
Introduction to the InfiniBand Core Software

Bob Woodruff
Intel Corporation

robert.j.woodruff@intel.com

Sean Hefty
Intel Corporation

sean.hefty@intel.com

Roland Dreier
Topspin Communications

roland@topspin.com

Hal Rosenstock
Voltaire Corporation
halr@coltaire.com

Abstract

InfiniBand support was added to the kernel in
2.6.11. In this paper, we describe the vari-
ous modules and interfaces of the InfiniBand
core software and provide examples of how and
when to use them. The core software consists
of the host channel adapter (HCA) driver and a
mid-layer that abstracts the InfiniBand device
implementation specifics and presents a con-
sistent interface to upper level protocols, such
as IP over IB, sockets direct protocol, and the
InfiniBand storage protocols. The InfiniBand
core software is logically grouped into 5 ma-
jor areas: HCA resource management, memory
management, connection management, work
request and completion event processing, and
subnet administration. Physically, the core
software is currently contained within 6 ker-
nel modules. These include the Mellanox HCA
driver, ib_mthca.ko, the core verbs module,
ib_core.ko, the connection manager, ib_cm.ko,
and the subnet administration support modules,
ib_sa.ko, ib_mad.ko, ib_umad.ko. We will also
discuss the additional modules that are under
development to export the core software inter-
faces to userspace and allow safe direct access
to InfiniBand hardware from userspace.

1 Introduction

This paper describes the core software compo-
nents of the InfiniBand software that was in-
cluded in the linux 2.6.11 kernel. The reader is
referred to the architectural diagram and foils
in the slide set that was provided as part of the
paper’s presentation at the Ottawa Linux Sym-
posium. It is also assumed that the reader has
read at least chapters 3, 10, and 11 of Infini-
Band Architecture Specification [IBTA] and is
familiar with the concepts and terminology of
the InfiniBand Architecture. The goal of the pa-
per is not to educate people on the InfiniBand
Architecture, but rather to introduce the reader
to the APIs and code that implements the In-
finiBand Architecture support in Linux. Note
that the InfiniBand code that is in the kernel has
been written to comply with the InfiniBand 1.1
specification with some 1.2 extensions, but it is
important to note that the code is not yet com-
pletely 1.2 compliant.

The InfiniBand code is located in the ker-
nel tree under linux-2.6.11/drivers/

infiniband . The reader is encouraged to read
the code and header files in the kernel tree. Sev-
eral pieces of the InfiniBand stack that are in
the kernel contain good examples of how to use

• 271 •

272 • Introduction to the InfiniBand Core Software

the routines of the core software described in
this paper. Another good source of informa-
tion can be found at the www.openib.org web-
site. This is where the code is developed prior
to being submitted to the linux kernel mailing
list (lkml) for kernel inclusion. There are sev-
eral frequently asked question documents plus
email lists <openib-general@openib.
org> . where people can ask questions or sub-
mit patches to the InfinBand code.

The remainder of the paper provides a high
level overview of the mid-layer routines and
provides some examples of their usage. It is
targeted at someone that might want to write
a kernel module that uses the mid-layer or
someone interested in how it is used. The pa-
per is divided into several sections that cover
driver initialization and exit, resource manage-
ment, memory management, subnet adminis-
tration from the viewpoint of an upper level
protocol developer, connection management,
and work request and completion event pro-
cessing. Finally, the paper will present a sec-
tion on the user-mode infrastructure and how
one can safely use the InfiniBand resource di-
rectly from userspace applications.

2 Driver initialization and exit

Before using InfiniBand resources, kernel
clients must register with the mid-layer. This
also provides the way, via callbacks, for
the client to discover the available Infini-
Band devices that are present in the system.
To register with the InfiniBand mid-layer, a
client calls theib_register_client rou-
tine. The routine takes as a parameter a
pointer to aib_client structure, as defined
in linux-2.6.11/drivers/infiniband/

include/ib_verbs.h . The structure takes a
pointer to the client’s name, plus two function
pointers to callback routines that are invoked

when an InfiniBand device is added or removed
from the system. Below is some sample code
that shows how this routine is called:

static void my_add_device(
struct ib_device *device);

static void my_remove_device(
struct ib_device *device);

static struct ib_client my_client = {
.name = "my_name",
.add = my_add_device,
.remove = my_remove_device

};
static int __init my_init(void)
{

int ret;

ret = ib_register_client(
&my_client);

if (ret)
printk(KERN_ERR

"my ib_register_client failed\n");
return ret;

}
static void __exit my_cleanup(void)
{

ib_unregister_client(
&my_client);

}
module_init(my_init);
module_exit(my_cleanup);

3 InfiniBand resource management

3.1 Miscellaneous Query functions

The mid-layer provides routines that allow a
client to query or modify information about the
various InfiniBand resources.

ib_query_device
ib_query_port
ib_query_gid
ib_query_pkey

2005 Linux Symposium • 273

ib_modify_device
ib_modify_port

The ib_query_device routine allows a
client to retrieve attributes for a given hardware
device. The returneddevice_attr structure
contains device specific capabilities and limi-
tations, such as the maximum sizes for queue
pairs, completion queues, scatter gather entries,
etc., and is used when configuring queue pairs
and establishing connections.

The ib_query_port routine returns infor-
mation that is needed by the client, such as the
state of the port (Active or not), the local iden-
tifier (LID) assigned to the port by the subnet
manager, the Maximum Transfer Unit (MTU),
the LID of the subnet manager, needed for
sending SA queries, the partition table length,
and the maximum message size.

The ib_query_pkey routine allows the
client to retrieve the partition keys for a port.
Typically, the subnet manager only sets one
pkey for the entire subnet, which is the default
pkey.

The ib_modify_device and ib_modify_

port routines allow some of the device or port
attributes to be modified. Most ULPs do not
need to modify any of the port or device at-
tributes. One exception to this would be the
communication manager, which sets a bit in the
port capabilities mask to indicate the presence
of a CM.

Additional query and modify routines are dis-
cussed in later sections when a particular re-
source, such as queue pairs or completion
queues, are discussed.

3.2 Protection Domains

Protection domains are a first level of access
control provided by InfiniBand. Protection do-
mains are allocated by the client and associated

with subsequent InfiniBand resources, such as
queue pairs, or memory regions.

Protection domains allow a client to associate
multiple resources, such as queue pairs and
memory regions, within a domain of trust. The
client can then grant access rights for send-
ing/receiving data within the protection domain
to others that are on the Infinband fabric.

To allocate a protection domain, clients call the
ib_alloc_pd routine. The routine takes and
pointer to the device structure that was returned
when the driver was called back after register-
ing with the mid-layer. For example:

my_pd = ib_alloc_pd(device);

Once a PD has been allocated, it is used in sub-
sequent calls to allocate other resources, such
as creating address handles or queue pairs.

To free a protection domain, the client calls
ib_dealloc_pd , which is normally only
done at driver unload time after all of the other
resources associated with the PD have been
freed.

ib_dealloc_pd(my_pd);

3.3 Types of communication in InfiniBand

Several types of communication between
end-points are defined by the InfiniBand ar-
chitecture specification [IBTA]. These include
reliable-connected, unreliable-connected,
reliable-datagram, and unreliable datagrams.
Most clients today only use either unreliable
datagrams or reliable connected commu-
nications. An analogy in the IP network
stack would be that unreliable datagrams
are analogous to UDP packets, while a
reliable-connected queue pairs provide a

274 • Introduction to the InfiniBand Core Software

connection-oriented type of communication,
similar to TCP. But InfiniBand communication
is packet-based, rather than stream oriented.

3.4 Address handles

When a client wants to communicate via un-
reliable datagrams, the client needs to create
an address handle that contains the information
needed to send packets.

To create an address handle the client calls
the routineib_create_ah() . An example
code fragment is shown below:

struct ib_ah_attr ah_attr;
struct ib_ah *remote_ah;

memset(&ah_attr, 0, sizeof ah_attr);
ah_attr.dlid = remote_lid;
ah_attr.sl = service_level;
ah_attr.port_num = port->port_num;

remote_ah = ib_create_ah(pd, &ah_attr);

In the above example, the pd is the protection
domain, theremote_lid and service_
level are obtained from an SA path record
query, and theport_num was returned in the
device structure through theib_register_
client callback. Another way to get the
remote_lid and service_level infor-
mation is from a packet that was received from
a remote node.

There are also core verb APIs for destroying the
address handles and for retrieving and modify-
ing the address handle attributes.

ib_destroy_ah
ib_query_ah
ib_modify_ah

Some example code that callsib_create_
ah to create an address handle for a multicast
group can be found in the IPoIB network driver
for InfiniBand, and is located inlinux-2.6.

11/drivers/infiniband/ulp/ipoib .

3.5 Queue Pairs and Completion Queue
Allocation

All data communicated over InfiniBand is done
via queue pairs. Queue pairs (QPs) contain
a send queue, for sending outbound messages
and requesting RDMA and atomic operations,
and a receive queue for receiving incoming
messages or immediate data. Furthermore,
completion queues (CQs) must be allocated and
associated with a queue pair, and are used to re-
ceive completion notifications and events.

Queue pairs and completion queues are allo-
cated by calling theib_create_qp andib_
create_cq routines, respectively.

The following sample code allocates separate
completion queues to handle send and receive
completions, and then allocates a queue pair as-
sociated with the two CQs.

send_cq = ib_create_cq(device,
my_cq_event_handler,
NULL,
my_context,
my_send_cq_size);

recv_cq = ib_create_cq(device,
my_cq_event_handler,
NULL,
my_context,
my_recv_cq_size);

init_attr->cap.max_send_wr = send_cq_size;
init_attr->cap.max_recv_wr = recv_cq_size;
init_attr->cap.max_send_sge = LIMIT_SG_SEND;
init_attr->cap.max_recv_sge = LIMIT_SG_RECV;

init_attr->send_cq = send_cq;
init_attr->recv_cq = recv_cq;
init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr->qp_type = IB_QPT_RC;
init_attr->event_handler = my_qp_event_handler;

my_qp = ib_create_qp(pd, init_attr);

After a queue pair is created, it can be con-
nected to a remote QP to establish a connec-
tion. This is done using the QP modify routine
and the communication manager helper func-
tions described in a later section.

There are also mid-layer routines that allow de-
struction and release of QPs and CQs, along

2005 Linux Symposium • 275

with the routines to query and modify the queue
pair attributes and states. These additional core
QP and CQ support routines are as follows:

ib_modify_qp
ib_query_qp
ib_destroy_qp
ib_destroy_cq
ib_resize_cq

Note thatib_resize_cq is not currently im-
plemented in the mthca driver.

An example of kernel code that allocates QPs
and CQs for reliable-connected style of com-
munication is the SDP driver [SDP]. It can be
found in the subversion tree at openib.org, and
will be submitted for kernel inclusion at some
point in the near future.

4 InfiniBand memory management

Before a client can transfer data across Infini-
Band, it needs to register the corresponding
memory buffer with the InfiniBand HCA. The
InfiniBand mid-layer assumes that the kernel
or ULP has already pinned the pages and has
translated the virtual address to a Linux DMA
address, i.e., a bus address that can be used by
the HCA. For example, the driver could call
get_user_pages and thendma_map_sg
to get the DMA address.

Memory registration can be done in a couple of
different ways. For operations that do not have
a scatter/gather list of pages, there is a memory
region that can be used that has all of physical
memory pre-registered. This can be thought of
as getting access to the “Reserved L_key” that
is defined in the InfiniBand verbs extensions
[IBTA].

To get the memory region structure that has
the keys that are needed for data transfers, the
client calls theib_get_dma_mr routine, for
example:

mr = ib_get_dma_mr(my_pd,
IB_ACCESS_LOCAL_WRITE);

If the client has a list of pages that are not
physically contiguous but want to be virtually
contiguous with respect to the DMA opera-
tion, i.e., scatter/gather, the client can call the
ib_reg_phys_mr routine. For example,

*iova = &my_buffer1;

buffer_list[0].addr = dma_addr_buffer1;
buffer_list[0].size = buffer1_size;
buffer_list[1].addr = dma_addr_buffer2;
buffer_list[1].size = buffer2_size;

mr = ib_reg_phys_mr(my_pd,
buffer_list,
2,
IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE,
iova);

The mr structure that is returned contains the
necessary local and remote keys, lkey and
rkey, needed for sending/receiving messages
and performing RDMA operations. For exam-
ple, the combination of the returned iova and
the rkey are used by a remote node for RDMA
operations.

Once a client has completed all data transfers to
a memory region, e.g., the DMA is completed,
the client can release to the resources back to
the HCA using theib_dereg_mr routine, for
example:

ib_dereg_mr(mr);

There is also a verb,ib_rereg_phys_mr
that allows the client to modify the attributes of

276 • Introduction to the InfiniBand Core Software

a given memory region. This is similar to do-
ing a de-register followed by a re-register but
where possible the HCA reuses the same re-
sources rather than deallocating and then real-
locating new ones.

status = ib_rereg_phys_mr(mr,
mr_rereg_mask,
my_pd,
buffer_list,
num_phys_buf,
mr_access_flags,

iova_start);

There is also a set of routines that allow a tech-
nique called fast memory registration. Fast
Memory Registration, or FMR, was imple-
mented to allow the re-use of memory regions
and to reduce the overhead involved in regis-
tration and deregistration with the HCAs. Us-
ing the technique of FMR, the client typically
allocates a pool of FMRs during initialization.
Then when it needs to register memory with
the HCA, the client calls a routine that maps
the pages using one of the pre-allocated FMRs.
Once the DMA is complete, the client can un-
map the pages from the FMR and recycle the
memory region and use it for another DMA op-
eration. The following routines are used to al-
locate, map, unmap, and deallocate FMRs.

ib_alloc_fmr
ib_unmap_fmr
ib_map_phys_fmr
ib_dealloc_fmr

An example of coding using FMRs can be
found in the SDP [SDP] driver available at
openib.org .

NOTE: These FMRs are a Mellanox specific
implementation and are NOT the same as the
FMRs as defined by the 1.2 InfiniBand verbs

extensions [IBTA]. The FMRs that are imple-
mented are based on the Mellanox FMRs that
predate the 1.2 specification and so the develop-
ers deviated slightly from the InfiniBand speci-
fication in this area.

InfiniBand also has the concept of memory
windows [IBTA]. Memory windows are a way
to bind a set of virtual addresses and attributes
to a memory regions by posting an operation
to a send queue. It was thought that people
might want this dynamic binding/unbinding in-
termixed with their work request flow. How-
ever, it is currently not used, primarily because
of poor H/W performance in the existing HCA,
and thus is not implemented in the mthca driver
in Linux.

However, there are APIs defined in the mid-
layer for memory windows for when it is im-
plemented in mthca or some future HCA driver.
These are as follows:

ib_alloc_mw
ib_dealloc_mw

5 InfiniBand subnet administration

Communication with subnet administra-
tion(SA) is often needed to obtain information
for establishing communication or setting
up multicast groups. This is accomplished
by sending management datagram (MAD)
packets to the SA through InfiniBand special
QP 1 [IBTA]. The low level routines that
are needed to send/receive MADs along with
the critical data structures are defined in
linux-2.6.11/drivers/infiniband/

include/ib_mad.h .

Several helper functions have been imple-
mented for obtaining path record information
or joining multicast groups. These relieve

2005 Linux Symposium • 277

most clients from having to understand the
low level MAD routines. Subnet adminis-
tration APIs and data structures are located
in linux-2.6.11/drivers/infiniband/

include/ib_sa.h and the following sections
discuss their usage.

5.1 Path Record Queries

To establish connections, certain information is
needed, such as the source/destination LIDs,
service level, MTU, etc. This information
is found in a data structure known as a path
record, which contains all relevant informa-
tion of a path between a source and destina-
tion. Path records are managed by the In-
finiBand subnet administrator(SA). To obtain a
path record, the client can use the helper func-
tion:

ib_sa_path_rec_get

This function takes the device structure, re-
turned by the register routine callback, the local
InfiniBand port to use for the query, a timeout
value, which is the time to wait before giving
up on the query, and two masks,comp_mask
and gfp_mask . The comp_mask specifies
the components of theib_sa_path_rec to
perform the query with. Thegfp_mask is
the mask used for internal memory alloca-
tions, e.g., the ones passed to kmalloc,GFP_
KERNEL, GFP_USER, GFP_ATOMIC, GFP_
USER. The**query parameter is a returned
identifier of the query that can be used to
cancel it, if needed. For example, given a
source and destination InfiniBand global identi-
fier (sgid/dgid) and the partition key, here is an
example query call taken from the SDP [SDP]
code.

query_id = ib_sa_path_rec_get(

info->ca,
info->port,
&info->path,
(IB_SA_PATH_REC_DGID |

IB_SA_PATH_REC_SGID |
IB_SA_PATH_REC_PKEY |

IB_SA_PATH_REC_NUMB_PATH),
info->sa_time,
GFP_KERNEL,
sdp_link_path_rec_done,
info,
&info->query);

if (result < 0) {
sdp_dbg_warn(NULL,

"Error <%d> restarting path query",
result);

}

In the above example, when the query com-
pletes, or times-out, the client is called back
at the provided callback routine,sdp_link_

path_rec_done . If the query succeeds, the
path record(s) information requested is re-
turned along with the context value that was
provided with the query.

If the query times out, the client can retry the
request by calling the routine again.

Note that in the above example, the caller
must provide the DGID, SGID, and PKEY
in the info->path structure, In the SDP
example, theinfo->path.dgid , info->
path.sgid , and info->path.pkey are
set in the SDP routinedo_link_path_
lookup .

5.2 Cancelling SA Queries

If the client wishes to cancel an SA query, the
client uses the returned**query parameter
and query function return value (query id), e.g.,

ib_sa_cancel_query(
query_id,
query);

278 • Introduction to the InfiniBand Core Software

5.3 Multicast Groups

Multicast groups are administered by the sub-
net administrator/subnet manager, which con-
figure InfiniBand switches for the multicast
group. To participate in a multicast group, a
client sends a message to the subnet adminis-
trator to join the group. The APIs used to do
this are shown below:

ib_sa_mcmember_rec_set
ib_sa_mcmember_rec_delete
ib_sa_mcmember_rec_query

The ib_sa_mcmember_rec_set routine
is used to create and/or join the multicast group
and the ib_sa_mcmember_rec_delete
routine is used to leave a multicast group.
The ib_sa_mcmember_rec_query rou-
tine can be called get information on avail-
able multicast groups. After joining the mul-
ticast group, the client must attach a queue
pair to the group to allow sending and receiv-
ing multicast messages. Attaching/detaching
queue pairs from multicast groups can be done
using the API shown below:

ib_attach_mcast
ib_detach_mcast

The gid and lid in these routines are the mul-
ticast gid(mgid) and multicast lid (mlid) of
the group. An example of using the multi-
cast routines can be found in the IP over IB
code located inlinux-2.6.11/drivers/

infiniband/ulp/ipoib .

5.4 MAD routines

Most upper level protocols do not need to send
and receive InfiniBand management datagrams

(MADs) directly. For the few operations that
require communication with the subnet man-
ager/subnet administrator, such as path record
queries or joining multicast groups, helper
functions are provided, as discussed in an ear-
lier section.

However, for some modules of the mid-layer
itself, such as the communications manager,
or for developers wanting to implement man-
agement agents using the InfiniBand special
queue pairs, MADs may need to be sent
and received directly. An example might be
someone that wanted to tunnel IPMI [IPMI]
or SNMP [SNMP] over InfiniBand for re-
mote server management. Another exam-
ple is handling some vendor-specific MADs
that are implemented by a specific Infini-
Band vendor. The MAD routines are defined
in linux-2.6.11/drivers/infiniband/

include/ib_mad.h .

Before being allowed to send or receive MADs,
MAD layer clients must register an agent with
the MAD layer using the following routines.
The ib_register_mad_snoop routine can
be used to snoop MADs, which is useful for
debugging.

ib_register_mad_agent
ib_unregister_mad_agent
ib_register_mad_snoop

After registering with the MAD layer, the MAD
client sends and receives MADs using the fol-
lowing routines.

ib_post_send_mad
ib_coalesce_recv_mad
ib_free_recv_mad
ib_cancel_mad
ib_redirect_mad_qp
ib_process_mad_wc

2005 Linux Symposium • 279

The ib_post_send_mad routine allows the
client to queue a MAD to be sent. After a
MAD is received, it is given to a client through
their receive handler specified when register-
ing. When a client is done processing an in-
coming MAD, it frees the MAD buffer by call-
ing ib_free_recv_mad . As one would ex-
pect, theib_cancel_mad routine is used to
cancel an outstanding MAD request.

ib_coalesce_recv_mad is a place-holder
routine related to the handling of MAD seg-
mentation and reassembly. It will copy re-
ceived MAD segments into a single data buffer,
and will be implemented once the InfiniBand
reliable-multi-packet-protocol (RMPP) support
is added.

Similarly, the routineib_redirect_mad_
qp and the routineib_process_mad_wc
are place holders for supporting QP redirec-
tion, but are not currently implemented. QP re-
direction permits a management agent to send
and receive MADs on a QP other than the
GSI QP (QP 1). As an example, a protocol
which was data intensive could use QP redi-
rection to send and receive management data-
grams on their own QP, avoiding contention
with other users of the GSI QP, such as connec-
tion management or SA queries. In this case,
the client can re-redirect a particular Infini-
Band management class to a dedicated QP us-
ing theib_redirect_mad_qp routine. The
ib_process_mad_wc routine would then
be used to complete or continue processing a
previously started MAD request on the redi-
rected QP.

6 InfiniBand connection manage-
ment

The mid-layer provides several helper func-
tions to assist with establishing connec-
tions. These are defined in the header file,

linux-2.6.11/drivers/infiniband/

include/ib_cm.h Before initiating a con-
nection request, the client must first register
a callback function with the mid-layer for
connection events.

ib_create_cm_id
ib_destroy_cm_id

The ib_create_id routine creates a com-
munication id and registers a callback handler
for connection events. Theib_destroy_
cm_id routine can be used to free the commu-
nication id and de-register the communication
callback routine after the client is finished us-
ing their connections.

The communication manager implements a
client/server style of connection establishment,
using a three-way handshake between the client
and server. To establish a connection, the server
side listens for incoming connection requests.
Clients connect to this server by sending a con-
nection request. After receiving the connection
request, the server will send a connection re-
sponse or reject message back to the client. A
client completes the connection setup by send-
ing a ready to use (RTU) message back to the
server. The following routines are used to ac-
complish this:

ib_cm_listen
ib_send_cm_req
ib_send_cm_rep
ib_send_cm_rtu
ib_send_cm_rej
ib_send_cm_mra
ib_cm_establish

The communication manager is responsible for
retrying and timing out connection requests.
Clients receiving a connection request may re-
quire more time to respond to a request than the

280 • Introduction to the InfiniBand Core Software

timeout used by the sending client. For exam-
ple, a client tries to connect to a server that pro-
vides access to disk storage array. The server
may require several seconds to ready the drives
before responding to the client. To prevent the
client from timing out its connection request,
the server would use theib_send_cm_mra
routine to send a message received acknowl-
edged (MRA) to notify the client that the re-
quest was received and that a longer timeout is
necessary.

After a client sends the RTU message, it can be-
gin transferring data on the connection. How-
ever, since CM messages are unreliable, the
RTU may be delayed or lost. In such cases,
receiving a message on the connection notifies
the server that the connection has been estab-
lished. In order for the CM to properly track
the connection state, the server callsib_cm_
establish to notify the CM that the connec-
tion is now active.

Once a client is finished with a connection,
it can disconnect using the disconnect request
routine (ib_send_cm_dreq) shown below.
The recipient of a disconnect request sends a
disconnect reply.

ib_send_cm_dreq
ib_send_cm_drep

There are two routines that support path migra-
tion to an alternate path. These are:

ib_send_cm_lap
ib_send_cm_apr

The ib_send_cm_lap routine is used to re-
quest that an alternate path be loaded. The
ib_send_cm_apr routine sends a response
to the alternative path request, indicating if the
alternate path was accepted.

6.1 Service ID Queries

InfiniBand provides a mechanism to allow ser-
vices to register their existence with the subnet
administrator. Other nodes can then query the
subnet administrator to locate other nodes that
have this service and get information needed to
communicate with the other nodes. For exam-
ple, clients can discover if a node contains a
specific UD service. Given the service ID, the
client can discover the QP number and QKey
of the service on the remote node. This can
then be used to send datagrams to the remote
service. The communication manager provides
the following routines to assist in service ID
resolution.

ib_send_cm_sidr_req
ib_send_cm_sidr_rep

7 InfiniBand work request and
completion event processing

Once a client has created QPs and CQs, reg-
istered memory, and established a connec-
tion or set up the QP for receiving data-
grams, it can transfer data using the work
request APIs. To send messages, perform
RDMA reads or writes, or perform atomic
operations, a client posts send work request
elements (WQE) to the send queue of the
queue pair. The format of the WQEs along
with other critical data structures are located
in linux-2.6.11/drivers/infiniband/

include/ib_verbs.h . To allow data to
be received, the client must first post receive
WQEs to the receive queue of the QP.

ib_post_send
ib_post_recv

2005 Linux Symposium • 281

The post routines allow the client to post a list
of WQEs that are linked via a linked list. If
the format of WQE is bad and the post routine
detects the error at post time, the post routines
return a pointer to the bad WQE.

To process completions, a client typically sets
up a completion callback handler when the
completion queue (CQ) is created. The client
can then callib_req_notify_cq to request
a notification callback on a given CQ. The
ib_req_ncomp_notif routine allows the
completion to be delivered after n WQEs have
completed, rather than receiving a callback af-
ter a single one.

ib_req_notify_cq
ib_req_ncomp_notif

The mid-layer also provides routines for
polling for completions and peeking to see how
many completions are currently pending on the
completion queue. These are:

ib_poll_cq
ib_peek_cq

Finally, there is the possibility that the client
might receive an asynchronous event from the
InfiniBand device. This happens for certain
types of errors or ports coming online or going
offline. Readers should refer to section 11.6.3
of the InfiniBand specification [IBTA] for a list
of possible asynchronous event types. The mid-
layer provides the following routines to register
for asynchronous events.

ib_register_event_handler
ib_unregister_event_handler

8 Userspace InfiniBand Access

The InfiniBand architecture is designed so that
multiple userspace processes can share a sin-
gle InfiniBand adapter at the same time, with
each the process using a private context so that
fast path operation can access the adapter hard-
ware directly without requiring the overhead of
a system call or a copy between kernel space
and userspace.

Work is currently underway to add this sup-
port to the Linux InfiniBand stack. A kernel
moduleib_uverbs.ko implements charac-
ter special devices that are used for control path
operations, such as allocating userspace con-
texts and pinning userspace memory as well
as creating InfiniBand resources such as queue
pairs and completion queues. On the userspace
side, a library called libibverbs will provide an
API in userspace similar to the kernel API de-
scribed above.

In addition to adding support for accessing the
verbs from userspace, a kernel module (ib_
umad.ko) allows access to MAD services
from userspace.

There also now exists a kernel module to proxy
CM services into userspace. The kernel module
is calledib_ucm.ko .

As the userspace infrastructure is still under
construction, it has not yet been incorporated
into the main kernel tree, but it is expected to
be submitted to lkml in the near future. Peo-
ple that want get early access to the code can
download it from the InfiniBand subversion de-
velopment tree available fromopenib.org .

9 Acknowledgments

We would like to acknowledge the United
States Department of Energy for their fund-

282 • Introduction to the InfiniBand Core Software

ing of InfiniBand open source work and for
their computing resources used to host the
openib.org web site and subversion data
base. We would also like to acknowledge the
DOE for their work in scale-up testing of the
InfiniBand code using their large clusters.

We would also like to acknowledge all of the
companies of theopenib.org alliance that
have applied resources to theopenib.org
InfiniBand open source project.

Finally we would like the acknowledge the help
of all of the individuals in the Linux community
that have submitted patches, provided code re-
views, and helped with testing to ensure the In-
finiBand code is stable.

10 Availability

The latest stable release of the InfiniBand code
is available in the Linux releases (starting in
2.6.11) available fromkernel.org .

ftp://kernel.org/pub

For those that want to track the latest Infini-
Band development tree, it is located in a sub-
version database at openib.org.

svn checkout
https://openib.org/svn/gen2

References

[IBTA] The InfiniBand Architecture
Specification, Vol. 1, Release 1.2
http://www.ibta.org

[SDP] The SDP driver, developed by Libor
Michalek
http://www.openib.org

[IPMI] Intelligent Platform Management
Interface
http://developer.intel.com

[SNMP] Simple Network Management
Protocol
http://www.ietf.org

[LJ] May 2005 Linux Journal—InfiniBand
and Linux
http://www.linuxjournal.com

Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

