific

Command sets

Figure 1: SCSI-3 architecture

1.1 What is a Target

SCSI uses a client-server model (Figure 2). Re-
quests are initiated by a client, which in SCSI
terminology is called an Initiator Device, and
are processed by a server, which in SCSI termi-
nology is known as a Target Device. Each tar-
get contains one or more logical units and pro-
vides services performed by device servers and
task management functions performed by task
managers. A logical unit is an object that im-
plements one or more device functional mod-
els described in the SCSI command standards
and processes commands (eq., reading from or
writing to the media) [5].

Currently, the Linux kernel has support for sev-
eral types of initiators including ones that use
FC, TCP/IP, RDMA, or SPI for their transport
protocol. There is however, no mainline target
support.

2 Overview of Target Drivers

2.1 Target Driver

Generally in the past, a target driver is respon-
sible for the following tasks:

Initiator

Logical Units

Target

0 1 2

Transport

Figure 2: SCSI target and initiator

1. Handling its interconnect hardware inter-
face and transport protocol.

2. Processing the primary and device specific
command sets.

3. Accessing local devices (attached to the
server directly) when necessary.

Since hardware interfaces are unique, the ker-
nel needs a specific target driver for every
hardware interface. However, the rest of the
tasks are independent of hardware interfaces
and transport protocols.

The duplication of code between tasks two and
three lead to the necessity for a target frame-
work that provides a API set useful for every
target driver. In tgt, target drivers simply take
SCSI commands from transport protocol pack-
ets, hand them over to the framework, and send
back the responses to the clients via transport
protocol packets. Figure 3 shows a simplified
view of how hardware interfaces and transport
protocols interact in tgt. It is more complicated
than the above explanation of the ideal model
due to some exceptions described below.

Tgt is integrated with Linux’s SCSI Mid Layer
(SCSI-ML), so it supports two hardware inter-
face models:

Hardware A Host Bus Adapter (HBA) han-
dles the major part of transport protocol



2006 Linux Symposium, Volume One • 305

iSCSI

FCP

SRP

Hardware

Interface

Transport

Protocols

Target drivers

& kernel subsystems

TCP stackNIC

FC HBA

iSCSI HBA

RNIC

IB TCA

RNIC

IB TCA

RNIC stack

IB stack

RNIC stack

IB stack

Target driver

Target driver

Target driver

Target driver

Target driver

Target driver

Target driver

Target

Framework

Figure 3: transport protocols and hardware in-
terfaces

processing and the target driver imple-
ments the functionality to communicate
between the HBA and tgt. Tgt needs a spe-
cific target driver for each type of HBA.
FCP and SPI drivers follow this model.
Drivers for other transports like iSCSI or
SRP or for interconnects like iSER fol-
low this model when there is specialized
hardware to offload protocol or intercon-
nect processing.

Software For transports like iSCSI and SRP
or interconnects like iSER, a target driver
can implement the transport protocol pro-
cessing in a kernel module and access low
level hardware through another subsystem
such as the networking or infiniband stack.
This allows a single target driver to work
with various hardware interfaces.

3 Target Framework (tgt)

Our key design philosophy is implementing a
significant portion of tgt in user space while
maintaining performance comparable to a tar-
get driver implemented in kernel space. This
conforms to the current trend of pushing code
that can be implemented in user space out of

tgt daemontgtadm

Kernel Space

tgt core

User Space

Unix socket

Netlink socket

SCSI Mid Layer

Block LayerTarget Drivers

Target driver 

libraries 

Transport

libraries

Dynamic libraries

Figure 4: tgt components

the kernel [6] and enables developers to use rich
user space libraries and development tools such
as gdb.

As can be seen in Figure 4, the tgt architecture
has two kernel components: the target driver
and tgt core. The target driver’s primary re-
sponsibilities are to manage the transport con-
nections with initiator devices and pass com-
mands and task management function requests
between its hardware or interconnect subsys-
tem and tgt core. tgt core is a simple connector
between target drivers and the user space dae-
mon (tgtd) that enables the driver to send tgtd a
vector of commands or task management func-
tion requests through a netlink interface.

Tgt core was integrated into scsi-ml with minor
modifications to the scsi_host_template
and various scsi helper functions for allocating
scsi commands. This allows tgt to rely on scsi-
ml and the Block Layer for tricky issues such as
hot-plugging, command buffer mapping, scat-
ter gather list creation, and transport class inte-
gration. Note that tgt does not change the cur-
rent scsi-ml API set, so normally the only mod-
ifications are required to the initiator low level
driver’s (LLD) interrupt handler to process tar-
get specific requests and to the transport classes
so that they are able to present target specific at-
tributes.

All SCSI protocol processing is performed in



306 • tgt: Framework for Storage Target Drivers

user space, so as can be seen by Figure 4 the
bulk of the tgt is implemented in: tgtadm, tgtd,
transport libraries and driver libraries. tgtadm
is a simple management tool. A transport li-
brary is equivalent to a kernel transport class
where functionality common to a set of drivers
using the same transport can be placed. Driver
libraries, are dynamically linked target driver
specific libraries that can be used to imple-
ment functionality such as special setup and
tear down operations. And, tgtd is the SCSI
state machine that executes commands and task
management requests.

The clear concern over the user space SCSI pro-
tocol processing is degraded performance1. We
explain some techniques to overcome this prob-
lem as we discuss in more detail the tgt compo-
nents.

3.1 API for Target Drivers

The target drivers interact with tgt core
through a new tgt API set, and the exist-
ing mid-layer API set and data structures.
For the most part, target drivers work in a
very similar manner as the existing initia-
tor drivers. In many cases the initiator only
needs to implement the new target callbacks on
the scsi_host_template: transfer_
response(), transfer_data(), and
tsk_mgmt_response(), to enable a target
mode in its hardware. We examine the details
of the new callbacks later in this section.

3.1.1 Kernel Setup

The first step in registering a target driver with
scsi-ml and tgt core is to create a scsi host

1In the early days, tgt performed performance sen-
sitive SCSI commands in kernel space (eq. read/write
from/to storage devices). However, it turned out that the
current design was able to achieve comparable perfor-
mance.

adapter instance. This is accomplished by call-
ing the same functions that are used for the
initiator: scsi_host_alloc() and scsi_
add_host(). If an HBA will be running in
both target and initiator mode then only a sin-
gle call to each of those functions is necessary
for each HBA. The final step in setting up a
target driver is to allocate a uspace_req_q
for each scsi host that will be running in tar-
get mode. A uspace_req_q is used by tgt
core to send requests to user-space. It can be al-
located and initialized by calling scsi_tgt_
alloc_queue().

3.1.2 Processing SCSI Commands in the
Target Driver

The target driver needs to allocate the scsi_
cmnd data structure for a SCSI command re-
ceived from a client via scsi_host_get_
command(). This corresponds to scsi-ml’s
scsi_get_command() usage for allocat-
ing a scsi_cmnd for each request coming
from the Block Layer or scsi-ml Upper Layer
Driver (ULD). While the former allocates the
scsi_cmnd and the request data struc-
tures, the latter allocates only the scsi_cmnd
data structure.

The target driver sets up and passes the scsi_
cmnd data structure to tgt core via scsi_
tgt_queue_command(). The following
information is passed to tgt core from the tar-
get driver:

SCSI command buffer to contain SCSI com-
mand.

lun buffer buffer to represent logical unit
number.

tag unique value to identify this SCSI com-
mand.



2006 Linux Symposium, Volume One • 307

task attribute task attribute for ordering.

buffer length number of data bytes to transfer.

On completion of executing a SCSI command,
tgt core invokes transfer_response(),
which is specified in the scsi_host_
template data structure.

transfer_data() is invoked prior to
transfer_response() if a SCSI com-
mand involves data transfer. Like scsi-ml, a
scatter gather list of pages at the request_
buffer member in the scsi_cmnd data
structure is used to specify data to transfer.
Also like scsi-ml, tgt core utilizes Block Layer
and scsi-ml helpers to create scatter gather
lists within the scsi_host_template lim-
its such as max_sectors, dma_boundary,
sg_tablesize, and use_clustering.

If the SCSI command involves a target-to-
initiator data transfer, a target driver transfers
data pointed out by the scatter gather list to
the client, and then invokes the function pointer
passed as a argument of transfer_data()
to notify tgt core of the completion of the oper-
ation.

If the SCSI command involves a initiator-to-
target data transfer, the target driver copies
(through a DMA operation or memcpy) data
to the scatter gather list (the LLD or transport
class requests the client to send data to write be-
fore the actual transfer if necessary), and then
invokes the function pointer passed as a ar-
gument of transfer_data() to notify tgt
core of the completion of the transfer.

Depending on the transfer size and hardware or
transport limitations, tgt core may have to call
transfer_data() multiple times to trans-
mit the entire payload. To accomplish this, tgt
is not able to easily reuse the existing Block
Layer and SCSI API. This is due to tgt core

executing from interrupt context, and because
the scatter list APIs tgt utlizes were not in-
tended for requests starting at end of the storage
stack. To work around the Block Layer scatter
gather list allocation function assumption that
a request will normally be completed in one
scatter list, tgt required two modifications or
workarounds. The first and easiest, was the ad-
dition of an offset field to the scsi_cmnd
to track where the LLD is currently at in the
transfer. The more difficult change, and prob-
ably more of a hack, was for tgt core to main-
tain two lists of BIOs for each request. One
list contains BIOs that have not been mapped
to scatter lists and the second list contains BIOs
that have been mapped into scatter gather lists,
completed, and need to be unmapped from pro-
cess context when the command is completed.

3.1.3 Task Management Function

A target driver can send task management func-
tion (TMF) requests to tgt core via scsi_
tgt_tsk_mgmt_request().

The first argument is the TMF type. Currently,
the supported TMF types are ABORT_TASK,
ABORT_TASK_SET, and LOGICAL_UNIT_
RESET.

The second argument is the tag value to iden-
tify a command to abort. This corresponds
to the tag argument of scsi_tgt_queue_
command() and used only with ABORT_
TASK.

The third argument is the lun buffer to identify
a logical unit against which the TMF request
is performed. This is used with TMF requests
except for ABORT_TASK.

The last argument is a pointer to enable target
drivers to identify this TMF request on comple-
tion of it.



308 • tgt: Framework for Storage Target Drivers

tgt core invokes eh_abort_handler() per
aborted command to allow the target driver to
clean up any resources that it may have inter-
nally allocated for the command. Unlike when
it is called by scsi-ml’s error handler, the host
is not guaranteed to be quiesced and may have
initiator and target commands running.

Subsequently to eh_abort_handler(),
tsk_mgmt_response() is invoked. The
pointer to identify the completed TMF request
is passed as the argument.

3.2 tgt core

tgt core conveys SCSI commands, TMF re-
quests, and these results between target drivers
and the user space daemon, tgtd, through a
netlink interface, which enables a user space
process to read and write a stream of data via
the socket API. tgt core encapsulates the re-
quests into netlink packets and sends them to
user space to be executed. Then it receives
netlink packets from user space, extracts the re-
sults of the operation, and performs auxiliary
tasks in compliance with the results. Figure 5
shows the packet format for SCSI commands.

struct {
int host_no;

uint32_t cid;

uint32_t data_len;

uint8_t scb[16];

uint8_t lun[8];

int attribute;

uint64_t tag;

} cmd_req;

Figure 5: Netlink packet for SCSI commands

Since moving large amounts of data via netlink
leads to a performance drop because of the
memory copies, for the command’s data buffer

tgt uses the memory mapped I/O technique uti-
lized by the Linux SCSI generic (SG) device
driver [4], which moves an address that the
mmap() system call returns instead of lots of
data.

When tgt core receives the address from user
space, it increments the reference count on
the pages of the mapped region and sets
up the the scatter gather list in scsi_
cmnd data structure. tgt core relies on
the standard kernel API, bio_map_user(),
scsi_alloc_sgtable(), and blk_rq_
map_sg() for these chores. Similarly,
bio_unmap_user() and scsi_free_
sgtable() decrements the reference and
cleans up the the scatter gather list. The former
also marks the pages as dirty in case of initiator-
to-target data transfer (WRITE_* command).

3.3 User Space Daemon (tgtd)

The user space daemon, tgtd, is the heart of tgt.
It contains the SCSI state machine, executes re-
quests and provides a consistent API for man-
agement via Unix domain sockets. It commu-
nicates with the target drivers through tgt core’s
netlink interface.

tgtd currently uses a single process model.
This enables us to avoid tricky race conditions.
Imagine that a SCSI command is sent to a par-
ticular device and a management request to re-
move the device comes at the same time. How-
ever, this means that tgtd always needs to work
in an asynchronous manner.

The tgtd code is independent of transport proto-
cols and target drivers. The transport-protocol
dependent and target-driver dependent features,
such as showing parameters, are implemented
in dynamic libraries: transport-protocol li-
braries and target-driver libraries.



2006 Linux Symposium, Volume One • 309

There are two instances that the administrators
must understand: target and device. A target
instance works as a SCSI target device server.
Every working scsi host adapter that imple-
ments a target driver is bound to a particular
target instance. Multiple scsi host adapter in-
stances can be bound to a single target instance.
A device instance corresponds to a SCSI logi-
cal unit. A target instance can have multiple
device instances.

3.3.1 SCSI Command Processing in tgtd

In previous sections, the process by which a
command is moved between the kernel and user
space and how it is transferred between the tar-
get and initiator ports has been detailed. Now,
the final piece of the process, where tgtd per-
forms command execution, is described.

1. tgtd receives a netlink packet containing
a SCSI command and finds the the tar-
get instance (the device instance is looked
up if necessary) to which the command
should be routed. As shown in Figure 5,
the packet contains the host bus adapter ID
and the logical unit buffer.

2. tgtd processes the task attribute to know
when to execute the command (immedi-
ately or delay).

3. When the command is scheduled, tgtd ex-
ecutes it and sends the result to tgt core.

4. tgtd is notified via tgt core’s netlink inter-
face that the target driver has completed
any needed data transfer and has success-
fully sent the response. tgtd is then able to
free resources that it had allocated for the
command.

In case of non-I/O commands, involving target-
to-initiator data transfer, tgtd allocates buffer

via valloc(), builds the response in it, and
sends the address of the buffer to tgt core. The
buffer is freed on completion of the command.

In case of I/O commands, tgtd maps the re-
quested length starting at the offset from the
device’s file, and sends the address to the tgt
core. On completion of the command, tgt calls
the munmap system call.

To improve performance, if tgtd can map the
whole device file (typically, it is possible with
64-bit architectures), tgtd does not call the
mmap or munmap system calls per command.
Instead, it maps the whole device file when the
device instance is added to a target instance.

3.3.2 Task Management Function

When tgtd receives task management function
requests to abort SCSI commands, it searches
the commands, sends an abort request per the
found commands, and then sends the TMF
completion notification to tgt core.

Once tgt core marks pages as a dirty, it is im-
possible to stop them being committed to disk.
Thus, tgtd does not try to abort a command if it
is waiting for the completion. If tgtd receives a
request to abort such command, it waits for the
completion of the command and then sends the
TMF completion notification indicating that the
command is not found.

3.4 Configuration

The currently supported management opera-
tions are: creation and deletion of target and
device instances and binding a host adapter in-
stance to a target instance. All objects are in-
dependent of transport protocols. Transport-
protocol dependent management requests (such



310 • tgt: Framework for Storage Target Drivers

as showing parameters) are performed by using
the corresponding transport-protocol library.

The command-line management tool, tgtadm,
is distributed together with tgt for ease of use,
though tgtd provides a management API via
Unix domain sockets so that administrators or
vendors can implement their own management
tools.

4 Status and the Future

Today, tgt implements only what is necessary
to be able to benchmark it against kernel driver
implementations and provide basic functional-
ity. This has been due to the code being desta-
bilized several times as a result of code review
comments that have forced most of the code to
be pushed to user space. This means that there
is a long list of features to be implemented and
ported from previous versions of tgt.

4.1 Target Driver Support

At the time of the writing of this paper, there
is only one working target driver, ibmvstgt,
which is a SRP target driver, though it works
only for virtualization environments on IBM
pSeries [2]. The virtual machines communi-
cate via RDMA. One virtual machine (called
the Virtual I/O server) works as a SRP server
that provides I/O services for the rest of virtual
machines. ibmvstgt is based on the IBM stan-
dalone (not a framework) target driver [3], ib-
mvscsis. By converting ibmvscsis to tgt more
than 2,000 lines were removed from the origi-
nal driver.

Currently, there is a Qlogic FC, qla2xxx-based,
target driver being converted from kernel based
target framework, SCST [9], to tgt. And, an

Emulex FC, lpfc-based, target driver that uti-
lized a GPL FC target framework is being
worked on. Both of these require FC transport
class Remote Port (rport) changes that will al-
low the FC class and tgt core to perform trans-
port level recovery for the target LLDs.

The iSCSI code in mainline has also begun to
be modified to support target mode. With the
introduction of libiscsi a target could be imple-
mented by creating a new iscsi transport mod-
ule or by modifying the iscsi tcp module.

4.2 Kernel and User Space Communica-
tion

Netlink usage leads to memory allocations and
memory copies for every netlink packet. It
also suffers from frequent system calls. tgt
avoids a significant performance drop by us-
ing the memory mapped I/O technique for the
command data buffer, but there is still room
for improvement. By removing the copy of the
command and its status and sending a vector of
commands or status we can reduce the memory
copies and kernel user space trips.

Previous versions of tgt had used a mmapped
packet socket (AF_PACKET), to send messages
to user space. This removes netlink from the
command execution initiation and proved to
be a performance gain, but difficulties in the
mmapped packet socket interface usage have
prevented tgt from currently using it. Another
option that provides high speed data transfers
is the relayfs file system [10]. Unfortunately,
both are unidirectional, and only communica-
tion from the kernel to user space is improved.

Another common technique for reducing sys-
tem call usage is to send multiple requests in
one invocation. During testing of tgt, this was
attempted and showed promise, but was dif-
ficult to tune. Investigation will be resumed



2006 Linux Symposium, Volume One • 311

when more drivers are stabilized and can be
benchmarked.

4.3 Virtualization

The logical unit that executes requests from a
remote initiator is not limited to being backed
by a local device that provides a SCSI interface.
The object being used by tgt for the logical
unit’s device instance could be a IDE, SATA,
SCSI, Device Mapper (DM), or Multiple De-
vice (MD) device or a file. To provide this flex-
ibility, previous versions of tgt provided virtu-
alized devices for the clients regardless of the
attached local object. tgtd had two types of vir-
tualization:

device virtualization With device virtual-
ization, a device_type_handler
(DTH) emulates commands that cannot
be executed directly by its device type.
For example, a MD or DM device has no
notion of a SCSI INQUIRY. In this case
the DTH has the generic SCSI protocol
emulation library execute the INQUIRY.

I/O virtualization With I/O virtualization a
io_type_handler (IOTH) enables tgt
to access regular and block device files
using mmap or use specialized interfaces
such as SG IO.

Many types and combinations of device and I/O
virtualization are possible. A Virtual Tape Li-
brary (VTL) could provide a tape library using
disk drives, or by using the virtual CD device
and file I/O virtualization a tgt machine could
provide cdrom devices for the client with ISO
image files.

Another interesting virtualization mechanism is
passthrough, directly passing SCSI commands
to SCSI devices. This provides a feature, called

storage bridge, to bind different SAN protocols.
For example, suppose that you are already in a
working FC environment, where there are is FC
storage server and clients with a FC HBA. If
you need to add new clients that need to access
the FC storage server, however you cannot af-
ford to buy new FC HBAs, an iSCSI-FC bridge
can connect the existing FC network with a new
iSCSI network.

Currently, tgt supports disk device virtualiza-
tion and file I/O virtualization. The file I/O vir-
tualization simply opens a file and accesses its
data via the mmap system call.

5 Related Work

SCST is the first GPLed attempt to implement
a complete framework for target drivers. There
are several major differences between tgt and
SCST: SCST is mature and contains many fea-
tures, all the SCST components reside in kernel
space, and SCST duplicates functionality found
in scsi-ml and the Block Layer instead of ex-
ploiting and modifying those subsystems.

Besides ibmvscsis, there have been several
standalone target drivers. iSCSI Enterprise Tar-
get software (IET) [1] is a popular iSCSI tar-
get driver for Ethernet adapters, which tgt has
used as a base for istgt2. Other software iSCSI
targets include the UNH and Intel implementa-
tions [8, 7] and there are several iSCSI and FC
drivers for specific hardware like Qlogic and
Chelsio.

2The first author has maintained IET. The failure to
push it into the mainline kernel is one of the reasons why
tgt was born.



312 • tgt: Framework for Storage Target Drivers

6 Conclusion

This paper describes tgt, a new framework that
adds storage target driver support to the SCSI
subsystem. What differentiates tgt from other
target frameworks and standalone drivers is its
attempt to push the SCSI state model and I/O
execution to user space.

By using the Block and SCSI layer, tgt has been
able to quickly implement a solution that by-
passes performance problems that result from
executing memory copies to and from the ker-
nel. However, the Block and SCSI Layers, were
not designed to handle large asynchronous re-
quests originating from the LLDs interrupt han-
dlers. Since the Block Layer SG IO and SCSI
Upper Layer Drivers like SG, share a common
technique, code, and problems, we hope we
will be able to find a final solution that will ben-
efit tgt core and the rest of the kernel.

Tgt has undergone several rewrites as a result of
code reviews, but is now reaching a point where
hardware interface vendors and part time devel-
opers are collaborating to solidify tgt core and
tgtd, implement new target drivers, make mod-
ifications to other kernel subsystems to support
tgt, and implement new features.

The source code is available from http://
stgt.berlios.de/

References

[1] iSCSI Enterprise Target software, 2004.
http://iscsitarget.
sourceforge.net/.

[2] Dave Boutcher and Dave Engebretsen.
Linux Virtualization on IBM POWER5
Systems. In Ottawa Linux Symposium,
pages 113–120, July 2004.

[3] Dave Boutcher. SCSI target for IBM
Power5 LPAR, 2005. http:
//patchwork.ozlabs.org/
linuxppc64/patch?id=2285.

[4] Douglas Gilbert. The Linux SCSI
Generic (sg) Driver, 1999.
http://sg.torque.net/sg/.

[5] T10 Technical Editor. SCSI architecture
model-3, 2004.
http://www.t10.org/ftp/t10/
drafts/sam3/sam3r14.pdf.

[6] Edward Goggin, Alasdair Kergon,
Christophe Varoqui, and David Olien.
Linux Multipathing. In Ottawa Linux
Symposium, pages 147–167, July 2005.

[7] Intel iSCSI Reference Implementation,
2001. http://sourceforge.net/
projects/intel-iscsi/.

[8] UNH-iSCSI initiator and target, 2003.
http://unh-iscsi.
sourceforge.net/.

[9] Vladislav Bolkhovitin. Generic SCSI
Target Middle Level for Linux, 2003.
http:
//scst.sourceforge.net/.

[10] Karim Yaghmour, Robert Wisniewski,
Richard Moore, and Michel Dagenais.
relayfs: An efficient unified approach for
trasmitting data from kernel to user
space. In Ottawa Linux Symposium,
pages 519–531, July 2003.



Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


