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Abstract

Monitoring program execution is becoming
more than ever key to achieving world-class
performance. A generic, flexible, and yet pow-
erful monitoring interface to access the perfor-
mance counters of modern processors has been
designed. This interface allows performance
tools to collect simple counts or profiles on a
per kernel thread or system-wide basis. It in-
troduces several innovations such as customiz-
able sampling buffer formats, time or overflow-
based multiplexing of event sets. The cur-
rent implementation for the 2.6 kernel supports
all the major processor architectures. Several
open-source and commercial tools based on in-
terface are available. We are currently working
on getting the interface accepted into the main-
line kernel. This paper presents an overview of
the interface.

1 Introduction

Performance monitoring is the action of col-
lecting information about the execution of a
program. The type of information collected de-
pends on the level at which it is collected. We
distinguish two levels:

• the program level: the program is instru-
mented by adding explicit calls to routines
that collect certain metrics. Instrumenta-
tion can be inserted by the programmer or
the compiler, e.g., the -pg option of GNU
cc. Tools such as HP Caliper [5] or Intel
PIN [17] can also instrument at runtime.
With those tools, it is possible to collect,
for instance, the number of times a func-
tion is called, the number of time a basic
block is entered, a call graph, or a memory
access trace.

• the hardware level: the program is not
modified. The information is collected by
the CPU hardware and stored in perfor-
mance counters. They can be exploited
by tools such as OProfile and VTUNE on
Linux. The counters measure the micro-
architectural behavior of the program, i.e.,
the number of elapsed cycles, how many
data cache stalls, how many TLB misses.

When analyzing the performance of a pro-
gram, a user must answer two simple ques-
tions: where is time spent and why is spent time
there? Program-level monitoring can, in many
situations and with some high overhead, answer
the first, but the second question is best solved
with hardware-level monitoring. For instance,
gprof can tell you that a program spends 20%
of its time in one function. The difficulty is
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to know why. Is this because the function is
called a lot? Is this due to algorithmic prob-
lems? Is it because the processor stalls? If so,
what is causing the stalls? As this simple ex-
ample shows, the two levels of monitoring can
be complementary.

The current CPU hardware trends are increas-
ing the need for powerful hardware monitor-
ing. New hardware features present the op-
portunity to gain considerable performance im-
provements through software changes. To ben-
efit from a multi-threaded CPU, for instance,
a program must become multi-threaded itself.
To run well on a NUMA machine, a program
must be aware of the topology of the machine
to adjust memory allocations and thread affinity
to minimize the number of remote memory ac-
cesses. On the Itanium [3] processor architec-
ture, the quality of the code produced by com-
pilers is a big factor in the overall performance
of a program, i.e, the compiler must extract the
parallelism of the program to take advantage of
the hardware.

Hardware-based performance monitoring can
help pinpoint problems in how software uses
those new hardware features. An operating sys-
tem scheduler can benefit from cache profiles
to optimize placement of threads to avoiding
cache thrashing in multi-threaded CPUs. Static
compilers can use performance profiles to im-
prove code quality, a technique called Profile-
Guided Optimization (PGO). Dynamic compil-
ers, in Managed Runtime Environments (MRE)
can also apply the same technique. Profile-
Guided Optimizations can also be applied di-
rectly to a binary by tools such as iSpike [11].
In virtualized environments, such as Xen [14],
system managers can also use monitoring infor-
mation to guide load balancing. Developers can
also use this information to optimize the lay-
out of data structures, improve data prefetch-
ing, analyze code paths [13]. Performance pro-
files can also be used to drive future hardware

requirements such as cache sizes, cache laten-
cies, or bus bandwidth.

Hardware performance counters are logically
implemented by the Performance Monitoring
Unit (PMU) of the CPU. By nature, this is a
fairly complex piece of hardware distributed all
across the chip to collect information about key
components such as the pipeline, the caches,
the CPU buses. The PMU is, by nature, very
specific to each processor implementation, e.g.,
the Pentium M and Pentium 4 PMUs [9] have
not much in common. The Itanium proces-
sor architecture specifies the framework within
which the PMU must be implemented which
helps develop portable software.

One of the difficulties to standardize on a per-
formance monitoring interface is to ensure that
it supports all existing and future PMU mod-
els without preventing access to some of their
model specific features. Indeed, some models,
such as the Itanium 2 PMU [8], go beyond just
counting events, they can also capture branch
traces, where cache misses occur, or filter on
opcodes.

In Linux and across all architectures, the wealth
of information provided by the PMU is often-
times under-exploited because a lack of a flex-
ible and standardized interface on which tools
can be developed.

In this paper, we give an overview of perfmon2,
an interface designed to solve this problem for
all major architectures. We begin by reviewing
what Linux offers today. Then, we describe the
various key features of this new interface. We
conclude with the current status and a short de-
scription of the existing tools.

2 Existing interfaces

The problem with performance monitoring in
Linux is not the lack of interface, but rather the
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multitude of interfaces. There are at least three
interfaces:

• OProfile [16]: it is designed for DCPI-
style [15] system-wide profiling. It is sup-
ported on all major architectures and is en-
abled by major Linux distributions. It can
generate a flat profile and a call graph per
program. It comes with its own tool set,
such as opcontrol. Prospect [18] is an-
other tool using this interface.

• perfctr [12]: it supports per-kernel-thread
and system-wide monitoring for most ma-
jor processor architectures, except for Ita-
nium. It is distributed as a stand-alone ker-
nel patch. The interface is mostly used by
tools built on top of the PAPI [19] perfor-
mance toolkit.

• VTUNE [10]: the Intel VTUNE perfor-
mance analyzer comes with its own kernel
interface, implemented by an open-source
driver. The interface supports system-
wide monitoring only and is very specific
to the needs of the tool.

All these interfaces have been designed with a
specific measurement or tool in mind. As such,
their design is somewhat limited in scope, i.e.,
they typically do one thing very well. For in-
stance, it is not possible to use OProfile to count
the number of retired instructions in a thread.
The perfctr interface is the closest match to
what we would like to build, yet it has some
shortcomings. It is very well designed and
tuned for self-monitoring programs but sam-
pling support is limited, especially for non self-
monitoring configurations.

With the current situation, it is not necessarily
easy for developers to figure out how to write
or port their tools. There is a question of func-
tionalities of each interfaces and then, a ques-
tion of distributions, i.e., which interface ships

with which distribution. We believe this situa-
tion does not make it attractive for developers
to build modern tools on Linux. In fact, Linux
is lagging in this area compared to commercial
operating systems.

3 Design choices

First of all, it is important to understand why a
kernel interface is needed. A PMU is accessi-
ble through a set of registers. Typically those
registers are only accessible, at least for writ-
ing, at the highest privilege level of execution
(pl0 or ring0) which is where only the kernel
executes. Furthermore, a PMU can trigger in-
terrupts which need kernel support before they
can be converted into a notification to a user-
level application such as a signal, for instance.
For those reasons, the kernel needs to provide
an interface to access the PMU.

The goal of our work is to solve the hardware-
based monitoring interface problem by design-
ing a single, generic, and flexible interface that
supports all major processor architectures. The
new interface is built from scratch and intro-
duces several innovations. At the same time,
we recognize the value of certain features of
the other interfaces and we try to integrate them
wherever possible.

The interface is designed to be built into the
kernel. This is the key for developers, as it
ensures that the interface will be available and
supported in all distributions.

To the extent possible, the interface must al-
low existing monitoring tools to be ported with-
out many difficulties. This is useful to ensure
undisrupted availability of popular tools such
as VTUNE or OProfile, for instance.

The interface is designed from the bottom up,
first looking at what the various processors pro-
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vide and building up an operating system in-
terface to access the performance counters in a
uniform fashion. Thus, the interface is not de-
signed for a specific measurement or tool.

There is efficient support for per-thread mon-
itoring where performance information is col-
lected on a kernel thread basis, the PMU state is
saved and restored on context switch. There is
also support for system-wide monitoring where
all threads running on a CPU are monitored and
the PMU state persists across context switches.

In either mode, it is possible to collect simple
counts or profiles. Neither applications nor the
Linux kernel need special compilation to en-
able monitoring. In per-thread mode, it is pos-
sible to monitor unmodified programs or multi-
threaded programs. A monitoring session can
be dynamically attached and detached from a
running thread. Self-monitoring is supported
for both counting and profiling.

The interface is available to regular users and
not just system administrators. This is espe-
cially important for per-thread measurements.
As a consequence, it is not possible to assume
that tools are necessarily well-behaved and the
interface must prevent malicious usage.

The interface provides a uniform set of fea-
tures across platforms to maximize code re-use
in performance tools. Measurement limitations
are mandated by the PMU hardware not the
software interface. For instance, if a PMU does
not capture where cache misses occur, there
is nothing the interface nor its implementation
can do about it.

The interface must be extensible because we
want to support a variety of tools on very dif-
ferent hardware platforms.

4 Core Interface

The interface leverages a common property of
all PMU models which is that the hardware in-
terface always consists of a set of configura-
tion registers, that we call PMC (Performance
Monitor Configuration), and a set of data reg-
isters, that we call PMD (Performance Moni-
tor Data). Thus, the interface provides basic
read/write access to the PMC/PMD registers.

Across all architectures, the interface exposes
a uniform register-naming scheme using the
PMC and PMD terminology inherited from the
Itanium processor architecture. As such, appli-
cations actually operate on a logical PMU. The
mapping from the logical to the actual PMU is
described in Section 4.3.

The whole PMU machine state is represented
by a software abstraction called a perfmon con-
text. Each context is identified and manipulated
using a file descriptor.

4.1 System calls

The interface is implemented with multiple sys-
tem calls rather than a device driver. Per-
thread monitoring requires that the PMU ma-
chine state be saved and restored on context
switch. Access to such routine is usually pro-
hibited for drivers. A system call provides more
flexibility than ioctl for the number, type,
and type checking of arguments. Furthermore,
system calls reinforce our goal of having the in-
terface be an integral part of the kernel, and not
just an optional device driver.

The list of system calls is shown in Table 1.
A context is created by the pfm_create_

context call. There are two types of contexts:
per-thread or system-wide. The type is deter-
mined when the context is created. The same
set of functionalities is available to both types



2006 Linux Symposium, Volume One • 273

int pfm_create_context(pfarg_ctx_t *c, void *s, size_t s)
int pfm_write_pmcs(int f, pfarg_pmc_t *p, int c)
int pfm_write_pmds(int f, pfarg_pmd_t *p, int c)
int pfm_read_pmds(int f, pfarg_pmd_t *p, int c)
int pfm_load_context(int f, pfarg_load_t *l)
int pfm_start(int fd, pfarg_start_t *s)
int pfm_stop(int f)
int pfm_restart(int f)
int pfm_create_evtsets(int f, pfarg_setdesc_t *s, int c)
int pfm_getinfo_evtsets(int f, pfarg_setinfo_t *i, int c)
int pfm_delete_evtsets(int f, pfarg_setdesc_t *s, int c)
int pfm_unload_context(int f)

Table 1: perfmon2 system calls

of context. Upon return from the call, the con-
text is identified by a file descriptor which can
then be used with the other system calls.

The write operations on the PMU registers are
provided by the pfm_write_pmcs and pfm_

write_pmds calls. It is possible to access
more than one register per call by passing a
variable-size array of structures. Each structure
consists, at a minimum, of a register index and
value plus some additional flags and bitmasks.

An array of structures is a good compromise
between having a call per register, i.e., one reg-
ister per structure per call, and passing the en-
tire PMU state each time, i.e., one large struc-
ture per call for all registers. The cost of a sys-
tem call is amortized, if necessary, by the fact
that multiple registers are accessed, yet flexibil-
ity is not affected because the size of the array
is variable. Furthermore, the register structure
definition is generic and is used across all ar-
chitectures.

The PMU can be entirely programmed before
the context is attached to a thread or CPU. Tools
can prepare a pool of contexts and later attach
them on-the-fly to threads or CPUs.

To actually load the PMU state onto the ac-
tual hardware, the context must be bound to ei-
ther a kernel thread or a CPU with the pfm_

load_context call. Figure 1 shows the ef-
fect of the call when attaching to a thread of

file table pfm_context pfm_contextfile table

kernel
user

fd

monitoring tool monitored process

fd

controlling process monitored process

before pfm_load_context()

m

after pfm_load_context(12)

12 14 12 14

Figure 1: attaching to a thread

a dual-threaded process. A context can only
be bound to one thread or CPU at a time. It
is not possible to bind more than one context
to a thread or CPU. Per-thread monitoring and
system-wide monitoring are currently mutually
exclusive. By construction, multiple concurrent
per-thread contexts can co-exist. Potential con-
flicts are detected when the context is attached
and not when it is created.

An attached context persists across a call to
exec. On fork or pthread_create, the
context is not automatically cloned in the new
thread because it does not always make sense
to aggregate results or profiles from child pro-
cesses or threads. Monitoring tools can lever-
age the 2.6 kernel ptrace interface to receive
notifications on the clone system call to de-
cide whether or not to monitor a new thread or
process. Because the context creation and at-
tachment are two separate operations, it is pos-
sible to batch creations and simply attach and
start on notification.

Once the context is attached, monitoring can be
started and stopped using the pfm_start and
pfm_stop calls. The values of the PMD regis-
ters can be extracted with the pfm_read_pmds
call. A context can be detached with pfm_

unload_context. Once detached the context
can later be re-attached to any thread or CPU if
necessary.

A context is destroyed using a simple close
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call. The other system calls listed in Table 1 re-
late to sampling or event sets and are discussed
in later sections.

Many 64-bit processor architectures provide
the ability to run with a narrow 32-bit instruc-
tion set. For instance, on Linux for x86_64,
it is possible to run unmodified 32-bit i386 bi-
naries. Even though, the PMU is very imple-
mentation specific, it may be interesting to de-
velop/port tools in 32-bit mode. To avoid data
conversions in the kernel, the perfmon2 ABI is
designed to be portable between 32-bit (ILP32)
and 64-bit (LP64) modes. In other words, all
the data structures shared with the kernel use
fixed-size data types.

4.2 System-wide monitoring

fd1 fd2

CPU1CPU0

monitoring tool

user
kernel

worker processes

Figure 2: monitoring two CPUs

A perfmon context can be bound to only one
CPU at a time. The CPU on which the call to
pfm_load_context is executed determines
the monitored CPU. It is necessary to set the
affinity of the calling thread to ensure that it
runs on the CPU to monitor. The affinity can

later be modified, but all operations requiring
access to the actual PMU must be executed on
the monitored CPU, otherwise they will fail. In
this setup, coverage of a multi-processor sys-
tem (SMP), requires that multiple contexts be
created and bound to each CPU to monitor.
Figure 2 shows a possible setup for a moni-
toring tool on a 2-way system. Multiple non-
overlapping system-wide attached context can
co-exist.

The alternative design is to have the kernel
propagate the PMU access to all CPUs of inter-
est using Inter-Processor-Interrupt (IPI). Such
approach does make sense if all CPUs are al-
ways monitored. This is the approach chosen
by OProfile, for instance.

With the perfmon2 approach, it is possible to
measure subsets of CPUs. This is very inter-
esting for large NUMA-style or multi-core ma-
chines where all CPUs do not necessarily run
the same workload. And even then, with a uni-
form workload, it possible to divide the CPUs
into groups and capture different events in each
group, thereby overlapping distinct measure-
ments in one run. Aggregation of results can
be done by monitoring tools, if necessary.

It is relatively straightforward to construct a
user-level helper library that can simplify mon-
itoring multiple CPUs from a single thread of
control. Internally, the library can pin threads
on the CPUs of interest. Synchronization be-
tween threads can easily be achieved using a
barrier built with the POSIX-threads primitives.
We have developed and released such a library
as part of the libpfm [6] package.

Because PMU access requires the controlling
thread to run on the monitored CPU, proces-
sor and memory affinity are inherently enforced
thereby minimizing overhead which is impor-
tant when sampling in NUMA machines. Fur-
thermore, this design meshes well with certain
PMU features such as the Precise-Event-Based
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Sampling (PEBS) support of the Pentium 4 pro-
cessor (see Section 5.4 for details).

4.3 Logical PMU

PMU register names and implementations are
very diverse. On the Itanium processor archi-
tecture, they are implemented by actual PMC
and PMD indirect registers. On the AMD
Opteron [1] processors, they are called PERF-
SEL and PERFCTR indirect registers but are
actually implemented by MSR registers. A
portable tool would have to know about those
names and the interface would have to change
from one architecture to another to accommo-
date the names and types of the registers for the
read and write operations. This would defeat
our goal of having a uniform interface on all
platforms.

To mask the diversity without compromising
access to all PMU features, the interface ex-
poses a logical PMU. This PMU is tailored to
the underlying hardware PMU for properties
such as the number of registers it implements.
But it also guarantees the following properties
across all architectures:

• the configuration registers are called PMC
registers and are managed as 64-bit wide
indirect registers

• the data registers are called PMD registers
and are managed as 64-bit wide indirect
registers

• counters are 64-bit wide unsigned integers

The mapping of PMC/PMD to actual PMU reg-
isters is defined by a PMU description table
where each entry provides the default value, a
bitmask of reserved fields, and the actual name
of the register. The mapping is defined by the

implementation and is accessible via a sysfs
interface.

The routine to access the actual register is part
of the architecture specific part of a perfmon2
implementation. For instance, on Itanium 2
processor, the mapping is defined such that the
index in the table corresponds to the index of
the actual PMU register, e.g., logical PMD0
corresponds to actual PMD0. The read function
consists of a single mov rXX=pmd[0] instruc-
tion. On the Pentium M processor however, the
mapping is defined as follows:

% cat /sys/kernel/perfmon/pmu_desc/mappings

PMC0:0x100000:0xffcfffff:PERFEVTSEL0

PMC1:0x100000:0xffcfffff:PERFEVTSEL1

PMD0:0x0:0xffffffffffffffff:PERFCTR0

PMD1:0x0:0xffffffffffffffff:PERFCTR1

When a tool writes to register PMD0, it writes
to register PERFEVTSEL0. The actual regis-
ter is implemented by MSR 0x186. There
is an architecture specific section of the PMU
description table that provides the mapping to
the MSR. The read function consist of a single
rdmsr instruction.

On the Itanium 2 processors, we use this map-
ping mechanism to export the code (IBR) and
data (DBR) debug registers as PMC registers
because they can be used to restrict monitoring
to a specific range of code or data respectively.
There was no need to create an Itanium 2 pro-
cessor specific system call in the interface to
support this useful feature.

To make applications more portable, counters
are always exposed as 64-bit wide unsigned in-
tegers. This is particularly interesting when
sampling, see Section 5 for more details. Usu-
ally, PMUs implement narrower counters, e.g.,
47 bits on Itanium 2 PMU, 40 bits on AMD
Opteron PMU. If necessary, each implemen-
tation must emulate 64-bit counters. This can
be accomplished fairly easily by leveraging the
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counter overflow interrupt capability present on
all modern PMUs. Emulation can be turned off
by applications on a per-counter basis, if neces-
sary.

Oftentimes, it is interesting to associate PMU-
based information with non-PMU based infor-
mation such as an operating system resource
or other hardware resource. For instance, one
may want to include the time since monitoring
has been started, the number of active networks
connections, or the identification of the current
process in a sample. The perfctr interface pro-
vides this kind of information, e.g., the virtual
cycle counter, through a kernel data structure
that is re-mapped to user level.

With perfmon2, it is possible to leverage the
mapping table to define Virtual PMD regis-
ters, i.e., registers that do not map to actual
PMU or PMU-related registers. This mecha-
nism provides a uniform and extensible nam-
ing and access interface for those resources.
Access to new resources can be added with-
out breaking the ABI. When a tool invokes
pfm_read_pmds on a virtual PMD register, a
read call-back function, provided by the PMU
description table, is invoked and returns a 64-
bit value for the resource.

4.4 PMU description module

Hardware and software release cycles do not al-
ways align correctly. Although Linux kernel
patches are produced daily on the kernel.
org web site, most end-users really run pack-
aged distributions which have a very differ-
ent development cycle. Thus, new hardware
may become available before there is an ac-
tual Linux distribution ready. Similarly, pro-
cessors may be revised and new steppings may
fix bugs in the PMU. Although providing up-
dates is fairly easy nowadays, end-users tend to
be reluctant to patch and recompile their own
kernels.

It is important to understand that monitoring
tool developers are not necessarily kernel de-
velopers. As such, it is important to provide
simple mechanisms whereby they can enable
early access to new hardware, add virtual PMD
registers and run experimentations without full
kernel patching and recompiling.

There are no technical reasons for having the
PMU description tables built into the kernel.
With a minimal framework, they can as well
be implemented by kernel modules where they
become easier to maintain. The perfmon2 in-
terface provides a framework where a PMU de-
scription module can be dynamically inserted
into the kernel at runtime. Only one module can
be inserted at a time. When new hardware be-
comes available, assuming there is no changes
needed in the architecture specific implementa-
tion, a new description module can be provided
quickly. Similarly, it becomes easy to experi-
ment with virtual PMD registers by modifying
the description table and not the interface nor
the core implementation.

5 Sampling Support

Statistical Sampling or profiling is the act of
recording information about the execution of
a program at some interval. The interval is
commonly expressed in units of time, e.g., ev-
ery 20ms. This is called Time-Based sampling
(TBS). But the interval can also be expressed
in terms of a number of occurrences of a PMU
event, e.g., every 2000 L2 cache misses. This is
called Event-Based sampling (EBS). TBS can
easily be emulated with EBS by using an event
with a fixed correlation to time, e.g., the num-
ber of elapsed cycles. Such emulation typically
provides a much finer granularity than the op-
erating system timer which is usually limited to
millisecond at best. The interval, regardless of
its unit, does not have to be constant.
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At the end of an interval, the information is
stored into a sample which may contain infor-
mation as simple as where the thread was, i.e.,
the instruction pointer. It may also include val-
ues of some PMU registers or other hardware
or software resources.

The quality of a profile depends mostly on the
duration of the run and the number of samples
collected. A good profile can provide a lot of
useful information about the behavior of a pro-
gram, in particular it can help identify bottle-
necks. The difficulty is to manage to overhead
involved with sampling. It is important to make
sure that sampling does not perturb the execu-
tion of the monitored program such that it does
not exhibit its normal behavior. As the sam-
pling interval decreases, overhead increases.

The perfmon2 interface has an extensive set of
features to support sampling. It is possible to
manage sampling completely at the user level.
But there is also kernel-level support to mini-
mize the overhead. The interface provides sup-
port for EBS.

5.1 Sampling periods

All modern PMUs implement a counter over-
flow interrupt mechanism where the proces-
sor generates an interrupt whenever a counter
wraps around to zero. Using this mechanism
and supposing a 64-bit wide counter, it is pos-
sible to implement EBS by expressing a sam-
pling period p as 264 − p or in two’s comple-
ment arithmetics as −p. After p occurrences,
the counter overflows, an interrupt is generated
indicating that a sample must be recorded.

Because all counters are 64-bit unsigned in-
tegers, tools do not have to worry about the
actual width of counters when setting the pe-
riod. When 64-bit emulation is needed, the
implementation maintains a 64-bit software

hwPMD fffe7960

ffffffff fffe7960

32 bits 32 bits

ffffffff

32 bits

swPMD 0

value =  −100000 =

Figure 3: 64-bit counter emulation

value and loads only the low-order bits onto
the actual register as shown in Figure 3. An
EBS overflow is declared only when the 64-bit
software-maintained value overflows.

The interface does not have the notion of a sam-
pling period, all it knows about is PMD values.
Thus a sampling period p, is programmed into
a PMD by setting its value to −p. The num-
ber of sampling periods is only limited by the
number of counters. Thus, it is possible to over-
lap sampling measurements to collect multiple
profiles in one run.

For each counter, the interface provides three
values which are used as follows:

• value: the value loaded into the PMD reg-
ister when the context is attached. This is
the initial value.

• long_reset: the value to reload into the
PMD register after an overflow with user-
level notification.

• short_reset: the value to reload into the
PMD register after an overflow with no
user-level notification.

The three values can be used to try and mask
some of the overhead involved with sampling.
The initial period would typically be large be-
cause it is not always interesting to capture
samples in initialization code. The long and
short reset values can be used to mask the noise
generated by the PMU interrupt handler. We
explain how they are used in Section 5.3.
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5.2 Overflow notifications

To support sampling at the user level, it is nec-
essary to inform the tool when a 64-bit over-
flow occurs. The notification can be requested
per counter and is sent as a message. There is
only one notification per interrupt even when
multiple counters overflow at the same time.

Each perfmon context has a fixed-depth mes-
sage queue. The fixed-size message contains
information about the overflow such as which
counter(s) overflowed, the instruction pointer,
the current CPU at the time of the overflow.
Each new message is appended to the queue
which is managed as a FIFO.

Instead of re-inventing yet another notification
mechanism, existing kernel interfaces are lever-
aged and messages are extracted using a simple
read call on the file descriptor of the context.
The benefit is that common interfaces such as
select or poll can be used to wait on mul-
tiple contexts at the same time. Similarly, asyn-
chronous notifications via SIGIO are also sup-
ported.

Regular file descriptor sharing semantic ap-
plies, thus it is possible to delegate notification
processing to a specific thread or child process.

During a notification, monitoring is stopped.
When monitoring another thread, it is possi-
ble to request that this thread be blocked while
the notification is being processed. A tool may
choose the block on notification option when
the context is created. Depending on the type
of sampling, it may be interesting to have the
thread run just to keep the caches and TLB
warm, for instance.

Once a notification is processed, the pfm_

restart function is invoked. It is used to reset
the overflowed counters using their long reset
value, to resume monitoring, and potentially to
unblock the monitored thread.

5.3 Kernel sampling buffer

It is quite expensive to send a notification to
user level for each sample. This is particularly
bad when monitoring another thread because
there could be, at least, two context switches
per overflow and a couple of system calls.

One way to minimize this cost, it is to amor-
tize it over a large set of samples. The idea is
to have the kernel directly record samples into
a buffer. It is not possible to take page faults
from the PMU interrupt handler, usually a high
priority handler. As such the memory would
have to be locked, an operation that is typi-
cally restricted to privileged users. As indicated
earlier, sampling must be available to regular
users, thus, the buffer is allocated by the kernel
and marked as reserved to avoid being paged
out.

When the buffer becomes full, the monitoring
tool is notified. A similar approach is used by
the OProfile and VTUNE interfaces. Several
issues must be solved for the buffer to become
useable:

• how to make the kernel buffer accessible
to the user?

• how to reset the PMD values after an over-
flow when the monitoring tool is not in-
volved?

• what format for the buffer?

The buffer can be made available via a read
call. This is how OProfile and VTUNEwork.
Perfmon2 uses a different approach to try and
minimize overhead. The buffer is re-mapped
read-only into the user address space of the
monitoring tool with a call to mmap, as shown
in Figure 4. The content of the buffer is guaran-
teed consistent when a notification is received.
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Figure 4: re-mapping the sampling buffer

On counter overflow, the kernel needs to know
what value to reload into an overflowed PMD
register. This information is passed, per reg-
ister, during the pfm_write_pmd call. If the
buffer does not become full, the kernel uses the
short reset value to reload the counter.

When the buffer becomes full, monitoring is
stopped and a notification is sent. Reset is de-
ferred until the monitoring tool invokes pfm_
restart, at which point, the buffer is marked
as empty, the overflowed counter is reset with
the long reset value and monitoring resumes.

long period short period

monitoring active
program executes

recovery period

short period short period

program executes
monitoring active

stopped
monitoring

processing
overflow

Figure 5: short vs. long reset values.

The distinction between long and short reset
values allows tools to specify a different, po-
tentially larger value, for the first period after an
overflow notification. It is very likely that the
user-level notification and subsequent process-
ing will modify the CPU state, e.g., caches and
TLB, such that when monitoring resumes, the
execution will enter a recovery phase where its
behavior may be different from what it would
have been without monitoring. Depending on

the type of sampling, the long vs. short reset
values can be leveraged to hide that recovery
period. This is demonstrated in Figure 5 which
shows where the long reset value is used after
overflow processing is completed. Of course,
the impact and duration of the recovery period
is very specific to each workload and CPU.

It is possible to request, per counter, that both
reset values be randomized. This is very use-
ful to avoid biased samples for certain mea-
surements. The pseudo-random number gen-
erator does not need to be very fancy, simple
variation are good enough. The randomization
is specified by a seed value and a bitmask to
limit the range of variation. For instance, a
mask of 0xff allows a variation in the inter-
val [0-255] from the base value. The exist-
ing implementation uses the Carta [2] pseudo-
random number generator because it is simple
and very efficient.

A monitoring tool may want to record the val-
ues of certain PMD registers in each sample.
Similarly, after each sample, a tool may want to
reset certain PMD registers. This could be used
to compute event deltas, for instance. Each
PMD register has two bitmasks to convey this
information to the kernel. Each bit in the bit-
mask represents a PMD register, e.g., bit 1 rep-
resents PMD1. Let us suppose that on overflow
of PMD4, a tool needs to record PMD6 and
PMD7 and then reset PMD7. In that case, the
tool would initialize the sampling bitmask of
PMD4 to 0xc0 and the reset bitmask to 0x80.

With a kernel-level sampling buffer, the for-
mat in which samples are stored and what
gets recorded becomes somehow fixed and it is
more difficult to evolve. Monitoring tools can
have very diverse needs. Some tools may want
to store samples sequentially into the buffer,
some may want to aggregate them immediately,
others may want to record non PMU-based in-
formation, e.g., the kernel call stack.
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As indicated earlier, it is important to ensure
that existing interfaces such as OProfile or
VTUNE, both using their own buffer formats,
can be ported without having to modify a lot of
their code. Similarly, It is important to ensure
the interface can take advantage of advanced
PMU support sampling such as the PEBS fea-
ture of the Pentium 4 processor.

Preserving a high level of flexibility for the
buffer, while having it fully specified into the
interface did not look very realistic. We re-
alized that it would be very difficult to come
up with a universal format that would satisfy
all needs. Instead, the interface uses a radi-
cally different approach which is described in
the next section.

5.4 Custom Sampling Buffer Formats

kernel

user
user interface

core
perfmon custom sampling

format

user interface

cu
st

om
 fo

rm
at

 in
te

rfa
ce

sa
m

pl
in

g 
fo

rm
at

 in
te

rfa
ce

Figure 6: Custom sampling format architecture

The interface introduces a new flexible mecha-
nism called Custom Sampling Buffer Formats,
or formats for short. The idea is to remove
the buffer format from the interface and instead
provide a framework for extending the interface
via specific sampling formats implemented by
kernel modules. The architecture is shown in
Figure 6.

Each format is uniquely identified by a 128-bit
Universal Unique IDentifier (UUID) which can
be generated by commands such as uuidgen.
In order to use a format, a tool must pass this
UUID when the context is created. It is possible

to pass arguments, such as the buffer size, to a
format when a context is created.

When the format module is inserted into the
kernel, it registers with the perfmon core via
a dedicated interface. Multiple formats can be
registered. The list of available formats is ac-
cessible via a sysfs interface. Formats can
also be dynamically removed like any other
kernel module.

Each format provides a set of call-backs func-
tions invoked by the perfmon core during cer-
tain operations. To make developing a format
fairly easy, the perfmon core provides certain
basic services such as memory allocation and
the ability to re-map the buffer, if needed. For-
mats are not required to use those services.
They may, instead, allocate their own buffer
and expose it using a different interface, such
as a driver interface.

At a minimum, a format must provide a call-
back function invoked on 64-bit counter over-
flow, i.e., an interrupt handler. That handler
does not bypass the core PMU interrupt han-
dler which controls 64-bit counter emulation,
overflow detection, notification, and monitor-
ing masking. This layering make it very simple
to write a handler. Each format controls:

• how samples are stored

• what gets recorded on overflow

• how the samples are exported to user-level

• when an overflow notification must be sent

• whether or not to reset counters after an
overflow

• whether or not to mask monitoring after an
overflow
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The interface specifies a simple and relatively
generic default sampling format that is built-
in on all architectures. It stores samples se-
quentially in the buffer. Each sample has a
fixed-size header containing information such
as the instruction pointer at the time of the
overflow, the process identification. It is fol-
lowed by a variable-size body containing 64-
bit PMD values stored in increasing index or-
der. Those PMD values correspond to the infor-
mation provided in the sampling bitmask of the
overflowed PMD register. Buffer space is man-
aged such that there can never be a partial sam-
ple. If multiple counters overflow at the same
time, multiple contiguous samples are written.

Using the flexibility of formats, it was fairly
easy to port the OProfile kernel code over
to perfmon2. An new format was created to
connect the perfmon2 PMU and OProfile
interrupt handlers. The user-level OProfile,
opcontrol tool was migrated over to use the
perfmon2 interface to program the PMU. The
resulting format is about 30 lines of C code.
The OProfile buffer format and management
kernel code was totally preserved.

Other formats have been developed since then.
In particular we have released a format that
implements n-way buffering. In this format,
the buffer space is split into equal-size regions.
Samples are stored in one region, when it fills
up, the tool is notified but monitoring remains
active and samples are stored in the next region.
This idea is to limit the number of blind spots
by never stopping monitoring on counter over-
flow.

The format mechanism proved particularly use-
ful to implement support for the Pentium 4 pro-
cessor Precise Event-Based Sampling (PEBS)
feature where the CPU is directly writing sam-
ples to a designated region of memory. By
having the CPU write the samples, the skew
observed on the instruction pointer with typ-
ical interrupt-based sampling can be avoided,

thus a much improved precision of the sam-
ples. That skew comes from the fact that the
PMU interrupt is not generated exactly on the
instruction where the counter overflowed. The
phenomenon is especially important on deeply-
pipelined processor implementations, such as
Pentium 4 processor. With PEBS, there is a
PMU interrupt when the memory region given
to the CPU fills up.

The problem with PEBS is that the sample for-
mat is now fixed by the CPU and it cannot be
changed. Furthermore, the format is different
between the 32-bit and 64-bit implementations
of the CPU. By leveraging the format infras-
tructure, we created two new formats, one for
32-bit and one for 64-bit PEBS with less than
one hundred lines of C code each. Perfmon2
is the first to provide support for PEBS and it
required no changes to the interface.

6 Event sets and multiplexing

On many PMU models, the number of coun-
ters is fairly limited yet certain measurements
require lots of events. For instance, on the Ita-
nium 2 processor, it takes about a dozen events
to gather a cycle breakdown, showing how each
CPU cycle is spent, yet there are only 4 coun-
ters. Thus, it is necessary to run the workload
under test multiple times. This is not always
very convenient as workloads sometimes can-
not be stopped or are long to restart. Further-
more, this inevitably introduces fluctuations in
the collected counts which may affect the accu-
racy of the results.

Even with a large number of counters, e.g., 18
for the Pentium 4 processor, there are still hard-
ware constraints which make it difficult to col-
lect some measurements in one run. For in-
stance, it is fairly common to have constraints
such as:
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• event A and B cannot be measured to-
gether

• event A can only be measured on counter
C.

Those constraints are unlikely to go away in
the future because that could impact the perfor-
mance of CPUs. An elegant solution to these
problems is to introduce the notion of events
sets where each set encapsulates the full PMU
machine state. Multiple sets can be defined and
they are multiplexed on the actual PMU hard-
ware such that only one set if active at a time.
At the end of the multiplexed run, the counts
are scaled to compute an estimate of what they
would have been, had they been collected for
the entire duration of the measurement.

The accuracy of the scaled counts depends a
lot of the switch frequency and the workload,
the goal being to avoid blind spots where cer-
tain events are not visible because the set that
measures them did not activate at the right time.
The key point is to balance to the need for high
switch frequency with higher overhead.

Sets and multiplexing can be implemented to-
tally at the user level and this is done by the
PAPI toolkit, for instance. However, it is criti-
cal to minimize the overhead especially for non
self-monitoring measurements where it is ex-
tremely expensive to switch because it could in-
cur, at least, two context switches and a bunch
of system calls to save the current PMD val-
ues, reprogram the new PMC and PMD regis-
ters. During that window of time the monitored
thread usually keeps on running opening up a
large blind spot.

The perfmon2 interface supports events sets
and multiplexing at the kernel level. Switch-
ing overhead is significantly minimized, blind
spots are eliminated by the fact that switching
systematically occurs in the context of the mon-
itored thread.

Sets and multiplexing is supported for per-
thread and system-wide monitoring and for
both counting and sampling measurements.

6.1 Defining sets
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after pfm_create_evtsets(5)

pfm_context

sets
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pfm_context
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Figure 7: creating sets.

Each context is created with a default event
set, called set0. Sets can be dynamically cre-
ated, modified, or deleted when the context
is detached using the pfm_create_evtsets

and pfm_delete_evtsets calls. Informa-
tion, such as the number of activations of a
set, can be retrieved with the pfm_getinfo_

evtsets call. All these functions take array
arguments and can, therefore, manipulate mul-
tiple sets per call.

A set is identified with a 16-bit number. As
such, there is a theoretical limit of 65k sets.
Sets are managed through an ordered list based
on their identification numbers. Figure 7 shows
the effect of adding set5 and set3 on the list.

Tools can program registers in each set by pass-
ing the set identification for each element of the
array passed to the read or write calls. In one
pfm_write_pmcs call it is possible to pro-
gram registers for multiple sets.
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6.2 Set switching

Set switching can be triggered by two different
events: a timeout or a counter overflow. This is
another innovation of the perfmon2 interface,
again giving tools maximum flexibility. The
type of trigger is determined, per set, when it
is created.

The timeout is specified in micro-seconds when
the set is created. The granularity of the time-
out depends on the granularity of kernel inter-
nal timer tick, usually 1ms or 10ms. If the gran-
ularity is 10ms, then it is not possible to switch
more than 100 times per second, i.e., the time-
out cannot be smaller than 100µs. Because the
granularity can greatly affect the accuracy of a
measurement, the actual timeout, rounded up
the the closest multiple of the timer tick, is re-
turned by the pfm_create_evtsets call.

It is also possible to trigger a switch on counter
overflow. To avoid dedicating a counter as a
trigger, there is a trigger threshold value asso-
ciated with each counter. At each overflow, the
threshold value is decremented, when it reaches
zero, switching occurs. It is possible to have
multiple trigger counters per set, i.e., switch on
multiple conditions.

The next set is determined by the position in
the ordered list of sets. Switching is managed
in a round-robin fashion. In the example from
Figure 7, this means that the set following set5
is set0.

Using overflow switching, it is possible to im-
plement counter cascading where a counter
starts counting only when a certain number of
occurrences, n, of an event E is reached. In a
first set, a PMC register is programmed to mea-
sure event E, the corresponding PMD register
is initialized to −n, and its switch trigger is set
to 1. The next set is setup to count the event of
interest and it will activated only when there is
an overflow in the first set.

6.3 Sampling

Sets are fully integrated with sampling. Set in-
formation is propagated wherever is necessary.
The counter overflow notification carries the
identification of the active set. The default sam-
pling format fully supports sets. Samples from
all sets are stored them into the same buffer.
The active set at the time of the overflow is
identified in the header of each sample.

7 Security

The interface is designed to be built into the
base kernel, as such, it must follow the same
security guidelines.

It is not possible to assume that tools will al-
ways be well-behaved. Each implementation
must check arguments to calls. It must not be
possible to use the interface for malicious at-
tacks. A user cannot run a monitoring tool to
extract information about a process or the sys-
tem without proper permission.

All vector arguments have a maximum size to
limit the amount of kernel memory necessary
to perform the copy into kernel space. By
nature, those calls are non-blocking and non-
preemptible, ensuring that memory is eventu-
ally freed. The default limit is set to a page.

The sampling buffer size is also limited be-
cause it consumes kernel memory that cannot
be paged out. There is a system-wide limit
and a per-process limit. The latter is using
the resource limit on locked memory (RLIMIT_
MEMLOCK). The two-level protection is required
to prevent users from launching lots of pro-
cesses each allocating a small buffer.

In per-thread mode, the user credentials are
checked against the permission of the thread
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to monitor when the context is attached. Typi-
cally, if a user cannot send a signal to the pro-
cess, it is not possible to attach. By default,
per-thread monitoring is available to all users,
but a system administrator can limit to a user
group. An identical, but separate, restriction is
available for system-wide contexts.

On several architectures, such as Itanium, it
is possible to read the PMD registers directly
from user-level, i.e., with a simple instruction.
There is always a provision to turn this fea-
ture off. The interface supports this mode of
access by default for all self-monitoring per-
thread context. It is turned off by default for
all other configurations, thereby preventing spy
applications from peeking at values left in PMD
registers by others.

All size and user group limitations can be con-
figured by a system administrator via a simple
sysfs interface.

As for sampling, we are planning on adding a
PMU interrupt throttling mechanism to prevent
Denial-of-Service (DoS) attacks when applica-
tions set very high sampling rates.

8 Fast user-level PMD read

Invoking a system call to read a PMD register
can be quite expensive compared to the cost of
the actual instruction. On an Itanium 2 1.5GHz
processor, for instance, it costs about 36 cycles
to read a PMD with a single instruction and
about 750 cycles via pfm_read_pmds which
is not really optimized at this point. As a ref-
erence, the simplest system call, i.e., getpid,
costs about 210 cycles.

On many PMU models, it is possible to directly
read a PMD register from user level with a sin-
gle instruction. This very lightweight mode

of access is allowed by the interface for all
self-monitoring threads. Yet, if actual counters
width is less than 64-bit, only the partial value
is returned. The software-maintained value re-
quires a kernel call.

To enable fast 64-bit PMD read accesses from
user level, the interface supports re-mapping of
the software-maintained PMD values to user
level for self-monitoring threads. This mech-
anism was introduced by the perfctr interface.
This enables fast access on architectures with-
out hardware support for direct access. For the
others, this enables a full 64-bit value to be
reconstructed by merging the high-order bits
from the re-mapped PMD with the low-order
bit obtained from hardware.

Re-mapping has to be requested when the con-
text is created. For each event set, the PMD reg-
ister values have to be explicitly re-mapped via
a call to mmap on the file descriptor identify-
ing the context. When a set is created a special
cookie value is passed back by pfm_create_

evtset. It is used as an offset for mmap and
is required to identify the set to map. The map-
ping is limited to one page per set. For each set,
the re-mapped region contains the 64-bit soft-
ware value of each PMD register along with a
status bit indicating whether the set is the active
set or not. For non-active sets, the re-mapped
value is the up-to-date full 64-bit value.

Given that the merge of the software and hard-
ware values is not atomic, there can be a race
condition if, for instance, the thread is pre-
empted in the middle of building the 64-bit
value. There is no way to avoid the race, instead
the interface provides an atomic sequence num-
ber for each set. The number is updated each
time the state of the set is modified. The num-
ber must be read by user-level code before and
after reading the re-mapped PMD value. If the
number is the same before and after, it means
that the PMD value is current, otherwise the
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operation must be restarted. On the same Ita-
nium 2 processor and without conflict, the cost
is about 55 cycles to read the 64-bit value of a
PMD register.

9 Status

A first generation of this interface has been im-
plemented for the 2.6 kernel series for the Ita-
nium Processor Family (IPF). It uses a single
multiplexing system call, perfmonctl, and is
missing events sets, PMU description tables,
and fast user-level PMD reads. It is currently
shipping with all major Linux distributions for
this architecture.

The second generation interface, which we de-
scribe in this paper, currently exists as a kernel
patch against the latest official 2.6 kernel from
kernel.org. It supports the following pro-
cessor architectures and/or models:

• all the Itanium processors

• the AMD Opteron processors in 64-bit
mode

• the Intel Pentium M and P6 processors

• the Intel Pentium 4 and Xeon processors.
That includes 32-bit and 64-bit (EM64T)
processors. Hyper-Threading and PEBS
are supported.

• the MIPS 5k and MIPS 20k processors

• preliminary support for IBM Power5 pro-
cessor

Certain ports were contributed by other com-
panies or developers. As our user community
grows, we expect other contributions to both
kernel and user-level code. The kernel patch

has been widely distributed and has generated
a lot of discussions on various Linux mailing
lists.

Our goal is to establish perfmon2 as the stan-
dard Linux interface for hardware-based per-
formance monitoring. We are in the process of
getting it reviewed by the Community in prepa-
ration for a merge with the mainline kernel.

10 Existing tools

Several tools already exists for the interface.
Most of them are only available for Itanium
processors at this point, because an implemen-
tation exists since several years.

The first open-source tool to use the interface is
pfmon [6] from HP Labs. This is a command-
line oriented tool initially built to test the in-
terface. It can collect counts and profiles on a
per-thread or system-wide basis. It supports the
Itanium, AMD Opteron, and Intel Pentium M
processors. It is built on top of a helper library,
called libpfm, which handles all the event en-
codings and assignment logic.

HP Labs also developed q-tools [7], a re-
placement program for gprof. Q-tools uses
the interface to collect a flat profile and a sta-
tistical call graph of all processes running in a
system. Unlike gprof, there is no need to re-
compile applications or the kernel. The profile
and call graph include both user- and kernel-
level execution. The tool only works on Ita-
nium 2 processors because it leverages certain
PMU features, in particular the Branch Trace
Buffer. This tool takes advantage of the in-
terface by overlapping two sampling measure-
ments to collect the flat profile and call graph in
one run.

The HP Caliper [5] is an official HP product
which is free for non-commercial use. This is
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a professional tool which works with all ma-
jor Linux distributions for Itanium processors.
It collects counts or profiles on a per-thread or
per-CPU basis. It is very simple to use and
comes with a large choice of preset metrics
such as flat profile (fprof), data cache misses
(dcache_miss). It exploits all the advanced
PMU features, such as the Branch Trace Buffer
(BTB) and the Data Event Address Registers
(D-EAR). The profiles are correlated to source
and assembly code.

The PAPI toolkit has long been available on top
of the perfmon2 interface for Itanium proces-
sors. We expect that PAPI will migrate over to
perfmon2 on other architectures as well. This
migration will likely simplify the code and al-
low better support for sampling and set multi-
plexing.

The BEA JRockit JVM on Linux/ia64, start-
ing with version 1.4.2 is also exploiting the in-
terface. The JIT compiler is using a, dynam-
ically collected, per-thread profile to improve
code generation. This technique [4], called Dy-
namic Profile Guided Optimization (DPGO),
takes advantage of the efficient per-thread sam-
pling support of the interface and of the abil-
ity of the Itanium 2 PMU to sample branches
and locations of cache misses (Data Event Ad-
dress Registers). What is particularly interest-
ing about this example is that it introduces a
new usage model. Monitoring is used each time
a program runs and not just during the develop-
ment phase. Optimizations are applied in the
end-user environment and for the real work-
load.

11 Conclusion

We have designed the most advanced perfor-
mance monitoring interface for Linux. It pro-
vides a uniform set of functionalities across all

architectures making it easier to write portable
performance tools. The feature set was care-
fully designed to allow efficient monitoring and
a very high degree of flexibility to support a
diversity of usage models and hardware archi-
tectures. The interface provides several key
features such as custom sampling buffer for-
mats, kernel support event sets multiplexing,
and PMU description modules.

We have developed a multi-architecture imple-
mentation of this interface that support all ma-
jor processors. On the Intel Pentium 4 proces-
sor, this implementation is the first to offer sup-
port for PEBS.

We are in the process of getting it merged into
the mainline kernel. Several open-source and
commercial tools are available on Itanium 2
processors at this point and we expect that oth-
ers will be released for the other architectures
as well.

Hardware-based performance monitoring is the
key tool to understand how applications and op-
erating systems behave. The monitoring infor-
mation is used to drive performance improve-
ments in applications, operating system ker-
nels, compilers, and hardware. As proces-
sor implementation enhancements shift from
pure clock speed to multi-core, multi-thread,
the need for powerful monitoring will increase
significantly. The perfmon2 interface is well
suited to address those needs.
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