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Abstract

In this paper we present the results of an investi-
gation conducted by SGI into streaming filesys-
tem throughput on the Altix platform with a
high bandwidth disk subsystem.

We start by describing some of the background
that led to this project and our goals for the
project. Next, we describe the benchmark
methodology and hardware used in the project.
We follow this up with a set of baseline results
and observations using XFS on a patched 2.6.5
kernel from a major distribution.

We then present the results obtained from XFS,
JFS, Reiser3, Ext2, and Ext3 on a recent 2.6
kernel. We discuss the common issues that we
found to adversely affect throughput and repro-
ducibility and suggest methods to avoid these
problems in the future.

Finally, we discuss improvements and optimi-
sations that we have made and present the fi-
nal results we achieved using XFS. From these
results we reflect on the original goals of the
project, what we have learnt from the project
and what the future might hold.

1 Background and Goals

In the past, there have been many compar-
isons of the different filesystems suppported
by Linux. Most of these comparisons focus
on activities typically performed by a kernel
developer or use well known benchmark pro-
grams. Typically these tests are run on an aver-
age desktop machine with a single disk or, more
rarely, a system with two or four CPUs with a
RAID configuration of a few disks.

However, this really doesn’t tell us anything
about the maximum capabilities of the filesys-
tems; these machine configurations don’t push
the boundaries of the filesystems and hence
these observations have little relevance to those
who are trying to use Linux in large configura-
tions that require substantial amounts of I/O.

Over the past two years, we have seen a dra-
matic increase in the bandwidth customers re-
quire new machines to support. On older, mod-
ified 2.4.21 kernels, we could not achieve much
more than 300 MiB/s on parallel buffered write
loads. Now, on patched 2.6.5 kernels, cus-
tomers are seeing higher than 1 GiB/s under the
same loads. And, of course, there are customers
who simply want all the I/O bandwidth we can
provide.

The trend is unmistakable. A coarse correla-
tion is that required I/O bandwidth matches the
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amount of memory in a large machine. Mem-
ory capacity is increasing faster than physi-
cal disk transfer rates are increasing, and this
means that systems are being attached to larger
numbers of disks in the hope that this provides
higher throughput to populate and drain mem-
ory faster. Unfortunately, what we currently
lack is any data on whether Linux can make
use of the increased bandwidth that larger disk
farms provide.

Some of the questions we need to answer in-
clude:

• How close to physical hardware limits can
we push a filesystem?

• How stable is Linux under these loads?
• How does the Linux VM stand up to this

sort of load?
• Do the Device Mapper (DM) and/or Mul-

tiple Device (MD) drivers limit perfor-
mance or configurations?

• Are there NUMA issues we need to ad-
dress?

• Do we have file fragmentation problems
under these loads?

• How easily reproducible are the results we
achieved and can we expect customers to
be able to achieve them?

• What other bottlenecks limit the perfor-
mance of a system?

To answer these questions, as they are impor-
tant to SGI’s customers, we put together a mod-
estly sized machine to explore the limits of
high-bandwidth I/O on Linux.

2 Test Hardware and Methodology

2.1 Hardware

The test machine was an Altix A3700 contain-
ing 24 Itanium2 CPUs running at 1.5 GHz in

12 nodes in a single cache-coherent NUMA do-
main. Each node is configured with 2 GiB of
RAM for a system total of 24 GiB. Each node
has 6.4 GB/s peak full duplex external intercon-
nect bandwidth provided by SGI’s NUMALink
interconnect. A total of 12 I/O nodes, each with
three 133 MHz PCI-X slots on two busses, were
connected to the NUMALink fabric supplying
6.4 GB/s peak full duplex bandwidth per I/O
node. The CPU and I/O nodes were connected
via crossbar routers in a symmetric topology.

The I/O nodes were populated with a mix of
U320 SCSI and Fibre Channel HBAs (64 SCSI
controllers in total) and distributed 256 disks
amongst the controllers in JBOD configura-
tion. This provided an infrastructure that al-
lowed each disk run at close to its maximum
read or write bandwidth independently of any
other disk in the machine.

The result is a machine with a disk subsystem
theoretically capable of just over 11.5 GiB/s
of throughput evenly distributed throughout the
NUMALink fabric. Hence the hardware should
be able to sustain maximum disk rates if the
software is able to drive it that fast.

2.2 Methodology

The main focus of our investigation was on
XFS performance. In particular, parallel se-
quential I/O patterns were of most interest as
these are the most common patterns we see
our customers using on their large machines.
We also assessed how XFS compares with
other mainstream filesystems on Linux on these
workloads.

The main metrics we used to compare per-
formance were aggregate disk throughput and
CPU usage. We used multiple programs and in-
dependent test harnesses to validate the results
against each other so we had confidence in the
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results of individual test runs that weren’t repli-
cated.

To be able to easily compare different con-
figurations and kernels, we present normalised
I/O efficiency results along with the aggregate
throughput achieved. This gives an indication
of the amount of CPU time being expended for
each unit of throughput achieved. The unit of
efficiency reported is CPU/MiB/s, or the per-
centage of a CPU consumed per mebibyte per
second throughput. The lower the calculated
number, the better the efficiency of the I/O ex-
ecuted.

The tests were run with file sizes large enough
to make run times long enough to ensure that
measurement was accurate to at least 1%. This,
combined with running the tests in a consistent
(scripted) manner, enabled us to draw conclu-
sions about the reproducibility of the results ob-
tained.

For most of the tests run, we used SGI’s Per-
formance Co-Pilot infrastructure [PCP] to cap-
ture high resolution archives of the system’s be-
haviour during tests. This included disk utili-
sation and throughput, filesystem and volume
manager behaviour, memory usage, CPU us-
age, and much more. We were able to analyse
these archives after the fact which gave us great
insight into system wide behaviour during the
testing.

To find the best throughput under different con-
ditions, we varied many parameters during test-
ing. These included:

• different volume configurations
• the effect of I/O size on throughput and

CPU usage
• buffered I/O and direct I/O
• different allocation methods for writes
• block device readahead
• filesystem block size

• pdflush tunables
• NUMA allocation methods

We tested several different kernels so we could
chart improvements or regressions over time
that our customers would see as they upgraded.
Hence we tested XFS on SLES9 SP2, SLES9
SP3, and 2.6.15-rc5.

We also ran a subset of the above tests on other
Linux filesystems including Ext2, Ext3, Reis-
erFS v3, and JFS. We kept as many configu-
ration parameters as possible constant across
these tests. Where supported, we used mkfs
and mount parameters that were supposed to
optimise data transfer rates and large filesystem
performance.

The volume size for Ext2, Ext3, and Reis-
erFS V3 was halved to approximately 4.2 TiB
because they don’t support sizes of greater
than 8 TiB. We took the outer portion of each
disk for this smaller volume, hence maintain-
ing the same stripe configuration. Compared
to the larger volume used by XFS and JFS,
the smaller volume has lower average seek
times and higher minimum transfer rates and
hence should be able to maintain higher aver-
age throughputs than the larger volume as the
filesystems fill up during testing.

The comparison tests were scripted to:

1. Run mkfs with relevant large filesystem
optimisations.

2. Make a read file set with dd by writing out
the files to be read back with increasing
levels of parallelism.

3. Perform buffered read tests using one file
per thread across a range of I/O sizes and
thread count measuring throughput, CPU
usage, average process run time, and other
metrics required for analysis.
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The filesystem was unmounted and re-
mounted between each test to ensure that
all tests started without any cached filesys-
tem data and memory approximately 99%
empty.

4. Repeat Step 3 using buffered write tests,
including truncating the file to be written
in the overall test runtime.

Parallel writes were used to lay down the files
for reading back to demonstrate the level of
file fragmentation the filesystem suffered. The
greater the fragmentation, the more seeking the
disks will do and the lower the subsequent read
rate achieved will be. Hence the read rate di-
rectly reflects on the fragmentation resistance
of the filesystem. This is also a best case re-
sult because the tests are being run on an empty
filesystem.

Finally, after we fixed several of the worst prob-
lems we uncovered, we re-ran various tests to
determine the effect of the changes on the sys-
tem.

2.3 Volume Layout and Constraints

Achieving maximum throughput from a single
filesystem required a volume layout that en-
abled us to keep every disk busy at the same
time. In other words, we needed to distribute
the I/O as evenly as possible.

Building a wide stripe was the easiest way to
achieve even distribution since we were mostly
interested in sequential I/O performance. This
exposed a configuration limitation of DM;
dmsetup was limited to a line length of 1024
characters which meant we could only build a
stripe approximately 90 disks wide.

Hence we ended up using a two level volume
configuration where we had an MD stripe of
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Figure 1: Baseline XFS Throughput

4 DM volumes each with 64 disks. We used
an MD stripe of DM volumes because it was
unclear whether DM and dmsetup supported
multi-level volume configurations.

Using SGI’s XVM volume manager, we were
able to construct both a flat 256-disk stripe and
a 4x64-disk multi-level stripe. Hence we were
able to confirm that there was no measurable
performance or disk utilisation difference be-
tween the two configurations.

Therefore we ran all the tests on the multi-level,
MD-DM stripe volume layout. The only pa-
rameter that was varied in the layout was the
stripe unit (and therefore stripe width) and most
of the testing was done with stripe units of
512 KiB or 1 MiB.

3 Baseline XFS Results

Baseline XFS performance numbers were ob-
tained from SuSE Linux Enterprise Server 9
Service Pack 2 (SLES9 SP2). We ran tests on
XFS filesystem with both 4 KiB and 16 KiB
block sizes. Performance varied little with I/O
size, so the results presented used 128 KiB,
which is in the middle of the test range.
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Looking at read throughput, we can see from
Figure 1 that there was very little difference
between the different XFS filesystem configu-
rations. In some cases the 16 KiB block size
filesystem was faster, in other cases the 4 KiB
block size filesystem was faster. Overall, they
both averaged out at around 3.5 GiB/s across all
block sizes.

In contrast, the 16 KiB block-size filesystem is
substantially faster than the 4 KiB filesystem
when writing. The 4 KiB filesystem appeared
to be I/O bound as it was issuing much smaller
I/Os than the 16KiB filesystem and the disks
were seeking significantly more.

From the CPU efficiency graph in Figure 2,
we can see that there is no difference in CPU
time expended by the filesystem for different
block sizes on read. This was expected from
the throughput results.

Both the read and write tests show that CPU
usage is scaling linearly with throughput; in-
creasing the number of threads doing I/O does
not decrease the efficiency of the filesystem. In
other words, we are limited by either the rate
at which we can issue I/Os or by something
else outside the filesystem. Also, the write ef-
ficiency is substantially worse than for reads, it
would seem that there is room for substantial
improvement here.

4 Filesystem Comparison Results

The first thing to note about the results is that
some of the filesystems were tested to higher
numbers of threads and larger block sizes. The
reasons for this were that some configurations
were not stable enough to complete the whole
test matrix and we had to truncate some of
the longer test runs that would have prevented
us from completing a full test cycle in our
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Figure 2: Baseline XFS Efficiency

available time window. Consequently some of
the results presented represent best-case perfor-
mance rather than a mean of repeated test runs.

The kernel used for all these tests was 2.6.15-
rc5.

4.1 Buffered Read Results

The maximum read rates achieved by each
filesystem can be seen in Figure 3. The read
rate changed very little with varying I/O block
size, we saw the same maximum throughput us-
ing 4 KiB I/Os as using 1 MiB I/Os. The only
real difference was the amount of CPU con-
sumed.

It is worth noting that XFS read throughput is
substantially higher on 2.6.15-rc5 compared to
the baseline results on SLES9 SP2. A discus-
sion of this improvement canbe found in Sec-
tion 6.2.

The performance of Ext2 and Ext3 is also quite
different despite their common heritage. How-
ever, the results presented for Ext2 and Ext3
(as well as JFS) are the best of several test ex-
ecutions due to the extreme variability of the
filesystem performance under these tests. The
reasons for this variability are discussed in Sec-
tion 5.2.
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Figure 3: Buffered Read Throughput Compari-
son

It is clear that XFS and Ext3 give substantially
better throughput, and this is reflected in the ef-
ficiency plots in Figure 4, where these are the
most efficient filesystems. Both ReiserFS and
JFS show substantial decreases in efficiency as
thread count increases. This behaviour is dis-
cussed in Section 5.1.

4.2 Buffered Write Results

Figure 5 shows some very clear trends in
buffered write throughput. Firstly, XFS is sub-
stantially slower than the SLES9 SP2 baseline
results. Secondly, throughput is peaking at four
to eight concurrent writers for all filesystems
except for Ext2. XFS, using a 16 KiB filesys-
tem block size, was still faster than Ext2 until
high thread counts were reached.

The poor write throughput of Ext3 and JFS is
worth noting. JFS was unable to exceed an av-
erage of 80 MiB/s write speed in all but two of
the many test points executed, and Ext3 did not
score above 250 MiB/s and decreased to less
than 100MiB/s at sixteen or more threads. We
used the data=writeback mode for Ext3 as
it was consistently 10% faster than the data=

ordered mode.
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Figure 4: Buffered Read Efficiency Compari-
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The ReiserFS results are truncated due to prob-
lems running at higher thread counts. Writes
would terminate without error unexpectedly,
and sometimes the machine would hang. Due
to time constraints this was not investigated fur-
ther, but it is suspected that buffer initialisation
problems which manifested on machines with
both XFS and ReiserFS filesystems were the
cause. The fixes did not reach the upstream ker-
nel until well after testing had been completed
[Scott][Mason].

JFS demonstrated low write throughput. We
discovered that this was partially due to truncat-
ing a multi-gigabyte file taking several minutes
to execute. However, the truncate time made up
only half the elapsed time of each test. Hence,
even if we disregarded the truncate time, JFS
would still have had the lowest sustained write
rate of all the filesystems.

Looking at the efficiency graph in Figure 6,
we can see that only JFS and Ext2 had rela-
tively flat profiles as the number of threads in-
creased. However, the profile for JFS is rel-
atively meaningless due to the low through-
put. All the other filesystems show decreas-
ing efficiency (increasing CPU time per MiB
transferred to disk every second) at the same
load points that they also showed decreasing
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Figure 5: Buffered Write Throughput Compar-
ison

throughput. This is discussed further in Sec-
tion 5.1.

4.3 Direct I/O Results

Only XFS and Ext3 were compared for direct
I/O due to time constraints. The tests were run
over different block sizes and thread counts,
and involved first writing a file per thread, then
overwriting the file, and finally reading the file
back again. A 512 KiB stripe unit was used for
these tests.

Table 1 documents the maximum sustained
throughput we achieved with these tests. Ext3
was fastest with only a single thread, but writes
still fell a long way behind XFS. As the num-
ber of threads increased, Ext3 got slower and
slower as it fragmented the files it was writing.
At 18 threads, Ext3 direct I/O performance was

Threads FS Read Write Overwrite
1 XFS 5.5 4.0 7.5
1 Ext3 4.2 0.6 2.5

18 XFS 10.0 7.7 7.7
18 Ext3 0.58 0.06 0.12

Table 1: Sequential Direct I/O Throughput
(GiB/s)
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Figure 6: Buffered Write Efficiency Compari-
son

between 10 and 20 times lower than for a single
thread.

In contrast, from one to 18 threads, XFS dou-
bled its read and write throughput, and over-
write increased marginally from its already
high single thread result. It is worth noting that
the XFS numbers peaked substantially higher
than the sustained throughput—reads peaked at
above 10.7 GiB/s, while writes and overwrites
peaked at over 8.9 GiB/s.

5 Issues Affecting Throughput

5.1 Spinlocks in Hot Paths

One thing that is clear from the buffered I/O
results is that global spinlocks in hot paths of
a filesystem do not scale. Every journalled
filesystem except JFS was limited by spinlock
contention during parallel writes. In the case
of JFS, it appeared to be some kind of sleeping
contention that limited performance, and so the
impact of contention on CPU usage was not im-
mediately measurable. Both ReiserFS and JFS
displayed symptoms of contention in their read
paths as well.
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From analysis of the contention on the XFS
buffered write path, we found that the con-
tended lock was not actually being held for very
long. The fundamental problem is the number
of calls being made. For every page we write
on a 4 KiB filesystem, we are allocating four
filesystem blocks. We do this in four separate
calls to ->prepare_write(). Hence at the
peak throughput of approximately 700 MiB/s,
we are making roughly 180,000 calls per sec-
ond that execute the critical section.

That gives us less than 5.6 microseconds to ob-
tain the spinlock and execute our critical sec-
tion to avoid contention. The code that XFS
executes inside this critical section involves
a function call, a memory read, two likely
branches, a subtraction and a memory write.
That is not a lot of code, but with enough CPUs
trying to execute it in parallel it quickly be-
comes a bottleneck.

Of all the journalling filesystems, XFS appears
to have the smallest global critical section in its
write path. Filesystems that do allocation in the
write path (instead of delaying it until later like
XFS does) can’t help but have larger critical
sections here, and this shows in the throughput
being achieved.

Looking to the future, we need to move away
from allocating or mapping a block at a time in
the generic write path to reduce the load on crit-
ical sections in the filesystems. While work is
being done to reduce the number of block map-
ping calls on the read path, we need to do the
same work for the write path. In the meantime,
we have solved XFS’s problem in a different
way (see Section 6.1.2).

5.2 File Fragmentation and Reproducibil-
ity

From observation, the main obstacle in ob-
taining reproducible results across multiple test

runs on each filesystem was file fragmentation.
XFS was the only filesystem that almost com-
pletely avoided fragmentation of its working
files. ReiserFS also seemed to be somewhat re-
sistant to fragmentation but the results are not
conclusive due to the problems ReiserFS had
writing files in parallel.

Ext2, Ext3 and JFS did not resist fragmenta-
tion at all well. From truncated test results,
we know that the variation was extreme. A
comparison of the best case results versus the
worst case results for ext2 can be seen in Ta-
ble 2. Both Ext3 and JFS demonstrated very
similar performance variation due to the differ-
ent amounts of fragmentation of the files being
read in each test run. While we present the best
numbers we achieved for these filesystems, you
should keep in mind that these are not consis-
tently reproducible under real world conditions.

At the other end of the scale, the XFS results
were consistently reproducible to within ±3%.
This is due to the fact that we rarely saw frag-
mentation on the XFS filesystems and the disk
allocation for each file was almost identical on
every test run. Even when we did see fragmen-
tation, the contiguous chunks of file data were
never smaller than several gigabytes in size.

A further measure of fragmentation we used
was the number of physical disk I/Os required
to provide the measured throughput. In the case
of XFS, we were observing stripe unit sized
I/Os being sent to each disk (512 KiB) while
sustaining roughly 13,000 disk I/Os per second
to achieve 6.3 GiB/s.

In contrast, Ext2 and Ext3 were issuing ap-
proximately 60–70,000 disk I/Os per second to
achieve 1.7 GiB/s and 4.5 GiB/s respectively.
That equates to average I/O sizes of approxi-
mately 24 KiB and 56 KiB and each disk ex-
ecuting more than 250 I/Os per second each.
The disks were seek bound rather than band-
width bound. Sustained read throughput of less
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Threads Best Run Worst Run
1 522.2 348.5
2 780.2 74.8
4 1130.3 105.0
8 1542.1 176.8

Table 2: Example of Ext2 Read Throughput
Variability (MiB/s)

than 300 MiB/s at 60–70,000 disk I/Os per sec-
ond with an average size of 4 KiB was not un-
common to see. This indicates worst case (sin-
gle block) fragmentation in the filesystem. The
same behaviour was seen with JFS as well.

The source of the fragmentation on Ext2 and
Ext3 would appear to be interleaved disk allo-
cation when multiple files are written in parallel
from multiple CPUs. This also occurred when
running parallel direct I/O writes on Ext3 (see
Table 1) so it would appear to be a general issue
with the way Ext3 handles parallel allocation
streams.

XFS solves this problem by decoupling disk
block allocation from disk space accounting
and then using well known algorithmic tech-
niques to avoid lock contention to achieve write
scaling.

The message being conveyed here is that most
Linux filesystems do not resist fragmentation
under parallel write loads. With parallelism hit-
ting the mainstream now via multicore CPUs,
we need to recognise that filesystems may not
be as resistant to fragmentation under normal
usage patterns as they were once recognised to
be. This used to be a problem that only super-
computer vendors had to worry about. . .

5.3 kswapd and pdflush

While running single threaded tests, it was clear
that there was something running in the back-
ground that was using more CPU time than the

PID State % CPU Name
23589 R 97 dd

345 R 88 kswapd7
344 R 83 kswapd6

23556 R 81 dd
348 R 80 kswapd10
346 R 79 kswapd8
347 R 77 kswapd9
339 R 76 kswapd1
349 R 74 kswapd11
343 R 72 kswapd5

23517 R 71 dd
23573 R 64 dd

338 R 64 kswapd0
23552 R 64 dd
23502 R 63 dd

340 S 63 kswapd2
23570 R 61 dd
23592 R 60 dd

341 R 57 kswapd3

Table 3: kswapd CPU usage during buffered
writes

writer process and pdflush combined. A sin-
gle threaded read from disk consuming a single
CPU was consuming 10–15% of a CPU on each
node running memory reclaim via kswapd. For
a single threaded write, this was closer to 30%
of a CPU per node. On our twelve node ma-
chine, this meant that we were using between
1.5 and 3.5 CPUs to reclaim memory being al-
located by a single CPU.

On buffered write tests, pdflush also appeared
to be struggling to write out the dirty data.
With a single write thread, pdflush would con-
sume very little CPU; maybe 10% of a sin-
gle CPU every five seconds. As the number
of threads increased, however, pdflush quickly
became overwhelmed. At four threads writing
at approximately 1.5 GiB/s, pdflush ran perma-
nently consuming an entire CPU.

At eight or more write threads, pdflush con-
sumed CPU time only sporadically; instead the
kswapd CPU usage jumped from 30% of a CPU
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Threads Average I/O Size
1 1000 KiB
2 450 KiB
4 400 KiB
8 250 KiB

16 200 KiB
32 220 KiB

Table 4: I/O size during buffered writes

to 70–80% of a CPU per node. This can be seen
in Table 3.

Monitoring of the disk level I/O patterns in-
dicated that writeback was occuring from the
LRU lists rather than in file offset order from
pdflush. This could also be seen in the I/O sizes
that were being issued to disk as seen in Table 4
as the thread count increased.

This is clearly not scalable writeback and mem-
ory reclaim behaviour; we need reclaim to con-
sume less CPU time and for all writeback to oc-
cur in file offset order to maximise throughput.
For XFS, this will also minimise fragmentation
during block allocation. See Section 6.2.2 for
details on how we improved this behaviour.

6 Improvements and Optimisations

6.1 XFS Modifications

6.1.1 Buffered Write I/O Path

In 2.6.15, a new buffered write I/O path imple-
mentation was introduced. This was written by
Christoph Hellwig and Nathan Scott[Hellwig].
The main change this introduced was XFS clus-
tering pages directly into a bio instead of by
buffer heads and submit_bh() calls. Using
buffer heads limited the size of an I/O to the
number of buffer heads a bio could hold. In

other words, the larger the block size of the
filesystem, the larger the I/Os that could be
formed in the write cluster path. This is the pri-
mary reason for the difference in throughput we
see for the XFS filesystems with different block
sizes.

By adding complete pages to a bio rather than
buffer heads, we were able to make XFS write
clustering independent of the filesystem block
size. This means that any XFS filesystem can
issue I/Os only limited in size by the number of
pages that can be held by the bio vector.

Unfortunately, due to the locking issue de-
scribed earlier in Section 5.1, XFS with the
modified write path was actually slower on our
test machine than without it. Clearly, the spin-
lock problem needed to be solved before we
would see any benefit from the new I/O path.

6.1.2 Per-CPU Superblock Counters

Kernel profiles taken during parallel buffered
write tests indicated contention within XFS on
the in-core superblock lock. This lock pro-
tects the current in-core (in-memory) state of
the filesystem.

In the case of delayed allocation, XFS uses the
in-core superblock to track both disk space that
is actually allocated on disk as well as the space
that has not yet been allocated but is dirty in
memory. That means during a write(2) sys-
tem call we allocate the space needed for the
data being written but we don’t allocate disk
blocks. Hence the “allocation” is very fast
whilst maintaining an accurate representation
of how much space there is remaining in the
filesystem.

This makes contention on this structure a diffi-
cult problem to solve. We need global accuracy,
but we now need to avoid global contention.
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The in-core superblock is a write-mostly struc-
ture, so we can’t use atomic operations or RCU
to scale it. The only commonly used method
remaining is to make the counters per-CPU, but
we still need to have some method of being ac-
curate when necessary that performs in an ac-
ceptable manner.

Hence for the free space counter we decided to
trade off performance for accuracy when we are
close to ENOSPC. The algorithm that was im-
plemented is essentially a distributed counter
that gets slower and more accurate as the ag-
gregated total of the counter approaches zero.

When an individual per-CPU counter reaches
zero, we execute a balance operation. This op-
eration locks out all the per-CPU counters be-
fore aggregating and redistributing the aggre-
gated value evenly over all the counters before
re-enabling the counters again. This requires
a per-CPU atomic exclusion mechanism. The
balance operation must lock every CPU fast
path out and so can be an expensive operation
on a large machine.

However, on that same large machine, the fast
path cost of the per-CPU counters is orders of
magnitude lower than a global spinlock. Hence
we are amortising the cost of an expensive
rebalance very quickly compared to using a
global spinlock on every operation. Also, when
the filesystem has lots of free space we rarely
see a rebalance operation as the distributed
counters can sink hundreds of gigabytes of al-
location on a single CPU before running dry.

If a counter rebalance results in a very small
amount being distributed to each CPU, the
counter is considered to be near zero and we fall
back to a slow, global, single threaded counter
for the aggregated total. That is, we prefer ac-
curacy over blazing speed. It should also be
noted that using a global lock in this case tends
to be more efficient than constant rebalancing
on large machines.

The results (see Figure 7 and Figure 8) speak
for themselves and the code is to be released
with 2.6.17[Chinner].

6.2 VM and NUMA Issues

6.2.1 SN2 Specific TLB Purging

When first running tests on 2.6.15-rc5, it was
noticed that XFS buffered read speeds were
much higher than we saw on SLES9 SP2,
SLES9 SP3 and 2.6.14. On these kernels we
were only achieving a maximum of 4 GiB/s.
Using 2.6.15-rc5 we achieved 6.4 GiB/s, and
monitoring showed all the disks at greater than
90% utilisation so we were now getting near to
being disk bound.

Further study revealed that the memory reclaim
rate limited XFS buffered read throughput. In
this particular case, the global TLB flushing
speed was found to make a large difference to
the reclaim speed.

We found this when we reverted a platform-
specific optimisation that was included in
2.6.15-rc1 to speed up TLB flushing[Roe]. Re-
verting this optimisation reduced buffered read
throughput by approximately 30% on the same
filesystem and files. Simply put, this improve-
ment was an unexpected but welcome side ef-
fect of an optimisation made for different rea-
sons.

6.2.2 Node Local Memory Reclaim

In a stroke of good fortune, Christoph Lameter
completed a set of modifications to the mem-
ory reclaim subsystem[Lameter] while we were
running tests. The modifications were included
in Linux 2.6.16, and they modified the reclaim
behaviour to reclaim clean pages on a given
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Figure 7: Improved XFS Buffered Write
Throughput

node before trying to allocate from a remote
node.

The first major difference in behaviour was that
kswapd never ran during either buffered read or
write tests. Buffered reads were now quite ob-
viously I/O bound with approximately half the
disks showing 100% utilisation. Using a dif-
ferent volume layout with a 1 MiB stripe unit,
sustained buffered read throughput increased to
over 7.6 GiB/s.

The second most obvious thing was that pdflush
was now able to flush more than 5 GiB/s of data
whilst consuming less than half a CPU. Without
the node local reclaim, it was only able to push
approximately 500 MiB/s when it consumed an
equivalent amount of CPU time. Writeback, es-
pecially at low thread counts, became far more
efficient.

6.2.3 Memory Interleaving

While doing initial bandwidth characterisations
using direct I/O, we found that it was nec-
essary to ensure that buffer memory was al-
located evenly from every node in the ma-
chine. This was achieved using the numactl

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1  2  4  8  16  32

Ef
fic

ie
nc

y 
(%

CP
U/

M
iB

/s
)

Thread Count

Smaller is Better

Base-XFS-4k
Base-XFS-16k

Opt-XFS-4k
Opt-XFS-16k

Figure 8: Improved XFS Buffered Write Effi-
ciency

-i all command prefix to the test commands
being run.

Without memory interleaving, direct I/O (read
or write) struggled to achieve much more than
6 GiB/s due to the allocation patterns limit-
ing the buffers to only a few nodes in the ma-
chine. Hence we were limited by the per-node
NUMALink bandwidth. Interleaving the buffer
memory across all the nodes solved this prob-
lem.

With buffered I/O, however, we saw very dif-
ferent behaviours. In initial testing we saw lit-
tle difference in throughput because the page
cache ended up spread across all nodes of the
machine due to memory reclaim behaviour.

However, when testing the node local memory
reclaim patches we found that interleaving did
make a big difference to performance as the lo-
cal reclaim reduced the number of nodes that
the page cache ended up spread over. Inter-
estingly, the improvement in memory reclaim
speed that the local reclaim gave us meant that
there was no performance degradation despite
not spreading the pages all over the machine.
Once we spread the pages using the numactl
command we saw the substantial performance
increases.
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Figure 9: Improved XFS Buffered Read
Throughput

6.2.4 Results

We’ve compared the baseline buffered I/O re-
sults from Section 3 with the best results we
achieved with our optimised kernel.

From Figure 7 it is clear that we achieved a
substantial gain in write throughput. The out-
standing result is the improvement of 4 KiB
block size filesystems and is a direct result of
the I/O path rewrite. The improved write clus-
tering resulted in consistently larger I/Os being
sent to disk, and this has translated into im-
proved throughput. Local memory reclaim has
also prevented I/O sizes from decreasing as the
number of threads writing increases which has
also contributed to higher throughputs as well.

On top of improved throughput, Figure 8 in-
dicates that the buffered write efficiency has
improved by factor of between three and four.
It can been seen that the efficiency decreases
somewhat as throughput and thread count goes
up, so there is still room for improvement here.

Buffered read throughput has roughly doubled
as shown in Figure 9. This improvement can be
almost entirely attributed to the VM improve-
ments as the XFS read path is almost identical
in the baseline and optimised kernels.
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Figure 10: Improved XFS Buffered Read Effi-
ciency

Once again, the improvement in throughput
corresponds directly to an improvement in ef-
ficiency. Figure 10 indicates that we saw
much greater improvements in efficiency at low
thread counts than at high thread counts. The
source of this decrease in efficiency is unknown
and more investigation is required to under-
stand it.

One potential reason for the decrease in effi-
ciency of the buffered read test as throughput
increases is that the NUMALink interfaces may
be getting close to saturation. With the tests
being run, the typical memory access patterns
are a DMA write from the HBA to memory,
which due to the interleaved nature of the page
cache is distributed across the NUMALink fab-
ric. The data is then read by a CPU, which gath-
ers the data spread across every node, and is
then written back out into a user buffer which
is spread across every node.

With both bulk data and control logic mem-
ory references included, each node node in the
system is receiving at least 2 GiB/s and trans-
mitting more than 1.2 GiB/s. With per-node
receive throughput this high, remote memory
read and write latencies can increase compared
to an idle interconnect. Hence the increase in
CPU usage may simply be an artifact of sus-
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tained high NUMALink utilisation.

7 Futures

The investigation that we undertook has pro-
vided us with enough information about the be-
haviour of these large systems for us to pre-
dict issues that SGI customers will see over the
next year or two. It has also demonstrated that
there are issues that mainstream Linux users are
likely to start to see over this same timeframe.
With technologies like SAS, PCI express, mul-
ticore CPUs and NUMA moving into the main-
stream, issues that used to affect only high end
machines are rapidly moving down to the aver-
age user. We need to make sure that our filesys-
tems behave well on the average machine of the
day.

At the high end, while we are on top of filesys-
tem scaling issues with XFS, we are starting
to see interactions between high bandwidth I/O
and independent cpuset constrained jobs on
large machines. These interactions are com-
plex and are hinting that for effective deploy-
ment on large machines at high I/O bandwidths
the filesystem needs to be NUMA and I/O path
topology aware so that filesystem placement
and I/O bandwidth locality to the running job
can be maximised. That is, we need to be able
to control placement in the filesystem to min-
imise the NUMALink bandwidth that a job’s
I/O uses.

This means that filesystems are likely to need
allocation hints provided to them to enable this
sort of functionality. We already have policy in-
formation controlling how a job uses CPU and
memory in large machines, so extending this
concept to how the filesystem does allocation
is not as far-fetched as it seems.

Improving performance in filesystems is all
about minimising disk seeking, and this comes

down to the way the filesystem allocates its disk
space. We have new issues at the high end
to deal with, while the issues that have been
solved at the high end are now becoming is-
sues for mainstream. As the intrinsic paral-
lelism of the average computer increases, algo-
rithms need to be able to resist fragmentation
when allocations occur simultaneously so that
filesystem performance can grow with machine
capability.

8 Conclusion

The investigation we undertook has provided us
with valuable information on the behaviour of
Linux in high bandwidth I/O loads. We iden-
tified several areas which limited our perfor-
mance and scalability and fixed the worst dur-
ing the investigation.

We improved the efficiency of buffered I/O
under these loads and significantly increased
the throughput we could achieve from XFS.
We discovered interesting NUMA scalability
issues and either fixed them or developed ef-
fective strategies to negate the issues.

We proved that we could achieve close to the
physical throughput limits of the disk subsys-
tem with direct I/O. From analysis, we found
that even buffered I/O was approaching physi-
cal NUMALink bandwidth limits. We proved
that Linux and XFS in combination could do
this whilst maintaining reproducible and stable
operation.

We also uncovered a set of generic filesystem
issues that affected every filesystem we tested.
We solved these problems on XFS, and pro-
vided recommendations on why we think they
also need to be solved.

Finally, we proved that XFS is the best choice
for our customers; both on the machines they
use and for the common workloads they run.
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In conclusion, our investigation fulfilled all the
goals we set at the beginning of the task. We
gained insight into future issues we are likely
to see, and we raised a new set of questions that
need further research. Now all we need is a
bigger machine and more disks.
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