
Xen 3.0 and the Art of Virtualization

Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield
University of Cambridge

{first.last}@cl.cam.ac.uk

Dan Magenheimer
Hewlett-Packard Laboratories

{first.last}@hp.com

Jun Nakajima, Asit Mallick
Intel Open Source Technology Center

{first.last}@intel.com

Abstract

The Xen Virtual Machine Monitor will soon be
undergoing its third major release, and is ma-
turing into a stable, secure, and full-featured
virtualization solution for Linux and other op-
erating systems. Xen has attracted consider-
able development interest over the past year,
and consequently the 3.0 release includes many
exciting new features. This paper provides an
overview of the major new features, includ-
ing VM relocation, device driver isolation, sup-
port for unmodified operating systems, and new
hardware support for both x86/64 and IA-64
processors.

1 VM Relocation

While many server applications may be very
long-lived, the hardware that it runs on will in-
variably need service from time to time. A ma-
jor benefit of virtualization is the ability to relo-
cate arunningoperating system instance from
one physical host to another. Relocation allows
a physical host to be unloaded so that hardware
may be serviced, it allows coarse-grained load-
balancing in a cluster environment, and it al-
lows servers to move closer to the users that

they serve. Bypre-copyingVM state to the
destination host while it is still running, relo-
cation down-time can be made very small—
experiments relocating a running Quake server
have achieved repeatable relocation times with
outages of less than 100ms.

In the following subsections we describe some
of the implementation details of our pre-
copying approach. We describe how we use dy-
namic network rate-limiting to effectively bal-
ance network contention against OS downtime.
We then proceed to describe how we ameliorate
the effects of rapid page dirtying, and show re-
sults for the relocation of a running Quake 3
server.

1.1 Managing Relocation

Relocation is performed by daemons running in
the management VMs of the source and desti-
nation hosts. These are responsible for creating
a new VM on the destination machine, and co-
ordinating transfer of live system state over the
network.

When transferring the memory image of the
still-running OS, the control software performs

• 65 •



66 • Xen 3.0 and the Art of Virtualization

roundsof copying in which it performs a com-
plete scan of the VM’s memory pages. Al-
though in the first round all pages are trans-
ferred to the destination machine, in subsequent
rounds this copying is restricted to pages that
were dirtied during the previous round, as indi-
cated by adirty bitmapthat is copied from Xen
at the start of each round.

During normal operation the page tables man-
aged by each guest OS are the ones that are
walked by the processor’s MMU to fill the
TLB. This is possible because guest OSes are
exposed to real physical addresses and so the
page tables they create do not need to be
mapped to physical addresses by Xen.

To log pages that are dirtied, Xen inserts
shadow page tablesunderneath the running OS.
The shadow tables are populated on demand
by translating sections of the guest page tables.
Translation is very simple for dirty logging: all
page-table entries (PTEs) are initially read-only
mappings in the shadow tables, regardless of
what is permitted by the guest tables. If the
guest tries to modify a page of memory, the re-
sulting page fault is trapped by Xen. If write
access is permitted by the relevant guest PTE
then this permission is extended to the shadow
PTE. At the same time, we set the appropriate
bit in the VM’s dirty bitmap.

When the bitmap is copied to the control soft-
ware at the start of each pre-copying round,
Xen’s bitmap is cleared and the shadow page
tables are destroyed and recreated as the relo-
catee OS continues to run. This causes all write
permissions to be lost: all pages that are subse-
quently updated are then added to the now-clear
dirty bitmap.

When it is determined that the pre-copy phase
is no longer beneficial, the OS is sent a con-
trol message requesting that it suspend itself in
a state suitable for relocation. This causes the

OS to prepare for resumption on the destina-
tion machine; Xen informs the control software
once the OS has done this. The dirty bitmap is
scanned one last time for remaining inconsis-
tent memory pages, and these are transferred to
the destination together with the VM’s check-
pointed CPU-register state.

Once this final information is received at the
destination, the VM state on the source ma-
chine can safely be discarded. Control software
on the destination machine scans the memory
map and rewrites the guest’s page tables to re-
flect the addresses of the memory pages that it
has been allocated. Execution is then resumed
by starting the new VM at the point that the old
VM checkpointed itself. The OS then restarts
its virtual device drivers and updates its notion
of wallclock time.

1.2 Dynamic Rate-Limiting

It is not always appropriate to select a single
network bandwidth limit for relocation traffic.
Although a low limit avoids impacting the per-
formance of running services, analysis showed
that we must eventually pay in the form of an
extended downtime because the hottest pages
in the writable working set are not amenable to
pre-copy relocation. The downtime can be re-
duced by increasing the bandwidth limit, albeit
at the cost of additional network contention.

Our solution to this impasse is to dynami-
cally adapt the bandwidth limit during each
pre-copying round. The administrator selects
a minimum and a maximum bandwidth limit.
The first pre-copy round transfers pages at the
minimum bandwidth. Each subsequent round
counts the number of pages dirtied in the pre-
vious round, and divides this by the duration
of the previous round to calculate thedirtying
rate. The bandwidth limit for the next round
is then determined by adding a constant incre-
ment to the previous round’s dirtying rate—we



2005 Linux Symposium • 67

Figure 1: Results of relocating a running Quake 3 server VM.

have empirically determined that 50Mbit/sec
is a suitable value. We terminate pre-copying
when the calculated rate is greater than the ad-
ministrator’s chosen maximum, or when less
than 256KB remains to be transferred. During
the final stop-and-copy phase we minimize ser-
vice downtime by transferring memory at the
maximum allowable rate.

Using this adaptive scheme results in the band-
width usage remaining low during the transfer
of the majority of the pages, increasing only at
the end of the relocation to transfer the hottest
pages in the WWS. This effectively balances
short downtime with low average network con-
tention and CPU usage.

1.3 Rapid Page Dirtying

Analysis shows that every OS workload has
some set of pages that are updated extremely
frequently, and which are therefore not good
candidates for pre-copy relocation even when
using all available network bandwidth. We
observed that rapidly-modified pages are very
likely to be dirtied again by the time we attempt
to transfer them in any particular pre-copying
round. We therefore periodically ‘peek’ at the

current round’s dirty bitmap and transfer only
those pages dirtied in the previous round that
have not been dirtied again at the time we scan
them.

We further observed that page dirtying is often
physicallyclustered—if a page is dirtied then
it is disproportionally likely that a close neigh-
bour will be dirtied soon after. This increases
the likelihood that, if our peeking does not de-
tect one page in a cluster, it will detect none.
To avoid this unfortunate behaviour we scan
the VM’s physical memory space in a pseudo-
random order.

1.4 Low-Latency Server: Quake 3

A representative application for hosting envi-
ronments is a multiplayer on-line game server.
To determine the effectiveness of our approach
in this case we configured a virtual machine
with 64MB of memory running a Quake 3
server. Six players joined the game and started
to play within a shared arena, at which point
we initiated a relocation to another machine. A
detailed analysis of this relocation is shown in
Figure 1.



68 • Xen 3.0 and the Art of Virtualization

Elapsed time (secs)
0 10 20 30 40 50 60 70

P
a
ck

e
t 
fli

g
h
t 
tim

e
 (

se
cs

)

0

0.02

0.04

0.06

0.08

0.1

0.12

Packet interarrival time during Quake 3 migration

M
ig

ra
tio

n
 1

d
o
w

n
tim

e
: 
5
0
m

s

M
ig

ra
tio

n
 2

d
o
w

n
tim

e
: 
4
8
m

s

Figure 2: Effect on packet response time of relocating a running Quake 3 server VM.

We were able to perform the live relocation
with a total downtime of 60ms. To determine
the effect of relocation on the live players, we
performed an additional experiment in which
we relocated the running Quake 3 server twice
and measured the inter-arrival time of packets
received by clients. The results are shown in
Figure 2. As can be seen, from the client point
of view relocation manifests itself as a transient
increase in response time of 50ms. In neither
case was this perceptible to the players.

2 Device Virtualization

Xen’s strong isolation guarantees have proved
very useful in solving two major problems with
device drivers: driver availability and reliabil-
ity. Xen is capable of allowing individual vir-
tual machines to have direct access to specific
pieces of hardware. We have taken the ap-
proach of using a single virtual machine to run
the physical driver for a device (such as a disk
or network interface) and then export a virtu-
alized version of the device to all of the other
guestOSes that are running on the host. This
approach means that a device need only be
supported on a single platform (Linux, for in-
stance), and may be available to all the OSes

that Xen runs. Each guest implements an ide-
alized disk and network device, which are ca-
pable of connecting to the hardware specific
driver in an isolateddevice domain. This ap-
proach has the added benefit of making drivers,
which are a major source of bugs in operating
systems, more reliable. By running a driver in
its own VM , driver crashes are limited to the
driver itself—other applications may continue
to run. Device domains can even be rebooted
to recover failed drivers, and result in down-
times on the order of hundreds of miliseconds
in cases where the entire machine would previ-
ously have crashed completely.

This approach will no doubt sound familiar
to anyone who has worked with microkernels
in the past—Xen’s isolation achieves a similar
fragmentation ofOS subsystems. One major
difference between Xen and historical work on
microkernels is that we have forgone the archi-
tecturally pure fixation on IPC mechanisms in
favour of a generalized, shared-memory ring-
based communication primitive that is able to
achieve very high throughputs by batching re-
quests.

To achieve driver isolation, we restrict ac-
cess privileges to device I/O registers (whether
memory-mapped or accessed via explicit I/O



2005 Linux Symposium • 69

ports) and interrupt lines. Furthermore, where
it is possible within the constraints of existing
hardware, we protect against device misbehav-
ior by isolating device-to-host interactions. Fi-
nally, we virtualize the PC’s hardwareconfig-
uration space, restricting each driver’s view of
the system so that it cannot see resources that it
cannot access.

2.1 I/O Registers

Xen ensures memory isolation amongst do-
mains by checking the validity of address-space
updates. Access to a memory-mapped hard-
ware device is permitted by extending these
checks to allow access to non-RAM page
frames that contain memory-mapped registers
belonging to the device. Page-level protection
is sufficient to provide isolation because reg-
ister blocks belonging to different devices are
conventionally aligned on no less than a page
boundary.

In addition to memory-mapped I/O, many pro-
cessor families provide an explicit I/O-access
primitive. For example, the x86 architecture
provides a 16-bit I/O port space to which access
may be restricted on a per-port basis, as speci-
fied by an access bitmap that is interpreted by
the processor on each port-access attempt. Xen
uses this hardware protection by rewriting the
port-access bitmap when context-switching be-
tween domains.

2.2 Interrupts

Whenever a device’s interrupt line is asserted
it triggers execution of a stub routine within
Xen rather than causing immediate entry into
the domain that is managing that device. In
this way Xen retains tight control of the sys-
tem by schedulingexecution of the domain’s

interrupt service routine (ISR). Taking the in-
terrupt in Xen also allows a timely acknowl-
edgement response to the interrupt controller
(which is always managed by Xen) and allows
the necessary address-space switch if a differ-
ent domain is currently executing. When the
correct domain is scheduled it is delivered an
asynchronousevent notificationwhich causes
execution of the appropriate ISR.

Xen notifies each domain of asynchronous
events, including hardware interrupts, via a
general-purpose mechanism calledevent chan-
nels. Each domain can be allocated up to 1024
event channels, each of which comprises a pair
of bit flags in a memory page shared between
the domain and Xen. The first flag is used by
Xen to signal that an event ispending. When an
event becomes pending Xen schedules an asyn-
chronous upcall into the domain; if the domain
is blocked then it is moved to the run queue.
Unnecessary upcalls are avoided by triggering
a notification only when an event first becomes
pending: further settings of the flag are then ig-
nored until after it is cleared by the domain.

The second event-channel flag is used by the
domain to mask the event. No notification
is triggered when a masked event becomes
pending: no asynchronous upcall occurs and
a blocked domain is not woken. By setting
the mask before clearing the pending flag, a
domain can prevent unnecessary upcalls for
partially-handled event sources.

To avoid unbounded reentrancy, a level-
triggered interrupt line must be masked at the
interrupt controller until all relevant devices
have been serviced. After handling an event re-
lating to a level-triggered interrupt, the domain
must calldown into Xen to unmask the inter-
rupt line. However, if an interrupt line is not
shared by multiple devices then Xen can usu-
ally safely reconfigure it as edge-triggering, ob-
viating the need for unmask downcalls.



70 • Xen 3.0 and the Art of Virtualization

When an interrupt line is shared by multiple
hardware devices, Xen must delay unmasking
the interrupt until a downcall is received from
every domain that is managing one of the de-
vices. Xen cannot guarantee perfect isolation
of a domain that is allocated a shared interrupt:
if the domain never unmasks the interrupt then
other domains can be prevented from receiv-
ing device notifications. However, shared in-
terrupts are rare in server-class systems which
typically contain IRQ-steering and interrupt-
controller components with enough pins for ev-
ery device. The problem of sharing is set to
disappear completely with the introduction of
message-based interrupts as part of PCI Ex-
press [1].

2.3 Device-to-Host Interactions

As well as preventing a device driver from cir-
cumventing its isolated environment, we must
also protect against possible misbehavior of the
hardware itself, whether due to inherent design
flaws or misconfiguration by the driver soft-
ware. The two general types of device-to-host
interaction that we must consider are assertion
of interrupt lines, and accesses to host memory
space.

Protecting against arbitrary interrupt assertion
is not a significant issue because, except for
shared interrupt lines, each hardware device has
its own separately-wired connection to the in-
terrupt controller. Thus it is physically impossi-
ble for a device to assert any interrupt line other
than the one that is assigned to it. Furthermore,
Xen retains full control over configuration of
the interrupt controller and so can guard against
problems such as ‘IRQ storms’ that could be
caused by repeated cycling of a device’s inter-
rupt line.

The main ‘protection gap’ for devices, then, is
that they may attempt to access arbitrary ranges

of host memory. For example, although a de-
vice driver is prevented from using the CPU
to write to a particular page of system mem-
ory (perhaps because the page does not belong
to the driver), it may instead program its hard-
ware device to perform a DMA to the page.
Unfortunately there is no good method for pro-
tecting against this problem with current hard-
ware as it is infeasible for Xen to validate the
programming of DMA-related device registers.
Not only would this require intimate knowl-
edge of every device’s DMA engine, it also
would not protect against bugs in the hardware
itself: buggy hardware would still be able to ac-
cess arbitrary system memory.

A full implementation of this aspect of our de-
sign requires integration of an IOMMU into
the PC chipset—a feature that is expected to
be included in commodity chipsets in the very
near future. Similar to the processor’s MMU,
this translates the addresses requested by a de-
vice into valid host addresses. Inappropriate
host addresses are not accessible to the de-
vice because no mapping is configured in the
IOMMU. In our design, Xen would be respon-
sible for configuring the IOMMU in response
to requests from domains. The required val-
idation checks are identical to those required
for the processor’s MMU; for example, to en-
sure that the requesting domain owns the page
frame, and that it is safe to permit arbitrary
modification of its contents.

2.4 Hardware Configuration

The PCI standard defines a genericconfigu-
ration spacethrough which PC hardware de-
vices are detected and configured. Xen restricts
each domain’s access to this space so that it can
read and write registers belonging only to a de-
vice that it owns. This serves a dual purpose:
not only does it prevent cross-configuration of
other domains’ devices, but it also restricts the



2005 Linux Symposium • 71

domain’s view so that a hardware probe detects
only devices that it is permitted to access.

The method of access to the configuration
space is system-dependent, and the most com-
mon methods are potentially unsafe (either
protected-mode BIOS calls, or a small I/O-
port ‘window’ that is shared amongst all device
spaces). Domains are therefore not permitted
direct access to the configuration space, but are
forced to use a virtualized interface provided by
Xen. This has the advantage that Xen can per-
form arbitrary validation and translation of ac-
cess requests. For example, Xen disallows any
attempt to change the base address of an I/O-
register block, as the new location may conflict
with other devices.

2.5 Device Channels

Guest OSs access devices viadevice channel
links with isolated driver domains (IDDs). The
channel is a point-to-point communication link
through which each party can asynchronously
send messages to the other. Channels are estab-
lished by using a privilegeddevice managerto
introduce an IDD to a guest OS, and vice versa.
To facilitate this, the device manager automati-
cally establishes an initial control channel with
each domain that it creates. Figure 3 shows a
guest OS requesting a data transfer through a
device channel. The individual steps involved
are discussed later in this section.

Xen itself has no concrete notion of a control
or device channel. Messages are communi-
cated via shared memory pages that are allo-
cated by the guest OS but are simultaneously
mapped into the address space of the IDD or de-
vice manager. For this purpose, Xen permits re-
strictedsharingof memory pages between do-
mains.

The sharing mechanism provided by Xen dif-
fers from traditional application-level shared

Figure 3: Using device channel to request a
data transfer.

memory in two key respects: shared mappings
are asymmetricand transitory. Each page of
memory is owned by at most one domain at any
time and, with the assistance of Xen and the
device manager, that owner may force reclama-
tion of mappings from within other misbehav-
ing domains.

To add a foreign mapping to its address space,
a domain must present a validgrant refer-
ence to Xen in lieu of the page number. A
grant reference comprises the identity of the
domain that is granting mapping permission,
and an index into that domain’s privategrant
table. This table contains tuples of the form
(grant,D,P,R,U) which permit domainD to
map pageP into its address space; asserting
the boolean flagR restrictsD to read-only map-
pings. The flagU is written by Xen to indicate
whetherD currently mapsP (i.e., whether the
grant tuple isin use).

When Xen is presented with a grant reference
(A,G) by a domainB, it first searches for in-
dexG in domainA’s active grant table(AGT),
a table only accessible by Xen. If no match is
found, Xen reads the appropriate tuple from do-
main A’s grant table and checks thatT=grant



72 • Xen 3.0 and the Art of Virtualization

andD=B, and thatR=false if B is requesting a
writable mapping. Only if the validation checks
are successful will Xen copy the tuple into the
AGT and mark the grant tuple as in use.

Xen tracks grant references by associating a us-
age count with each AGT entry. When a foreign
mapping is created with reference to an existing
AGT entry, Xen increments its count. The grant
reference cannot be reallocated or reused by the
granting domain until the foreign domain de-
stroys all mappings that were created with ref-
erence to it.

Although it is clear that this mechanism allows
strict checking of foreign mappings when they
are created, it is less obvious how these map-
pings might be revoked. For example, if a
faulty IDD stops responding to service requests
then guest OSs could end up owning unusable
memory pages. We handle the possibility of
driver failure by taking a deadline-based ap-
proach: if a guest observes that a grant table
entry is still marked as in use when it deter-
mines that it ought to have been relinquished
(e.g., because it requested that the device chan-
nel should be destroyed), then it signals a po-
tential domain failure to the device manager.

The device manager checks whether the speci-
fied grant reference exists in the notifying do-
main’s AGT and, if so, sets a deadline by
which the suspect domain must relinquish the
stale mappings. If a registered deadline passes
but stale mappings still exist then Xen notifies
the device manager. At this point the device
manager may choose to destroy and restart the
driver, thereby forcibly reclaiming the foreign
mappings.

2.6 Descriptor Rings

I/O descriptor rings are used for asynchronous
transfers between a guest OS and an IDD. Ring

updates are based around two pairs of producer-
consumer indexes: the guest OS places service
requests onto the ring, advancing a request-
producer index, while the IDD removes these
requests for handling, advancing an associated
request-consumer index. Responses are queued
onto the same ring as requests, albeit with the
IDD as producer and the guest OS as consumer.
A unique identifier on each request/response al-
lows reordering if the IDD so desires.

The guest OS and IDD use a sharedinter-
domain event channel to send asynchronous
notifications of queued descriptors. An inter-
domain event channel is similar to the interrupt-
attached channels described in Section 2.2. The
main differences are that notifications are trig-
gered by the domain attached to the opposite
end of the channel (rather than Xen), and that
the channel isbidirectional: each end may in-
dependently notify or mask the other.

We decouple the production of requests or re-
sponses on a descriptor ring from the notifica-
tion of the other party. For example, in the case
of requests, a guest may enqueue multiple en-
tries before notifying the IDD; in the case of
responses, a guest can defer delivery of a noti-
fication event by specifying a threshold number
of responses. This allows each domain to in-
dependently balance its latency and throughput
requirements.

2.7 Data Transfer

Although storing I/O data directly within ring
descriptors is a suitable approach for low-
bandwidth devices, it does not scale to high-
performance devices with DMA capabilities.
When communicating with this class of de-
vice, data buffers are instead allocated out-of-
band by the guest OS and indirectly referenced
within I/O descriptors.



2005 Linux Symposium • 73

When programming a DMA transfer directly to
or from a hardware device, the IDD must first
pin the data buffer. We enforce driver isolation
by requiring the guest OS to pass a grant ref-
erence in lieu of the buffer address: the IDD
specifies this grant reference when pinning the
buffer. Xen applies the same validation rules to
pin requests as it does for address-space map-
pings. These include ensuring that the mem-
ory page belongs to the correct domain, and
that it isn’t attempting to circumvent memory-
management checks (for example, by request-
ing a device transfer directly into its page ta-
bles).

Returning to the example in Figure 3, the
guest’s data-transfer request includes a grant
referenceGR for a buffer pageP2. The request
is dequeued by the IDD which sends a pin re-
quest, incorporating GR, to Xen. Xen reads the
appropriate tuple from the guest’s grant table,
checks thatP2 belongs to the guest, and copies
the tuple into the AGT. The IDD receives the
address ofP2 in the pin response, and then pro-
grams the device’s DMA engine.

On systems with protection support in the
chipset (Section 2.3), pinning would trigger al-
location of an entry in the IOMMU. This is
the only modification required to enforce safe
DMA. Moreover, this modification affects only
Xen: the IDDs are unaware of the presence of
an IOMMU (in either case pin requests return
a bus address through which the device can di-
rectly access the guest buffer).

2.8 Device Sharing

Since Xen can simultaneously host many guest
OSs it is essential to consider issues arising
from device sharing. The control mechanisms
for managing device channels naturally sup-
port multiple channels to the same IDD. We

describe below how our block-device and net-
work IDDs support multiplexing of service re-
quests from different clients.

Within our block-device driver we service
batchesof requests from competing guests in
a simple round-robin fashion; these are then
passed to a standard elevator scheduler be-
fore reaching the disc controller. This bal-
ances good throughput with reasonably fair ac-
cess. We take a similar approach for network
transmission, where we implement a credit-
based scheduler allowing each device channel
to be allocated a bandwidth share of the form
x bytes everyy microseconds. When choosing
a packet to queue for transmission, we round-
robin schedule amongst all the channels that
have sufficient credit.

A shared high-performance network-receive
path requires careful design because, without
demultiplexing packets in hardware [2], it is not
possible to DMA directly into a guest-supplied
buffer. Instead of copying the packet into a
guest buffer after performing demultiplexing,
we insteadexchange ownershipof the page
containing the packet with an unused page pro-
vided by the guest OS. This avoids copying but
requires the IDD to queue page-sized buffers
at the network interface. When a packet is
received, the IDD immediately checks its de-
multiplexing rules to determine the destination
channel—if the guest has no pages queued to
receive the packet, it is dropped.

3 Supporting Unmodified OSes

Xen’s original goal was to provide fast virtu-
alization, which was achieved by ‘paravirtual-
izing’ guest OSes. The downside of paravirtu-
alization is that it requires modification of the
guest OS source code—an approach which is
untenable for closed-source operating systems.



74 • Xen 3.0 and the Art of Virtualization

The alternative, full virtualization of the hard-
ware platform, has traditionally been very diffi-
cult on the x86 processor architecture. How-
ever, new processor extensions promised by
AMD and Intel provide hardware assistance
which makes full virtualization much easier to
provide.

Preliminary support for Intel Virtualization
Technology for x86 processors (VT-x) is al-
ready checked into the Xen repository. This
provides a ‘virtual processor’ abstraction to the
guest OS which, for example, can transparently
notify Xen of any attempt to execute instruc-
tions that would modify privileged processor
state. While these hardware extensions make
transparent virtualization easier, Xen still bears
responsibility for device management and en-
forcing isolation of shared resources such as
CPU time and memory.

3.1 VT-x architecture overview

VT-x augments the x86 architecture with two
new forms of CPU operation: VMX root opera-
tion and VMX non-root operation. Xen runs in
VMX root operation, while guests run in VMX
non-root operation. Both forms of operation
support all four privilege levels (rings 0 through
3), allowing a guest OS to appear to run at its
usual ‘most privileged’ level. VMX root oper-
ation is similar to x86 without VT-x. Software
running in VMX non-root operation is depriv-
ileged in certain ways, regardless of privilege
level.

VT-x defines two new transitions: aVM en-
try that transitions from Xen root operation to
guest non-root operation, and aVM exitwhich
does the opposite transition. Both VM entries
and VM exits load CR3 (the base address of
the page-table hierarchy) allowing Xen and the
guest to run in different address spaces. VT-
x also defines a virtual-machine control struc-

ture (VMCS) that manages VM entries and ex-
its and defines processor behavior during non-
root execution.

Processor behavior changes substantially in
VMX non-root operation. Most importantly,
many instructions and events cause VM exits.
Some instructions cannot be executed in VMX
non-root operation because they cause VM
exits unconditionally; these include CPUID,
MOV from CR3, RDMSR, and WRMSR.
Other instructions, interrupts, and exceptions
can be configured to cause VM exits condition-
ally, using VM-execution control fields in the
VMCS.

VM entry loads processor state from the guest-
state area of the VMCS. Xen can optionally
configure VM entry to inject an interrupt or ex-
ception. The CPU effects this injection using
the guest IDT, just as if the injected event had
occurred immediately after VM entry. This fea-
ture removes the need for Xen to emulate de-
livery of these events. VM exits save processor
state into the guest-state area and load proces-
sor state from the host-state area. All VM exits
use a common entry point into Xen. To sim-
plify the design of Xen, every VM exit saves
into the VMCS detailed information specifying
the reason for the exit; many exits also record
an exit qualification, which provides further de-
tails.

3.2 VT-x Support in Xen

The three major components for adding support
of VT-x and running unmodified OS in Xen are:

1. Extensions to the Xen hypervisor

2. Device models that emulate the PC plat-
form

3. Administrator control panel



2005 Linux Symposium • 75

The hypervisor extensions involve adding sup-
port for the specific hardware features and in-
struction opcodes added by VT-x, and exten-
sions to the user-space control tools for build-
ing and controlling fully-virtualized guests.
Device models provide emulation of the PC
platform devices for a VMX domain. The
software models emulate all the hardware-level
programming interfaces that a normal device
driver uses to perform I/O operation, and sub-
mit requests to a physical device on the VMX
domain’s behalf.

QEMU and Bochs are two open source PC plat-
form emulators that provided most of the func-
tionality we needed for I/O emulation for VMX
domains. Our basic design has been to run the
device models in domain 0 user space and run
one process for each VMX domain. We needed
to remove all CPU emulation code from these
emulators and modify the code that emulated
physical memory (RAM). Normally, they allo-
cate a large array to emulate the physical mem-
ory. We modified the code to map all the phys-
ical memory allocated to the VMX domain.

An example of I/O request handling from VMX
guest is as follows:

1. VM exit due to an I/O access.

2. Xen decodes the instruction.

3. Xen constructs an I/O request describing
the event.

4. Xen sends the request to the device-model
process in domain 0.

5. When reading from a device register, the
VMX domain is blocked until a response
is received from the device model.

4 New Architectures

Xen was originally designed and implemented
to support the x86 architecture. As interest in
Xen has increased, several organisations have
expressed interest in using Xen as a common
hypervisor for other hardware platforms. The
last year has seen fervent development of ar-
chitectural support for both x86/64 and IA-64.

In addition to x86/64 and IA-64, ports of Xen
are underway to the IBM Power platform and
to both of the upcoming fully virtualized ver-
sions of x86, Intel’s VT (described in the pre-
vious section) and AMD’s Pacifica/SVM. Our
experience with IA-64 supports our belief that
Xen will successfully accommodate these new
architectures and any others that come along in
the future.

4.1 x86/64

When extending Xen to support the x86/64 ar-
chitecure, we kept in mind that the platform
is largely identical to x86/32, differing only in
some of the details of the processor architec-
ture. For example, processor registers are ex-
tended to 64 bits and the page-table format is
extended to support the larger address space.
Fortunately, the hardware platfrom is largely
identical: for example, sharing the same I/O
bus and chipset implementations.

This led us to implement x86/64 support as
a sub-architecture of the existing x86 target.
Large swathes of code are shared between sub-
architectures, with the main differences being
in assembly-code stubs and page-table manage-
ment.

From a guest perspective, the most interest-
ing change presented by x86/64 is the modi-
fied protection model. x86/64 provides very
limited segment-level protection which makes



76 • Xen 3.0 and the Art of Virtualization

it impossible to protect the hypervisor, running
in ring 0, from a guest kernel running in ring 1.
This architectural change necessitates running
both the guest kernel and applications in ring 3,
and raises the problem of protecting one from
the other.

The solution is to run the guest kernel in a dif-
ferent address space (i.e., on different page ta-
bles) from its applications. When forking a
new process, the guest kernel creates two new
page tables: one that is used in application
context, and the other in kernel context. The
kernel page table contain all the same map-
pings as the application page table but also in-
clude a mapping of the kernel address space.
All transitions between application and guest-
kernel contexts must pass via Xen, which au-
tomatically switches between the two page ta-
bles.

4.2 IA-64

As of this writing, Xen/ia64 is between its al-
pha release and beta release. All basic hy-
pervisor capability is present: Domain 0 runs
solidly as a ‘demoted’ guest OS, utilizing all
devices while booting to a full graphical con-
sole and executing all Linux/ia64 applications
unchanged. Multiple guest domains can be
launched, but virtual I/O functionality is not
finished so any unprivileged domain boots to
the point where init fails to find a root disk, then
panics and reboots in an infinite cycle. SMP
support is not yet present, either in the hypervi-
sor itself or in the guest.

Full functionality in Xen/ia64 is expected later
this year, but the port is sufficiently complete to
illustrate some similarities and differences that
establish credibility that Xen will prove widely
portable:

1. Hardware-walked page tables must be

carefully managed in Xen/x86 and, in-
deed, handling page tables is one of the
most complex parts of Xen, requiring a
fair amount of code in the hypervisor and
non-trivial changes in the paravirtualiza-
tion of guests. On ia64, hardware page-
table walking is still necessary for per-
formance, but can be much more easily
diverted to hypervisor-managed page ta-
bles. The difference is completely hidden
from common code and implemented in
the arch-specific layer.

2. Like the x86 architecture, ia64 is not
fully virtualizable—certain instructions
have different results when executed at
different privilege levels. Both Xen archi-
tectures ‘demote’ the guest OS and pro-
vide an interface to handle these privilege-
sensitive operations.

3. While the x86 has a small state vector, the
ia64 architecture has well over 500 regis-
ters and two stacks that must be carefully
managed for each thread. Linux solves
this elegantly with multiple state staging
areas and lazy save/restore to optimize
kernel entry and exit and thread switching.
Recognizing the similarity between Linux
threads and Xen domains allows most of
the Linux code to be directly reusable.

4. The page size on x86 is 4kB. Modern ver-
sions of x86 chips support a larger page
size, but its use is limited. IA-64 sup-
ports nine different page sizes and a guest
OS may use all of them simultaneously.
Thus, Xen/ia64 must manage this addi-
tional complexity. Again, this is safely
hidden in Xen through asm macros and
arch-specific modules.



2005 Linux Symposium • 77

5 Conclusion

In this paper, we have presented a brief
overview of the major new features in Xen 3.0
including VM relocation, device driver isola-
tion, support for unmodified operating systems,
and new hardware support for both x86/64 and
IA-64 processors. Xen is quickly maturing into
an enterprise-class VMM and is currently be-
ing used in production environments around the
globe.

References

[1] PCI Express base specification 1.0a.
PCI-SIG, 2002.

[2] I. Pratt and K. Fraser. Arsenic: A
User-Accessible Gigabit Ethernet
Interface. InProceedings of IEEE
INFOCOM-01, pages 67–76, April 2001.



78 • Xen 3.0 and the Art of Virtualization



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


