
The Effects of Filesystem Fragmentation

Giel de Nijs
Philips Research

giel.de.nijs@philips.com

Ard Biesheuvel
Philips Research

ard.biesheuvel@philips.com

Ad Denissen
Philips Research

ad.denissen@philips.com

Niek Lambert
Philips Research

niek.lambert@philips.com

Abstract

To measure the actual effects of the fragmen-
tation level of a filesystem, we simulate heavy
usage over a longer period of time on a con-
stantly nearly full filesystem. We compare var-
ious Linux filesystems with respect to the level
of fragmentation, and the effects thereof on the
data throughput. Our simulated load is com-
parable to prolonged use of a Personal Video
Recorder (PVR) application.

1 Introduction

For the correct reading and writing of files
stored on a block device (i.e., hard drive, optical
disc, etc.) the actual location of the file on the
platters of the disk is of little importance; the
job of the filesystem is to transparently present
files to higher layers in the operating system.
For efficient reading and writing, however, the
actual location does matter. As blocks of a file
typically need to be presented in sequence, they
are mostly also read in sequence. If the blocks
of a file are scattered all over a hard drive, the
head of the drive needs to seek to subsequent
blocks very often, instead of just reading those

blocks in one go. This takes time and energy,
and so the effective transfer speed of the hard
drive is lower and the energy spent per bit read
is higher. Obviously, one wants to avoid this.

In the early days of the PC, the filesystem of
choice for many was Microsoft’s FAT [1], later
followed by FAT32. The allocation strategy, the
strategy that determines which blocks of a file
go where on the disk, was very simple: write
every block of the file to the first free block
found. On an empty hard drive, the blocks will
be contiguous on the disk and reading will not
involve many seeks. As the filesystem ages and
files are created and deleted, the free blocks
will be scattered over the drive, as will newly
created files. The files on the hard drive be-
come fragmented and this affects the overall
drive performance. To solve this, a process
called defragmentation can re-order blocks on
the drive to ensure the blocks of each file and
of the remaining free space will be contiguous
on the disk. This is a time consuming activity,
during which the system is heavily loaded.

More sophisticated filesystems like Linux’s
ext2 [2] incorporate smarter allocation strate-
gies, which eliminate the need for defragmenta-
tion for everyday use. Specific usage scenarios
might exist where these, and other, filesystems

194 • The Effects of Filesystem Fragmentation

perform significantly worse or better than aver-
age. We have explored such a scenario and de-
rive a theoretical background that can predict,
up to a point, the stabilisation of the fragmen-
tation level of a filesystem.

In this paper we study the level of fragmen-
tation of various filesystems throughout their
lifetime, dealing with a specific usage scenario.
This scenario is described in section 2 and al-
lows us to derive formulae for the theoretical
fragmentation level in section 3. We elaborate
on our simulation set-up in section 4, followed
by our results in section 5. We end with some
thoughts on future work in section 6 and con-
clude in section 7.

2 The scenario

Off-the-shelf computers are used more and
more for storing, retrieving and processing very
large video files as they assume the role of
a more advanced and digital version of the
classic VCR. These so-called Personal Video
Recorders (PVR) are handling all the television
needs of the home by recording broadcasts and
playing them back at a time convenient for the
user, either on the device itself or by streaming
the video over a home network to a separate
rendering device. Add multiple tuners and an
ever increasing offer of broadcast programs to
the mix and you have an application that de-
mands an I/O subsystem that is able to han-
dle the simultaneous reading and writing of a
number of fairly high bandwidth streams. Both
home-built systems as well as Consumer Elec-
tronics (CE) grade products with this function-
ality exist, running software like MythTV [3]
or Microsoft Windows Media Center [4] on top
of a standard operating system.

As these systems are meant to be always run-
ning, power consumption of the various com-
ponents becomes an issue. The costs of the

components is of course an important factor as
well, especially for CE devices. Furthermore,
the performance of the system should not de-
teriorate over time to such a level that it be-
comes unusable, as a PVR should be low main-
tenance and should just work. Clearly, over-
dimensioning the system to overcome perfor-
mance issues is not the preferred solution. A
better way would be to design the subsystems
in such a way that they are able to deliver the re-
quired performance efficiently and predictably.
As stated above, the hard-disk drive (HDD) will
be one of the most stressed components, so it is
interesting to see if current solutions are fulfill-
ing our demands.

2.1 Usage pattern

The task of a PVR is mainly to automatically
record broadcast television programs, based on
a personal preference, manual instruction or
a recommendation system. As most popular
shows are broadcast around the same time of
day and PVRs are often equipped with more
than one tuner, it is not uncommon that more
than one program is being recorded simultane-
ously. As digital broadcast quality results in
video streams of about 4 to 8 megabit/s, the size
of a typical recording is in the range of 500 MB
to 5 GB.

As the hard drive of a PVR fills up, older
recordings are deleted to make room for newer
ones. The decision which recording to delete
is based on age and popularity, e.g., the news
of last week can safely be deleted, but a user
might want to keep a good movie for a longer
period of time.

The result of this is that the system might be
writing two 8 megabit/s streams to a nearly full
filesystem, sometimes even while playing back
one or more streams. For 5 to 10 recordings per
day, totalling 3 to 5 hours of content, this results

2006 Linux Symposium, Volume One • 195

in about 10 GB of video data written to the disk.
Will the filesystem hold up if this is done daily
for two years? Will the average amount of frag-
mentation keep increasing or will it stabilise at
some point? Will the effective data rate when
reading the recorded files from a fresh filesys-
tem differ from the data rate when reading from
one that has been used extensively? We hope to
answer these questions with our experiments.

Although the described scenario is fairly spe-
cific, it is one that is expected to be increas-
ingly important. The usage and size of media
files are both steadily increasing and general
Personal Computer (PC) hardware is finding its
way into CE devices, for which cost and sta-
bility are main issues. The characterised usage
pattern is a general filesystem stress test for sit-
uations involving large media files.

As an interesting side-note, our scenario de-
scribes a pattern that had hardly ever been en-
countered before. Normal usage of a computer
system slowly fills the hard drive while read-
ing, writing and deleting. If the hard drive is
full, it is often replaced by a bigger one or used
for read-only storage. Our PVR scenario, how-
ever, describes a full filesystem that remains in
use for reading and writing large files over a
prolonged period of time.

2.2 Performance vs. power

A filesystem would ideally be able to perform
equally well during the lifetime of the system it
is part of, without significant performance loss
due to fragmentation of the files. This is not
only useful for shorter processing times of non-
real-time tasks (e.g., the detection of commer-
cial blocks in a recorded television broadcast),
but it also influences the power consumption of
the system [5].

If a real-time task with a predefined streaming
I/O behaviour is running, such as the recording

of a television program, power can be saved if
the average bit rate of the stream is lower than
the maximum throughput of the hard drive. If a
memory buffer is assigned for low power pur-
poses, it can be filled as fast as possible by read-
ing the stream from the hard drive and power-
ing down the drive while serving the applica-
tion from the memory buffer. This also holds
for writing: the application can write into the
memory buffer, which can be flushed to disk
when it is full, allowing us to power off the
drive between bursts. The higher the effective
read or write data rate is, the more effective this
approach will be. If the fragmentation of the
filesystem is such that it influences the effec-
tive data rate, it directly influences the power
consumption. A system that provides buffering
capabilities for streaming I/O while providing
latency guarantees is ABISS [6].

3 The theory

To derive a theory dealing with the fragmenta-
tion level of a filesystem, we first need some
background information on filesystem alloca-
tion. This allocation can (and will) lead to frag-
mentation, as we will describe below. We deter-
mine what level of fragmentation is acceptable
and as a result we can derive the fragmentation
equilibrium formulae of section 3.3.

3.1 Block allocation in filesystems

Each filesystem has some sort of rationale that
governs which of the available blocks it will use
next when more space needs to be allocated.
This rationale is what we call the allocation
strategy of a filesystem. Some allocation strate-
gies are more sophisticated than others. Also,
the allocation strategy of a particular filesys-
tem can differ between implementations with-
out sacrificing interoperability, provided that

196 • The Effects of Filesystem Fragmentation

every implementation meets the specifications
of how the data structures are represented on
disk.

3.1.1 The FAT filesystem

The File Allocation Table File System (FATFS)
[1] is a filesystem developed by Microsoft in
the late seventies for its MS-DOS operating
system. It is still in wide use today, mainly for
USB flash drives, portable music players and
digital cameras. While recent versions of Win-
dows still support FATFS, it is no longer the
default filesystem on this platform.

A FATFS volume consists of a boot sector,
two file allocation tables (FATs), a root direc-
tory and a collection of files and subdirectories
spread out across the disk. Each entry of the
FAT maps to a cluster in the data space of the
disk, and contains the index number of the next
cluster of the file (or subdirectory) it belongs to.
An index of zero in the FAT means the corre-
sponding cluster on the disk is free, other magic
numbers exist that denote that a cluster is the
last cluster of a file or that the cluster is dam-
aged or reserved. The second FAT is a backup
copy of the first one, in case the first one gets
corrupted.

An instance of FATFS is characterised by three
parameters: the number of disk sectors in a
cluster (2i for 0 ≤ i ≤ 7), the number of clus-
ters on the volume and the number of bits used
for each FAT entry (12, 16 or 32 bits), which at
least equals the base-2 logarithm of the number
of clusters.

The allocation strategy employed by FATFS is
fairly straight-forward. It scans the FAT lin-
early, and uses the first free cluster found. Each
scan starts from the position in the FAT where
the previous scan ended, which results in all
of the disk being used eventually, even if the

filesystem is never full. However, this strat-
egy turns out to be too naive for our purpose:
if several files are allocated concurrently, the
files end up interleaved on the disk, resulting in
high fragmentation levels even on a near-empty
filesystem.

3.1.2 The LIMEFS filesystem

The Large-file metadata-In-Memory Extent-
based File System (LIMEFS) was developed as
a research venture within Philips Research. [7]

LIMEFS is extent-based, which means it keeps
track of used and free blocks in the filesys-
tem by maintaining lists of (index, count) pairs.
Each pair is called an extent, and describes a set
of count contiguous blocks starting at position
index on the disk.

The allocation strategy LIMEFS uses is slightly
more sophisticated than the strategy FAT in-
corporates, and turns out to be very effective
in avoiding fragmentation when dealing with
large files. When space needs to be allocated,
LIMEFS first tries to allocate blocks in the free
extent after the last written block of the current
file. If there is no such extent, the list of free ex-
tents is scanned and an extent is chosen that is
not preceded by an extent that contains the last
block of another file that is currently open for
writing. If it finds such an extent, it will start
allocating blocks from the beginning of the ex-
tent. If it cannot find such an extent, it will pick
an extent that is preceded by a file that is open
for writing. In this case however, it will split the
free extent in half and will only allocate from
the second half. When the selected extent runs
out of free blocks, another extent is selected us-
ing the approach just described, with the added
notion that extents close to the original one are
preferred over more distant ones.

2006 Linux Symposium, Volume One • 197

3.2 How to count fragments

A hard drive reading data sequentially is able to
transfer, on average, the amount of data present
on one track in the time it takes the platter to ro-
tate once. Reading more data than one track in-
volves moving the head to the next track, which
is time lost for reading. The layout of the data
on the tracks is corrected for the track-to-track
seek time of the hard drive, i.e., the data is laid
out in such a way that the first block on the next
track is just passing underneath the head the
moment it has moved from the previous track
and is ready for reading. This way no additional
time is left waiting for the right block. This is
known as track skew, shown in figure 1. Hence,
the effective transfer rate for sequential reading
is the amount of data present on one track, di-
vided by the rotation time increased with the
track skew.

tr
a
c
k
 s

k
e
w

rotation time

k

k−2

k−1

k
+

1

k
+
2

Figure 1: In the time it takes the head of the
hard drive to move to the next track, the drive
continues to rotate. The lay-out of blocks com-
pensates for this. After reading block k, the
head moves to the next track and arrives just
in time to continue reading from block k + 1
onwards. This is called track skew.

When a request is issued for a block that is
not on the current track, the head has to seek
to the correct track. Subsequently, after the
seek the drive has to wait until the correct block
passes underneath the head, which takes on av-
erage half the rotation time of the disk. The
time such a seek takes is time not spent read-
ing, thus seeking lowers the data throughput
of the drive. Seeks occur for example when
blocks of a single non-contiguous file are read
in sequence, i.e., when moving from fragment
to fragment. Some non-sequential blocks do
not induce seeks however, and should not be
counted as fragments.

Two consecutive blocks in a file that are not
contiguously placed on the disk only lead to a
seek if the seek time is lower than the time it
would take to bridge the gap between the two
blocks by just waiting for the block to turn up
beneath the head (maybe after a track-to-track
seek).

If ts is the average time to do a full seek, and tr
is the rotation time of the disk, we can derive
Ts, the access time resulting from a seek:

Ts = ts +
1
2

tr (1)

The access time resulting from waiting, Tw, can
be expressed in terms of track size st , gap size
sg and track skew tts:

Tw =
sg

st
(tr + tts) (2)

So the maximum gap size Sg that does not in-
duce a seek is the largest gap size sg for which
Tw ≤ Ts still holds, and therefore

Sg = st

ts
tr

+ 1
2

1+ tts
tr

(3)

198 • The Effects of Filesystem Fragmentation

The relevance of the maximum gap size Sg is
that it allows us to determine how many rota-
tions and how many seeks it takes to read a par-
ticular file, given the layout of its blocks on the
disk.

3.3 Fragmentation equilibrium

A small amount of fragmentation is not bad per
se, if it is small enough to not significantly re-
duce the transfer speed of a hard drive. For
instance, the ext3 filesystem [8] by default in-
serts one metadata block on every 1024 data
blocks. Although, strictly speaking, this leads
to non-sequential data and thus fragmentation,
this kind of fragmentation does not impact the
data rate significantly. If anything, it increases
performance because the relevant metadata is
always nearby.

A more important factor is the predictability
and the stabilisation of the fragmentation level.
Dimensioning the I/O subsystem for a certain
application is only possible if the effective data
transfer rate of the hard drive is known a pri-
ori, i.e., predictable. As one should dimension a
system for the worst case, it is also helpful if the
fragmentation level has an upper bound, i.e., it
reaches a maximum at some point in time after
which it does not deteriorate any further. With
the help of some simple mathematics, we can
estimate the theoretical prerequisites for such
stabilisation.

3.3.1 Neighbouring blocks

Suppose we have a disk with a size of N allo-
cation blocks and from these blocks, we make
a random selection of M blocks. The first se-
lected block will of course never be a neigh-
bour of any previously selected blocks. The
probability that the second block is a neighbour

of the first is 2
N−1 , because 2 of the remaining

N−1 blocks are adjacent to the first block. The
probability of the third block being a neigh-
bour of one of the previous two is then 4

N−2 , or,
more general, the probability of a block i being
a neighbour of one of the previously selected
blocks is:

P(i) =
2i

N− i
(1≤ i� N) (4)

The average number of neighbouring blocks
when randomly selecting M blocks, the ex-
pected value, can be determined by the summa-
tion of the probability of a selected block being
a neighbour of a previously selected block over
all blocks, although with two errors: we are not
correcting for blocks at the beginning or end of
the disk with only one neighbour and we are
conveniently forgetting that two previously se-
lected blocks could already be neighbours. As
long as N � 1 and M � N this will not influ-
ence the outcome very much and simplifies the
formulae. Furthermore, if M � N we can ap-
proximate (4) by:

P(i)≈ 2i
N

(5)

The expected value of the number of neigh-
bouring blocks is then, according to (5):

E =
M−1

∑
i=1

2i
N− i

≈
M−1

∑
i=1

2i
N

(6)

=
(M−1)M

N

2006 Linux Symposium, Volume One • 199

3.3.2 Neighbouring fragments

The above holds for randomly allocated blocks,
which is something not many filesystems do.
The blocks in the above argumentation how-
ever can also be seen as fragments of both files
as well as free space. This only changes the
meaning of N and M and does not change the
argumentation. If we now look at a moderately
fragmented drive, the location of the fragments
will be more or less random and our estimation
of the expected value of the number of neigh-
bouring fragments will be closer to the truth.

Furthermore, to have a stable amount of frag-
ments, an equilibrium should exist between the
number of new fragments created during allo-
cation and the number of fragments eliminated
during deletion (by deleting data next to a free
fragment and thus ’glueing’ two fragments).

Let us interpret N as the total number of frag-
ments on a drive, both occupied as well as free
and M as the number of free fragments. Also,
assume that we are dealing with a drive that is
already in use for some time and is almost full,
according to our PVR scenario as described in
section 2.1.

The fore mentioned equilibrium can be ob-
tained with the simple allocation strategy of
LIMEFS (described in section 3.1.2) used in
our PVR scenario, by eliminating one fragment
when deleting a file, as on average one frag-
ment is created during the allocation of a file
(as shown in figure 2). We assume that, as the
files are on average of the same size, for each
file created a file is deleted; when writing a file
of L fragments (increasing the fragment count
with one), a file of L fragments is deleted. This
should eliminate one fragment to create a bal-
ance in the amount of fragments.

By deleting a file of L fragments on a drive with
N total fragments, we increase the number of

blocks already occupied

new data

new fragment

Figure 2: Empty fragments are filled (and thus
not creating more fragmentation), until the end
of the file. As an empty fragment is now di-
vided into a fragment of the new file and a
smaller empty fragment, one new fragment is
created.

free fragments from (M−L) to M. The num-
ber of neighbouring fragments n before delet-
ing and nd after deleting the file amongst the
free fragments is, according to (6):

n =
(M−L−1)(M−L)

N
(7)

nd =
(M−1)M

N
(8)

Combining (7) and (8) gets us the increase of
neighbouring free fragments and thus the de-
crease of free fragments f (two neighbouring
free fragments are one fragment):

f = nd−n

=
(M−1)M

N
− (M−L−1)(M−L)

N

=
(2M−L−1)L

N
(9)

3.3.3 Balancing fragmentation

Now we define two practical, understandable
parameters m for the fraction of the disk that is

200 • The Effects of Filesystem Fragmentation

free and s for the fraction of the disk occupied
by a file:

m =
M
N

(10)

s =
L
N

(11)

This is mathematically not correct, as we de-
fined N, M and L as distributions of an amount
of fragments, but in the experiments of section
4 we will see that it works well enough for us,
together with the numerous assumptions we al-
ready made.

To fulfil the demand that the number of elim-
inated fragments f when deleting a file of L
fragments should equal the number of created
fragments by allocating space for a file of an
average equal size, f = 1 in (9). We combine
this statement with (10) and (11):

L =
1+ s

2m− s
(12)

This can be simplified even more by assuming
s� 1, which is true if L�N. This is a realistic
assumption, as the size of a file is most often a
lot smaller the the size of the disk. We get:

L =
1

2m− s
(13)

A remarkable result of this equation is that the
average number of fragments in each of our
files does not depend in the allocation unit size.
Of course, the above only holds if files consist
of more than one fragment, and a fragment con-
sists of a fairly large number of allocation units.
This fits our PVR scenario, but the deduced for-
mulae do not apply to general workloads.

Another interesting result of (13) is the in-
sight that a disk without free space besides the

amount needed to write the next file will result
in a situation where M = L and thus m = s. The
average number of fragments in a file becomes
L = 1

s , meaning the number of fragments in a
file equals the number of files on the disk.

4 The simulation

To test the validity of our theory described in
section 3 on the one hand and to be able to as-
sess if fragmentation is an issue for PVR sys-
tems on the other hand, we have conducted a
number of simulations. First, we have done
in-memory experiments with the simple alloca-
tion strategy of LIMEFS [7]. Next, we have
tried simulating a real PVR system working
on a filesystem as closely as possible with our
program pvrsim. This was combined with
our hddfrgchk to analyse the output of the
simulation. Finally, we have done throughput
and actual seek measurements by observing the
block I/O layer of the Linux kernel with Jens
Axboe’s blktrace [9].

All experiments were performed on a Linux
2.6.15.3 kernel, only modified with the
blktrace patches. The PVR simulations on
actual filesystems were running on fairly recent
Pentium IV machines with a 250 GB Western
Digital hard drive. The actual speed of the ma-
chine and hard drive should not influence the
results of the fragmentation experiments, and
the performance measurements were only com-
pared with those conducted on the same ma-
chine.

4.1 LIMEFS

We isolated the simple allocation strategy of
LIMEFS described in section 3.1.2 from the
rest of the filesystem and implemented it in a

2006 Linux Symposium, Volume One • 201

simulation in user space. This way, the cre-
ation and deletion of files was performed by
only modifying the in-memory meta data of the
filesystem, and we were quickly able to inves-
tigate if our theory has practical value. The re-
sults of this experiment can be found in section
5.2.

4.2 pvrsim

As we clearly do not want to use a PVR for
two years to see what the effects are of do-
ing so, we have written a simulation program
called pvrsim. This multi-threaded applica-
tion writes and deletes files, similar in size to
recorded broadcasts, as fast as possible. It
is able to do so with a number of concurrent
threads defined at runtime, to simulate the si-
multaneous recording of multiple streams.

The size of the generated file is uniformly dis-
tributed in the range from 500 MB to 5 GB.
Besides that, every file is assigned a Gaussian
distributed popularity score, ranging roughly
from 10 to 100. This score is used to deter-
mine which file should be deleted to free up
disk space for a new file.

When writing new files, pvrsim always keeps
a minimum amount of free disk space to pre-
vent excessive fragmentation. This dependency
between fragmentation and free disk space was
shown in (13) in section 3.3.3. If writing a
new file would exceed this limit, older files
are deleted until enough space has been freed.
The file with the lowest weighed popularity is
deleted first. The weighed popularity is deter-
mined by dividing the popularity by the loga-
rithm of the age, where the age is expressed as
the number of files created after the file at hand.

Blocks of 32 KB filled with zeroes are written
to each file until it reaches the previously deter-
mined size. Next, the location of each block of

the file is looked up and the extents of the file
are determined. The extents are written to a log
file for further processing by hddfrgchk.

4.3 hddfrgchk

Our main simulation tool pvrsim outputs the
extents of each created file, which need fur-
ther processing to be able to analyse the re-
sults properly. This processing is done by
hddfrgchk, which provides two separate
functions, described below.

4.3.1 Fragmentation measures

hddfrgchk is able to calculate a number of
variables from the extent lists. First, it deter-
mines the number of fragments of which the
file at hand consists. As explained in section
3.2, this number is often higher than the actual
seeks the hard drive has to do when reading the
file. We therefore calculate the theoretical num-
ber of seeks, based on the characteristics of a
typical hard drive, with (3) from section 3.2.
The exact parameters in this calculation were
determined from a typical hard drive by mea-
surements, as described in [10].

Furthermore, we have defined a measure for
the relative effective data transfer speed. The
minimum number of rotations the drive has to
make to transfer all data of a file if all its blocks
were contiguous can be calculated by dividing
the number of blocks of the file by the average
number of blocks on a track. The actual num-
ber of rotations the drive theoretically has to
make to transfer the data can also be calculated.
This is done by adding the blocks in the gaps
that were not counted as fragments in our ear-
lier calculations to the total amount of blocks
in the file. Furthermore, the number of rota-
tions that took place in the time the hard drive

202 • The Effects of Filesystem Fragmentation

was seeking (the number of theoretical seeks as
calculated earlier is used for this) is also added
to the estimation of the number of rotations the
drive has to make to transfer the file. Dividing
the minimum number of rotations by the esti-
mation of the actual number of rotations gives
us the relative transfer speed.

4.3.2 Filesystem lay-out

Besides these variables, hddfrgchk also gen-
erates a graphical representation of the simula-
tion over time. The filesystem is depicted by
an image, each pixel representing a number of
blocks. With each file written by the simula-
tor, the blocks belonging to that file are given a
separate colour. When the file is deleted, this is
also updated in the image of the filesystem.

A new picture of the state of the filesystem is
generated for every file, and the separate pic-
tures are combined into an animation. The ani-
mation gives a visualisation of the locations of
the files on the drive, and gives an insight on
how the filesystem evolves.

4.4 Performance measurements

To verify the theoretical calculations of
hddfrgchk, we also have done some mea-
surements. We have looked at the requests is-
sued to the block I/O device (the hard drive
in this case) by the block I/O layer. The
blktrace [9] patch by Jens Axboe provides
useful instrumentation for this purpose in the
kernel.

4.4.1 blktrace

The kernel-side mechanism collects request
queue operations. The user space utility

blktrace extracts those event traces via the
Relay filesystem (RelayFS) [11]. The event
traces are stored in a raw data format, to en-
sure fast processing. The blkparse utility
produces formatted output of these traces after-
wards, and generates statistics.

The events that are collected originate either
from the file system or are SCSI commands.
The filesystem block layer requests consist of
the read or write actions of the filesystem.
These actions are queued and inserted in the in-
ternal I/O scheduler queue. The requests might
be merged with other items in the queue, at the
discretion of the I/O scheduler. Subsequently,
they are issued to the block device driver, which
finally signals when a specific request is com-
pleted.

4.4.2 Deriving the number of seeks

All requests also include the Logical Block Ad-
dress (LBA) of the starting sector of the re-
quest, as well as the size (in sectors) of the re-
quest. As we are interested in the exact actions
the hard drive performs, we only look at the re-
quests that are reported to be completed by the
block device driver, along with their location
and size. With this information, we can count
the number of seeks the hard drive has made: if
the starting location of a request is equal to the
ending location of the previous request, no seek
will take place. This does not yet account for
the fact that small gaps might not induce seeks,
but do lower the transfer rate.

4.4.3 Determining the data transfer rate

The effective data transfer rate can be derived
by the information provided by blktrace,
but can also be calculated just by the wall clock
time needed to read a file, divided by the file

2006 Linux Symposium, Volume One • 203

size. Comparing transfer rates of various files
should be done with caution: the physical lo-
cation on the drive significantly influences this.
To have a fair comparison, the average transfer
rate over the whole drive should be compared
at various stages in the simulation.

5 The results

We have conducted a number of variations of
the simulations described in section 4. The
variables under consideration were the filesys-
tem on which the simulations were taking
place, the size of the filesystem, the minimum
amount of free space on the filesystem, the
length of the simulation (i.e., the number of
files created) and the number of concurrent files
being written.

5.1 Simulation parameters

With exploratory simulations we discovered
that the size of the filesystem is not of signif-
icant influence on the outcome of the experi-
ments, as long as the filesystem is sufficiently
large compared to both the block size and the
average file size. As typical PVR systems typi-
cally offer storage space ranging from 100 GB
to 300 GB, we decided on a filesystem size of
138 GB. Due to circumstances, however, some
of the experiments were conducted on a filesys-
tem of 100 GB.

The minimum amount of space that is always
kept free is in the simulations with pvrsim
fixed at 5% of the capacity of the drive. Ac-
cording to the preliminary in-memory LIMEFS
experiments this is a reasonable value. The re-
sults of these experiments are elaborated in sec-
tion 5.2.

The size of the created files is chosen randomly
between 500 MB and 5 GB, uniformly dis-
tributed. As explained in section 2.1, these are
typical file sizes for a PVR recording MPEG2
streams in Standard Definition (SD) resolution.

The length of the experiments, expressed in
number of files created, was initially set at
10,000. The results from these runs showed
that after about 2,500 files the behaviour sta-
bilised. Therefore, the length of the simulations
was set at 2,500 files.

We have done simulations with up to four si-
multaneous threads, so several files were writ-
ten to the disk concurrently. This was done to
observe the behaviour when recording multiple
simultaneous broadcasts.

The filesystems we have covered in the exper-
iments described in this paper are FAT (both
Linux and Microsoft Windows), ext3 [2] [8],
ReiserFS [12], LIMEFS and NTFS [13] (Mi-
crosoft Windows). We plan to cover more
filesystems.

5.2 LIMEFS in-memory simulation

The results of the simulation of LIMEFS as de-
scribed in section 4.1 are shown in figure 3. We
have run our in-memory simulation on an imag-
inary 250 GB hard drive, with the minimum
amount of free space as a variable parameter.

As can be seen, in the runs with 5%, 10%
and 20% free space the fragmentation stabilises
quickly. In longer runs we observed that the
0%, 1% and 2% options also stabilise, but the
final fragmentation count is much higher and
the stabilisation takes longer. The sweet spot
appears to be 5% minimum free space, as this
gives a good balance between fragmentation
and hard drive space usage.

A nice result from this experiment is that the
observed fragmentation counts fit our formula.

204 • The Effects of Filesystem Fragmentation

We have taken a filesystem of 250 GB and an
average file size of 2750 MB. For the 5% free
space run, this makes the fraction of free space
m = 0.05 (see section 3.3.3). The fraction of
the disk occupied by a file is s = L

N = 2.75
250 =

0.01. So, the number of fragments in a file on
average, according to the formula, is:

L =
1

2m− s
=

1
2 ·0.05−0.01

≈ 11

From the plot in figure 3, we can see the calcu-
lation matches the outcome of the simulation.
The same holds for the other values for the min-
imum amount of free space.

 0

 10

 20

 30

 40

 50

 60

 0 2000 4000 6000 8000 10000

F
ra

gm
en

t c
ou

nt

Files written

Moving average of fragment count

 0% free
 1% free
 2% free
 5% free
10% free
20% free

Figure 3: The average fragment count during a
simulation run of 10,000 files, with a variable
percentage of space that was kept free.

5.3 Fragmentation simulation

While the name pvrsim might suggest other-
wise, we must stress that all results obtained
by pvrsim were obtained by writing real files
to real filesystems. The filesystems were run-
ning on their native platforms (i.e., FAT and
NTFS on Windows XP SP2, the others on
Linux 2.6.15). For an interesting comparison
however, we have also tested how the Linux

version of FAT performs in a number of situ-
ations.

These experiments resulted in the plots in figure
4, where the number of seeks according to our
theory (see section 3.2) and the relative speed
are shown for single- and multi-threaded situa-
tions.

5.3.1 Single-threaded performance

All single-threaded simulations show similar
results on all filesystems: the effective read
speed is not severely impacted by writing many
large files in succession. Some filesystems han-
dle the fragmentation more gracefully than oth-
ers, but the effects on system performance are
negligible in all cases, as can be seen in the
top two plots of figure 4. Although ext3 seems
to have quite some fragmentation, the relative
speed does not suffer: 98% of the raw data
throughput is a hardly noticeable slowdown.

5.3.2 Multi-threaded performance

The multi-threaded simulations show that a file
allocation strategy that tries to cluster files that
are created concurrently performs considerably
better compared to one that does not. The per-
formance of NTFS deteriorates very quickly
(after having written only a couple of files) to a
relative speed of around 0.6, while the relative
speed of ReiserFS and ext3 do not drop below
0.8. Linux FAT is doing slightly worse, while
LIMEFS is not impacted at all.

5.3.3 LIMEFS

According to our results, the area of PVR ap-
plications is one where LIMEFS really shines.
LIMEFS never produces more than around ten

2006 Linux Symposium, Volume One • 205

fragments, even with four threads. We do ad-
mit that LIMEFS is the only filesystem used in
this experiment that was designed specifically
for the purpose of storing PVR recordings, and
that it might perform horribly or even not at all
in other areas. However, the results are encour-
aging, and will hopefully serve as an inspiration
for other filesystems.

5.3.4 FAT and NTFS

One interesting result of running the simulation
on FAT and NTFS on Windows is that Windows
appears to allocate 1 megabyte chunks regard-
less of the block size (extents are typically 16
clusters of 64k, or 32 clusters of 32k). As our
simulation does not produce files smaller than 1
megabyte, we have no way of determining the
effect of small files on the fragmentation levels
of the filesystems. However, the chunked allo-
cation seems to alleviate the negative effects of
the otherwise quite naive allocation strategies
of FAT and NTFS.

5.4 Seeks and throughput

We have measured the the number of the aver-
age data rate of files on a newly created filesys-
tem and compared that with the data rate of files
after pvrsim simulated a PVR workload, to
confirm that our relative speed calculations are
representative for the actual situation. Further-
more, we have analysed the activity in the block
I/O layer with blktrace to see if the num-
ber of seeks derived from the placement of the
blocks on the drive can be used to estimate the
real activity.

The raw data throughput of the drive on which
we have executed our single-threaded ext3 run
was 60,590 KB/s. After writing 10,000 files
with pvrsim, the data throughput while read-
ing those files was on average 58,409 KB/s.

This results in a relative speed of 0.96, which
is close to the 0.95 we have estimated with our
calculations. The figures of the two-threaded
ext3 run on a different machine (52,520 KB/s
raw data throughput, 40,270 KB/s while read-
ing the final files present and thus a relative
speed of 0.77, the same as calculated) confirm
this.

With the use of blktrace we counted 10,267
seeks when reading the final files present on the
disk after the single-threaded ext3 run. This is
an average of 366 fragments per file. If we take
into account that small fragments do not cause
the drive to seek, as explained in section 3.2,
the number of seeks caused by fragments after
a gap of more than 676KB was, again according
to the blktrace observations, 5692 or an av-
erage of 203 seeks per file. This is for all prac-
tical purposes close enough to the 198 seeks we
derive from the location of the fragments on the
disk.

6 Future work

The experiments and results presented in this
paper are a starting point to improve the frag-
mentation robustness of filesystem for PVR-
like scenarios. To obtain a good overview of
the current state-of-the-art, we are planning to
run our simulations on other filesystems, e.g.,
on XFS [14]. We intend to cover more com-
binations of the parameters of our simulations
as well, e.g., different distributions for file size
and popularity, different filesystem sizes, and
different filesystem options.

Following this route, experimental measure-
ments of different workloads and scenarios
might provide interesting insights as well. We
feel our tools could easily be modified to incor-
porate other synthetic workloads, and therefore
be of great help for further experiments.

206 • The Effects of Filesystem Fragmentation

A more practical matter is improving the allo-
cation strategy of the FAT filesystem. Making
the allocation extent-based and multi-stream
aware like LIMEFS will greatly improve the
fragmentation behaviour, while the resulting
filesystem will remain backwards compatible.
On one hand, this proves our LIMEFS strate-
gies in real-life applications, while on the other
hand this will be useful for incorporation in
mobile digital television devices, which might
also act as a mass storage device and should
therefore use a compatible filesystem. Unfortu-
nately, the usefulness of FAT in a PVR context
remains limited due to its file size limit of 4 gi-
gabytes.

7 Conclusion

The formulae derived in 3 give an indication of
the average fragmentation level for simple allo-
cation strategies and large files. Although we
made quite some assumptions and took some
shortcuts in the mathematical justification, the
results of the LIMEFS in-memory experiments
of section 5.2 support the theory. Another use-
ful outcome of the formulae is that, at least with
large files, the fragmentation level stabilises,
which seems to be true as well for filesystems
with more sophisticated allocation strategies.

When dealing only with large files, a simple al-
location strategy seems very efficient in terms
of fragmentation prevention. Especially if only
one stream is written, even FAT performs very
well. Writing multiple streams simultaneously
requires some precautions, but a strategy as im-
plemented in LIMEFS suffices and outperforms
all more complicated strategies with respect to
the fragmentation level.

The ext3 and ReiserFS filesystems have a rela-
tively high fragmentation in our scenario. How-
ever, the fragmentation stabilises and the im-

pact is therefore predictable, and is no real is-
sue with large files. A file of 2 GB consisting
of 500 fragments will result in 4.5 seconds of
seeking (with an average seek time of 9 ms).
This is not significant for a movie of two hours,
if the seeks are not clustered.

The relative speeds measured with ReiserFS
and ext3 are not as good as the ones of
LIMEFS, but still acceptable: 80% of the per-
formance after prolonged use. NTFS however
perform horribly when using multiple simul-
taneous streams. The Linux version of FAT
is doing surprisingly well with two concurrent
streams, much better than the Microsoft Win-
dows implementation. We have still to investi-
gate why this is.

An interesting observation is the fact that ext3
keeps about 2% of unused free space at the
end of the drive, independent of the "reserved
space" options (used to prevent the filesystem
from being filled up by a normal user). If this
free space is kept clustered at the end instead
of being used throughout the simulation, this is
inefficient in terms of fragmentation, as our for-
mulae tell us.

In general, a PVR-like device is able to pro-
vide sustainable I/O performance over time if a
filesystem like ext3 or ReiserFS is used. This
does not assert anything about scenarios where
file sizes are in the order of magnitude of the
size of an allocation unit. However, the ratio
between rotation time and seek time in modern
hard drives is such that seeks are not something
to avoid at all costs anymore. For optimal usage
of the hard drive under a load of a number of
concurrent streams, an allocation strategy that
is aware of such a scenario is needed.

References

[1] Microsoft Corporation. Microsoft
Extensible Firmware Initiative FAT32

2006 Linux Symposium, Volume One • 207

File System Specification. Whitepaper,
December 2000.
http://www.microsoft.com/
whdc/system/platform/
firmware/fatgendown.mspx?

[2] Card, Rémy; Ts’o, Theodore; Tweedie,
Stephen. Design and Implementation of
the Second Extended Filesystem.
Proceedings of the First Dutch
International Symposium on Linux,
1994.
http://web.mit.edu/tytso/
www/linux/ext2intro.html

[3] MythTV. http://www.mythtv.org

[4] Microsoft Windows XP Media Center.
http://www.microsoft.com/
windowsxp/mediacenter/
default.mspx

[5] Mesut, Özcan; Brink, Benno van den;
Blijlevens, Jennifer; Bos, Eric; Nijs, Giel
de. Hard Disk Drive Power Management
for Multi-stream Applications.
Proceedings of the International
Workshop on Software Support for
Portable Storage, March 2005.

[6] Nijs, Giel de; Almesberger, Werner;
Brink, Benno van den. Active Block I/O
Scheduling System (ABISS). Proceedings
of the Linux Symposium, vol. 1, pp.
109–126, Ottawa, July 2005.
http://www.linuxsymposium.
org/2005/linuxsymposium_
procv1.pdf

[7] Springer, Rink. Time is of the Essence:
Implementation of the LimeFS Realtime
Linux Filesystem. Graduation Report,
Fontys University of Applied Sciences,
Eindhoven, 2005.

[8] Johnson, Michael K. Red Hat’s New
Journaling File System: ext3.

Whitepaper, 2001. http:
//www.redhat.com/support/
wpapers/redhat/ext3/

[9] Axboe, Jens; Brunelle, Alan D. blktrace
User Guide. http://www.kernel.
org/pub/linux/kernel/
people/axboe/blktrace/

[10] Mesut, Özcan; Lambert, Niek. HDD
Characterization for A/V Streaming
Applications. IEEE Transactions on
Consumer Electronics, Vol. 48, No. 3,
802–807, August 2002.

[11] Dagenais, Michel; Moore, Richard;
Wisniewski, Bob; Yaghmour, Karim;
Zanussi, Tom. RelayFS - A High-Speed
Data Relay Filesystem.
http://relayfs.sourceforge.
net/relayfs.txt

[12] Reiser, Hans. ReiserFS v.3 Whitepaper.
Whitepaper, 2003.

[13] Microsoft Corporation. Local File
Systems for Windows. WinHEC, May
2004. http://www.microsoft.
com/whdc/device/storage/
LocFileSys.mspx

[14] Hellwig, Chrisoph. XFS for Linux.
UKUUG, July 2003. http:
//oss.sgi.com/projects/xfs/
papers/ukuug2003.pdf

208 • The Effects of Filesystem Fragmentation

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 1 thread

Linux FAT
Windows FAT

ext3
ReiserFS

NTFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 1 thread

Linux FAT
Windows FAT

ext3
ReiserFS

NTFS

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 2 threads

Linux FAT
LIMEFS

ext3
ReiserFS

NTFS
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 2 threads

Linux FAT
LIMEFS

ext3
ReiserFS

NTFS

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500

S
ee

ks

Files written

Average seeks per file, 4 threads

Windows FAT
LIMEFS

ext3
NTFS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500

R
el

at
iv

e
sp

ee
d

Files written

Average relative speed per file, 4 threads

Windows FAT
LIMEFS

ext3
NTFS

Figure 4: Results of pvrsim run on various filesystems. From top to bottom the number of
concurrent threads was respectively one, two and four. The plots on the left side are the average
amount of fragments over time, corrected to exclude small fragments as described in section 3.2.
On the right side the relative speed (see section 4.3) is shown.

Proceedings of the
Linux Symposium

Volume One

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

