
Flow-based network accounting with Linux

Harald Welte
netfilter core team / hmw-consulting.de / Astaro AG

laforge@netfilter.org

Abstract

Many networking scenarios require some form
of network accounting that goes beyond some
simple packet and byte counters as available
from the ‘ifconfig’ output.

When people want to do network accouting, the
past and current Linux kernel didn’t provide
them with any reasonable mechanism for doing
so.

Network accounting can generally be done in
a number of different ways. The traditional
way is to capture all packets by some userspace
program. Capturing can be done via a num-
ber of mechanisms such asPF_PACKETsock-
ets,mmap() ed PF_PACKET, ipt_ULOG , or
ip_queue . This userspace program then ana-
lyzes the packets and aggregates the result into
per-flow data structures.

Whatever mechanism used, this scheme has a
fundamental performance limitation, since all
packets need to be copied and analyzed by a
userspace process.

The author has implemented a different ap-
proach, by which the accounting information is
stored in the in-kernel connection tracking table
of the ip_conntrack stateful firewall state
machine. On all firewalls, that state table has to
be kept anyways—the additional overhead in-
troduced by accounting is minimal.

Once a connection is evicted from the state ta-
ble, its accounting relevant data is transferred
to userspace to a special accounting daemon for
further processing, aggregation and finally stor-
age in the accounting log/database.

1 Network accounting

Network accounting generally describes the
process of counting and potentially summariz-
ing metadata of network traffic. The kind of
metadata is largely dependant on the particular
application, but usually includes data such as
numbers of packets, numbers of bytes, source
and destination ip address.

There are many reasons for doing accounting
of networking traffic, among them

• transfer volume or bandwisth based billing

• monitoring of network utilization, band-
width distribution and link usage

• research, such as distribution of traffic
among protocols, average packet size, . . .

2 Existing accounting solutions for
Linux

There are a number of existing packages to do
network accounting with Linux. The follow-

• 265 •



266 • Flow-based network accounting with Linux

ing subsections intend to give a short overview
about the most commonly used ones.

2.1 nacctd

nacctd also known asnet-acct is proba-
bly the oldest known tool for network account-
ing under Linux (also works on other Unix-
like operating systems). The author of this pa-
per has usednacctd as an accounting tool
as early as 1995. It was originally developed
by Ulrich Callmeier, but apparently abandoned
later on. The development seems to have con-
tinued in multiple branches, one of them being
the netacct-mysql1 branch, currently at version
0.79rc2.

Its principle of operation is to use anAF_

PACKETsocket vialibpcap in order to cap-
ture copies of all packets on configurable net-
work interfaces. It then does TCP/IP header
parsing on each packet. Summary information
such as port numbers, IP addresses, number of
bytes are then stored in an internal table for
aggregation of successive packets of the same
flow. The table entries are evicted and stored
in a human-readable ASCII file. Patches ex-
ist for sending information directly into SQL
databases, or saving data in machine-readable
data format.

As a pcap-based solution, it suffers from the
performance penalty of copying every full
packet to userspace. As a packet-based solu-
tion, it suffers from the penalty of having to in-
terpret every single packet.

2.2 ipt_LOG based

The Linux packet filtering subsystem iptables
offers a way to log policy violations via the

1http://netacct-mysql.gabrovo.
com

kernel message ring buffer. This mechanism
is calledipt_LOG (or LOG target ). Such
messages are then further processed byklogd
and syslogd , which put them into one or
multiple system log files.

As ipt_LOG was designed for logging policy
violations and not for accounting, its overhead
is significant. Every packet needs to be inter-
preted in-kernel, then printed in ASCII format
to the kernel message ring buffer, then copied
from klogd to syslogd, and again copied into
a text file. Even worse, most syslog installa-
tions are configured to write kernel log mes-
sages synchronously to disk, avoiding the usual
write buffering of the block I/O layer and disk
subsystem.

To sum up and anlyze the data, often custom
perl scripts are used. Those perl scripts have to
parse the LOG lines, build up a table of flows,
add the packet size fields and finally export the
data in the desired format. Due to the inefficient
storage format, performance is again wasted at
analyzation time.

2.3 ipt_ULOG based (ulogd, ulog-acctd)

The iptablesULOG target is a more effi-
cient version of theLOG target described
above. Instead of copying ascii messages via
the kernel ring buffer, it can be configured to
only copies the header of each packet, and
send those copies in large batches. A special
userspace process, normally ulogd, receives
those partial packet copies and does further in-
terpretation.

ulogd 2 is intended for logging of security vi-
olations and thus resembles the functionality of
LOG. it creates one logfile entry per packet. It

2http://gnumonks.org/projects/
ulogd



2005 Linux Symposium • 267

supports logging in many formats, such as SQL
databases or PCAP format.

ulog-acctd 3 is a hybrid betweenulogd
and nacctd . It replaces thenacctd libp-
cap/PF_PACKET based capture with the more
efficient ULOG mechanism.

Compared toipt_LOG , ipt_ULOG reduces
the amount of copied data and required ker-
nel/userspace context switches and thus im-
proves performance. However, the whole
mechanism is still intended for logging of se-
curity violations. Use for accounting is out of
its design.

2.4 iptables based (ipac-ng)

Every packet filtering rule in the Linux packet
filter (iptables , or even its predecessor
ipchains ) has two counters: number of
packets and number of bytes matching this par-
ticular rule.

By carefully placing rules with no target (so-
calledfallthrough) rules in the packetfilter rule-
set, one can implement an accounting setup,
i.e., one rule per customer.

A number of tools exist to parse the iptables
command output and summarized the coun-
ters. The most commonly used package is
ipac-ng 4. It supports advanced features such
as storing accounting data in SQL databases.

The approach works quite efficiently for small
installations (i.e., small number of accounting
rules). Therefore, the accounting granularity
can only be very low. One counter for each
single port number at any given ip address is
certainly not applicable.

3http://alioth.debian.org/
projects/pkg-ulog-acctd/

4http://sourceforge.net/
projects/ipac-ng/

2.5 ipt_ACCOUNT (iptaccount)

ipt_ACCOUNT5 is a special-purpose iptables
target developed by Intra2net AG and avail-
able from the netfilter project patch-o-matic-ng
repository. It requires kernel patching and is
not included in the mainline kernel.

ipt_ACCOUNT keeps byte counters per IP
address in a given subnet, up to a ‘/8’ net-
work. Those counters can be read via a special
iptaccount commandline tool.

Being limited to local network segments up to
‘/8’ size, and only having per-ip granularity are
two limiteations that defeatipt_ACCOUNT as
a generich accounting mechainism. It’s highly-
optimized, but also special-purpose.

2.6 ntop (including PF_RING)

ntop 6 is a network traffic probe to show
network usage. It useslibpcap to cap-
ture the packets, and then aggregates flows in
userspace. On a fundamental level it’s there-
fore similar to whatnacctd does.

From the ntop project, there’s alsonProbe , a
network traffic probe that exports flow based in-
formation in Cisco NETFLOW v5/v9 format.
It also contains support for the upcoming IETF
IPFIX7 format.

To increase performance of the probe, the au-
thor (Luca Deri) has implementedPF_RING8,
a new zero-copy mmap()ed implementation for

5http://www.intra2net.com/
opensource/ipt_account/

6http://www.ntop.org/ntop.html
7IP Flow Information Export

http://www.ietf.org/html.charters/
ipfix-charter.html

8http://www.ntop.org/PF_RING.
html



268 • Flow-based network accounting with Linux

packet capture. There is a libpcap compatibil-
ity layer on top, so any pcap-using application
can benefit fromPF_RING.

PF_RING is a major performance improve-
ment, please look at the documentation and the
paper published by Luca Deri.

However, ntop / nProbe / PF_RING are
all packet-based accounting solutions. Every
packet needs to be analyzed by some userspace
process—even if there is no copying involved.
Due to PF_RING optimiziation, it is probably
as efficient as this approach can get.

3 New ip_conntrack based ac-
counting

The fundamental idea is to (ab)use the connec-
tion tracking subsystem of the Linux 2.4.x /
2.6.x kernel for accounting purposes. There are
several reasons why this is a good fit:

• It already keeps per-connection state in-
formation. Extending this information to
contain a set of counters is easy.

• Lots of routers/firewalls are already run-
ning it, and therefore paying its per-
formance penalty for security reasons.
Bumping a couple of counters will intro-
duce very little additional penalty.

• There was already an (out-of-tree) system
to dump connection tracking information
to userspace, called ctnetlink.

So given that a particular machine was already
running ip_conntrack , adding flow based
acconting to it comes almost for free. I do not
advocate the use ofip_conntrack merely
for accounting, since that would be again a
waste of performance.

3.1 ip_conntrack_acct

ip_conntrack_acct is how the in-kernel
ip_conntrack counters are called. There is
a set of four counters: numbers of packets and
bytes for original and reply direction of a given
connection.

If you configure a recent (>= 2.6.9) kernel,
it will prompt you for CONFIG_IP_NF_CT_

ACCT. By enabling this configuration option,
the per-connection counters will be added, and
the accounting code will be compiled in.

However, there is still no efficient means of
reading out those counters. They can be ac-
cessed viacat /proc/net/ip_conntrack, but that’s
not a real solution. The kernel iterates over
all connections and ASCII-formats the data.
Also, it is a polling-based mechanism. If the
polling interval is too short, connections might
get evicted from the state table before their fi-
nal counters are being read. If the interval is too
small, performance will suffer.

To counter this problem, a combination of con-
ntrack notifiers and ctnetlink is being used.

3.2 conntrack notifiers

Conntrack notifiers use the core kernel no-
tifier infrastructure (struct notifier_
block ) to notify other parts of the kernel about
connection tracking events. Such events in-
clude creation, deletion and modification of
connection tracking entries.

The conntrack notifiers can help us
overcome the polling architecture. If we’d only
listen toconntrack deleteevents, we would al-
ways get the byte and packet counters at the end
of a connection.

However, the events are in-kernel events and
therefore not directly suitable for an account-
ing application to be run in userspace.



2005 Linux Symposium • 269

3.3 ctnetlink

ctnetlink (short form for conntrack
netlink) is a mechanism for passing connection
tracking state information between kernel and
userspace, originally developed by Jay Schulist
and Harald Welte. As the name implies, it uses
Linux AF_NETLINK sockets as its underlying
communication facility.

The focus ofctnetlink is to selectively read
or dump entries from the connection tracking
table to userspace. It also allows userspace pro-
cesses to delete and create conntrack entries as
well asconntrack expectations.

The initial nature ofctnetlink is there-
fore again polling-based. An userspace process
sends a request for certain information, the ker-
nel responds with the requested information.

By combining conntrack notifiers
with ctnetlink , it is possible to register a
notifier handler that in turn sendsctnetlink
event messages down theAF_NETLINK socket.

A userspace process can now listen for such
DELETEevent messages at the socket, and put
the counters into its accounting storage.

There are still some shortcomings inherent to
thatDELETEevent scheme: We only know the
amount of traffic after the connection is over.
If a connection lasts for a long time (let’s say
days, weeks), then it is impossible to use this
form of accounting for any kind of quota-based
billing, where the user would be informed (or
disconnected, traffic shaped, whatever) when
he exceeds his quota. Also, the conntrack en-
try does not contain information about when
the connection started—only the timestamp of
the end-of-connection is known.

To overcome limitation number one, the ac-
counting process can use a combined event and

polling scheme. The granularity of accounting
can therefore be configured by the polling in-
terval, and a compromise between performance
and accuracy can be made.

To overcome the second limitation, the ac-
counting process can also listen forNEW
event messages. By correlating theNEW and
DELETEmessages of a connection, accounting
datasets containign start and end of connection
can be built.

3.4 ulogd2

As described earlier in this paper,ulogd is a
userspace packet filter logging daemon that is
already used for packet-based accounting, even
if it isn’t the best fit.

ulogd2 , also developed by the author of this
paper, takes logging beyond per-packet based
information, but also includes support for per-
connection or per-flow based data.

Instead of supporting onlyipt_ULOG in-
put, a number of interpreter and output plug-
ins, ulogd2 supports a concept calledplugin
stacks. Multiple stacks can exist within one
deamon. Any such stack consists out of plu-
gins. A plugin can be a source, sink or filter.

Sources acquire per-packet or per-connection
data from ipt_ULOG or ip_contnrack_
acct .

Filters allow the user to filter or aggregate in-
formation. Filtering is requird, since there
is no way to filter the ctnetlink event mes-
sages within the kernel. Either the function-
ality is enabled or not. Multiple connections
can be aggregated to a larger, encompassing
flow. Packets could be aggregated to flows (like
nacctd ), and flows can be aggregated to even
larger flows.



270 • Flow-based network accounting with Linux

Sink plugins store the resulting data to some
form of non-volatile storage, such as SQL
databases, binary or ascii files. Another sink
is a NETFLOW or IPFIX sink, exporting in-
formation in industy-standard format for flow
based accounting.

3.5 Status of implementation

ip_conntrack_acct is already in the ker-
nel since 2.6.9.

ctnetlink and the conntrack event
notifiers are considered stable and will be
submitted for mainline inclusion soon. Both
are available from the patch-o-matic-ng reposi-
tory of the netfilter project.

At the time of writing of this paper,ulogd2
development was not yet finished. How-
ever, the ctnetlink event messages can already
be dumped by the use of the “conntrack”
userspace program, available from the netfilter
project.

The “conntrack” prorgram can listen to the
netlink event socket and dump the information
in human-readable form (one ASCII line per ct-
netlink message) to stdout. Custom accounting
solutions can read this information from stdin,
parse and process it according to their needs.

4 Summary

Despite the large number of available account-
ing tools, the author is confident that inventing
yet another one is worthwhile.

Many existing implementations suffer from
performance issues by design. Most of them
are very special-purpose. nProbe/ntop together
with PF_RING are probably the most universal

and efficient solution for any accounting prob-
lem.

Still, the new ip_conntrack_acct ,
ctnetlink based mechanism described in
this paper has a clear performance advantage if
you want to do acconting on your Linux-based
stateful packetfilter—which is a common case.
The firewall is suposed to be at the edge of
your network, exactly where you usually do
accounting of ingress and/or egress traffic.



Proceedings of the
Linux Symposium

Volume Two

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


