
Accelerating Network Receive Processing
Intel I/O Acceleration Technology

Andrew Grover
Intel Corporation

andrew.grover@intel.com

Christopher Leech
Intel Corporation

christopher.leech@intel.com

Abstract

Intel R© I/O Acceleration Technology (I/OAT) is
a set of features designed to improve network
performance and lower CPU utilization. This
paper discusses the implementation of Linux
support for the three features in the network
controller and platform silicon that make up
I/OAT. It also covers the bottlenecks in network
receive processing that these features address,
and describes I/OAT’s impact on the network
stack.

1 Introduction

As network technology has improved rapidly
over the past ten years, a significant gap has
opened between the CPU overhead for sending
and for receiving packets. There are two key
technologies that allow the sending of packets
to be much less CPU-intensive than receiving
packets.

First, TCP segmentation offload (TSO) allows
the OS to pass a buffer larger than the con-
nection’s Maximum Transmission Unit (MTU)
size to the network controller. The controller
then segments the buffer into individual Eth-
ernet packets, attaches the proper protocol
headers, and transmits. Without TSO, each

MTU-sized data buffer must be passed to the
controller individually, which is more CPU-
intensive.

Second, data to be transmitted need not even
be touched by the CPU, allowing zero-copy
operation. Using thesendfile() interface,
the kernel does not need to copy the user data
into networking buffers, but can point to pages
pinned in the page cache as the source of the
data. This also does not pollute the CPU cache
with data that is not likely to be used again, and
lowers the CPU cycles needed to send a packet.

However, neither of the above optimizations
can be applied to improve receive performance.
I/OAT attempts to alleviate the additional over-
head of receive packet processing with the ad-
dition of three additional features:

1. Split headers

2. Multiple receive queues

3. DMA copy offload engine

Each of these is targeted to solve a partic-
ular bottleneck in receive processing. They
should help to alleviate receive processing
overhead issues by allowing better network re-
ceive throughput and/or lower CPU utilization.
Each can be implemented without requiring
radical changes to the way the Linux network
stack currently works.

• 281 •

282 • Accelerating Network Receive Processing

2 Split Headers

For transmission over the network, several lay-
ers of headers are attached to the actual appli-
cation data. One common example consists of
a TCP header, an IP header, and an Ethernet
header, the former each in turn wrapped by the
latter. (This is a gross simplification of the va-
rieties of network headers, made for the sake
of convenience.) When receiving a packet, at a
minimum the network controller only must ex-
amine the Ethernet header, and all the rest of the
packet can be treated as opaque data. There-
fore, when the controller DMA transfers a re-
ceived packet into a buffer, it typically transfers
the TCP/IP and Ethernet headers along with the
actual application data into a single buffer.

Recognizing higher-level protocol headers can
allow the controller to perform certain opti-
mizations. For example, all modern controllers
recognize TCP and IP headers and use this
knowledge to perform checksum validation, of-
floading this task from the OS’s network stack.

I/OAT adds support for split headers. Using
this capability, the controller can partition the
packet between the headers and the data, and
copy these into two separate buffers. This has
several advantages. First, it allows both the
header and the data to be optimally aligned.
Second, it allows the network data buffer to
consist of a small slab-allocated header buffer
plus a larger, page-allocated data buffer. Sur-
prisingly, making these two allocations is faster
than one large slab allocation, due to how the
buddy allocator works. Third, split header sup-
poer results in better cache utilization by not
polluting the CPU’s cache with any application
data during network processing.

3 Multiple Receive Queues

While the processing of large MTU-sized pack-
ets is not generally CPU limited, receiving
many small packets requires additional pro-
cessing that can fully tax the CPU, resulting in a
bottleneck. Even on a system with many CPUs,
this may limit throughput, since processing for
a network controller occurs on a single CPU—
the one which handled the controller’s inter-
rupt.

Multiple receive queues allow network process-
ing to be distributed among more than one
CPU. This improves utilization of the available
system resources, and results in higher small-
packet throughput by alleviating the CPU bot-
tleneck.

The next-generation Intel network controller
has multiple receive queues. The queue for a
given packet is chosen by computing a hash of
certain fields in its protocol headers. This re-
sults in all packets for a single TCP stream be-
ing placed on the same queue.

After packets are received and an interrupt
generated, the interrupt service routine uses
a newly-added function calledsmp_call_
async_mask() to send inter-processor inter-
rupts (IPIs) to the two CPUs that have been
configured to handle the processing for each
queue:

struct call_async_data_struct {
void (∗func) (void ∗info);

void ∗info;

cpumask_t cpumask;

atomic_t count;

struct list_head node;

};

int smp_call_async_mask(

struct call_async_data_struct

∗call_data);

2005 Linux Symposium • 283

The IPI runs a function that starts NAPI polling
on each CPU, using a hidden polling netdev.

The existing mechanism for running a function
on other CPUs,smp_call_function() ,
cannot be called from interrupt context; waits
for the function to complete; and runs the
function on all CPUs, instead of allowing the
called CPUs to be specified. These shortcom-
ings were addressed by addingsmp_call_
async_mask() .

The overhead of using IPIs is minimized be-
cause of NAPI. An IPI is only needed to enter
NAPI polling mode for the two queues. Once in
NAPI mode, the two CPUs independently pro-
cess packets on their queues without any addi-
tional overhead.

On single-processor systems, a single receive
queue is used, since there are no additional
CPUs to perform packet processing. In addi-
tion, on multi-CPU systems that also support
HyperThreading, we ensure that the two CPU
threads targeted for receive processing do not
share the same physical core.

Preliminary benchmark results show this im-
plementation results in greater small-packet
throughput.

4 DMA Copy Offload Engine

As shown in Table 1, the most time during
receive processing is spent copying the data.
While a modern processor can handle these
copies for a single gigabit connection, when
multiple gigabit links, or a ten-gigabit connec-
tion is present, the processor may be swamped.
All the cycles spent copying incoming packets
are cycles that prevent the CPU from perform-
ing more demanding computations.

Samples Percent Function

48876 18.1772 __copy_user_intel
10382 3.8611 tcp_v4_rcv
10206 3.7957 e1000_intr
7640 2.8414 schedule
7130 2.6517 e1000_irq_enable
6965 2.5903 eth_type_trans
6355 2.3635 default_idle
6300 2.3430 find_busiest_group
6231 2.3173 packet_rcv_spkt

Table 1: oprofile data taken during netperf TCP
receive test (TCP_MAERTS), e1000

I/OAT offloads this expensive data copy op-
eration from the CPU with the addition of a
DMA engine—a dedicated device to do mem-
ory copies. While the DMA engine performs
the data copy, the CPU is free to proceed with
processing the next packet, or other pending
task.

4.1 The DMA Engine

The DMA engine is implemented as a PCI-
enumerated device in the chipset, and has mul-
tiple independent DMA channels with direct
access to main memory. When the engine com-
pletes a copy, it can optionally generate an in-
terrupt.1

4.2 The Linux DMA Subsystem

The I/OAT DMA engine was added specifi-
cally to benefit network-intensive server loads,
but its operation is not coupled tightly with the
network subsystem, or the network controller
driver.2 Therefore, support is implemented as
a “DMA subsystem.” This subsystem exports a

1Further hardware details will be available once plat-
forms with the DMA engine are generally available.

2Future generations may be more tightly integrated.

284 • Accelerating Network Receive Processing

generic async-copy interface that may be used
by other parts of the kernel if modified to use
the subsystem interface. It should be easy for
other subsystems to make use of the DMA ca-
pability, so we made async memcpy look as
much like normal memcpy as possible. This
abstraction also gives hardware designers the
freedom to develop new DMA engine hardware
interfaces in the future.

The first step for kernel code to use the DMA
subsystem is to register, usingdma_client_
register() , and request one or more DMA
channels:

typedef void

(∗dma_event_callback)(

struct dma_client ∗client,

struct dma_chan ∗chan,

enum dma_event_t event);

struct dma_client ∗
dma_client_register(

dma_event_callback

event_callback);

void

dma_client_chan_request(

struct dma_client ∗client,

unsigned int number);

Depending on where in the kernel init process
this is done, DMA channels may be already
available for allocation, or may be enumerated
later, at which point clients who have asked for
but not yet received channels will have their
callback called, indicating the new channel may
be used.3 Clients need to handle the failure to

3The initial need to make channel allocation asyn-
chronous was driven by the desire to use it in the net
stack. The net stack initializes very early, before PCI de-
vices are enumerated, so use of a synchronous allocation
method would result in the net stack asking for DMA
channels before any were available, and then never get-
ting any, once they were.

receive a DMA channel gracefully. This is usu-
ally easy to do, as the client can fall back to
non-offloaded copying.

(The initial need to make channel allocation
asynchronous was driven by the desire to use
it in the net stack. The net stack initializes very
early, before PCI devices are enumerated, so
use of a synchronous allocation method would
result in the net stack asking for DMA chan-
nels before any were available, and then never
getting any, once they were.)

Once a client has a DMA channel, it can start
using copy offload functionality:

dma_cookie_t
dma_memcpy_buf_to_buf(

struct dma_chan ∗chan,
void ∗dest,
void ∗src,
size_t len);

dma_cookie_t
dma_memcpy_buf_to_pg(

struct dma_chan ∗chan,
struct page ∗page,
unsigned int offset,
void ∗kdata,
size_t len);

dma_cookie_t
dma_memcpy_pg_to_pg(

struct dma_chan ∗chan,
struct page ∗dest_pg,
unsigned int dest_off,
struct page ∗src_pg,
unsigned int src_off,
size_t len);

Notice that in addition to a version that takes
kernel virtual pointers for source and destina-
tion, there are also versions to copy from a
buffer to a page, as well as from page to page.4

4Many parts of the kernel use a pointer to a buffer’s
struct page instead of a pointer to the memory itself,
since on systems with highmem, not all physical memory
is directly addressable by the kernel.

2005 Linux Symposium • 285

These operations are asynchronous and the
copy is not guaranteed to be completed when
the function returns. It is necessary to use an-
other function to wait for the copies to com-
plete. These functions return a non-negative
“cookie” value on success, which is used as a
token to wait on:

enum dma_status_t
dma_wait_for_completion(

struct dma_chan ∗chan,
dma_cookie_t cookie);

enum dma_status_t
dma_memcpy_complete(

struct dma_chan ∗chan,
dma_cookie_t cookie);

Typically, a client has a series of copy oper-
ations it can offload, but there comes a point
when it cannot continue until all the copy oper-
ations are guaranteed to have been completed.
At this point, the client can use the above func-
tions with the last cookie value returned from
the memcpy functions. If the copy operations
have been properly parallelized they may al-
ready be complete. If not, the client uses one
of the above functions, depending on if it wants
to sleep, or not.

4.3 Net Stack Changes Required for Copy
Offload

The Linux network stack’s basic copy-to-user
operation is from a series of struct skbuffs (also
known as SKBs) each generally containing one
network packet, to an array of struct iovecs
each describing a user buffer.5 Both these data
structures are rather complex, which compli-
cates matters.

In addition, final TCP processing and the copy-
to-user operation must happen in the context of
the process for the following reasons:

5Usually the array will contains only one entry, but if
readv() is used, it will contain more.

1. The user buffer (described by the iovec) is
pageable. If it is paged out when written,
it will generate a page fault. Page faults
can only be handled in process context.

2. If the network controller does not imple-
ment TCP checksum capability, it is pos-
sible to do the copy-to-user and checksum
in one step. However, almost all modern
controllers support hardware TCP check-
sum.

3. ACK generation. Waiting until in the
process context to generate TCP ACKs
ensures that the ACKs represent the ac-
tual rate that the process is getting sched-
uled and receiving packets. If the stack
ACKed as soon as the packet was re-
ceived, this might cause the receiver to be
overwhelmed[DM].

These three reasons drove the implementation
of the changes to the network stack. In order to
achieve proper parallelism, it is crucial that we
begin the copy as soon as possible, from bottom
half or interrupt context, and not wait until after
the return to process context. Therefore, we:

1. Lock down the user buffer, usingget_
user_pages() . There is a real perfor-
mance penalty associated with doing this
(measured ~6800 cycles to pin, ~5800 to
un-pin) that must be saved via copy paral-
lelism before we achieve a benefit.

2. Do not initiate engine-assisted copies on
non-HW-checksummed data.

3. Wait until we are in the process context to
generate ACKs.

While this code is still under development, the
current sequence of events is:

286 • Accelerating Network Receive Processing

1. When enteringtcp_recvmsg() as a re-
sult of a read() system call, the iovec
is pinned in memory. This generates a
list of pages that map to the iovec, which
we save in a secondary structure called the
locked_list .

2. The process sleeps.

3. Packets arrive and an interrupt is gener-
ated. NAPI polling starts, and packets are
run up the net stack totcp_v4_rcv() .

4. Normally the packet is placed on the pre-
queue so TCP processing is completed
in the process context. However,tcp_
prequeue also tries doing fastpath pro-
cessing on the packet, and if success-
ful, starts the copy to the user buffer.
Even though it is executing from a bot-
tom half and copying to a user buffer,
it will not take a page fault, since the
pages are pinned in memory. For each
such packet, we set a flag in the SKB,
copied_early .

5. The process wakes up, and checks the pre-
queue for packets to process. For any
packets with thecopied_early flag
set, fastpath checks are skipped, and ACK-
generation starts.

6. Normally at the end of tcp_rcv_
established() the skb is freed by
calling __kfree_skb() . However, the
DMA engine may still be copying data,
so it is necessary to wait for copy com-
pletion. Instead of being freed, the SKB
is placed on another queue, theasync_
wait_queue .

7. The process waits for the last cookie to
be to be completed, usingdma_wait_
for_completion .

8. The iovec is un-pinned and its pages are
marked dirty.

9. All SKBs in the async_wait_queue
are freed.

10. The system call is completed.

Using this mechanism packet processing by the
CPU and the DMA engine’s data copies take
place in parallel. Of course, for a user buffer to
be available for the early async copy to com-
mence, the user process must make a buffer
available prior to packet reception by using
read() . If the process is usingselect() or
poll() to wait for data, user buffers are not
available until data has already arrived. This
reduces the parallelism possible, although re-
duced CPU utilization should still be attainable.
Further work into asyncronous network inter-
faces may allow better utilization of the DMA
engine.

5 Conclusion

Each of these new features targets a specific
bottleneck in the flow of handling received
packets, and we believe they will be effective in
alleviating them. However, more development,
testing, and benchmarking is needed. This pa-
per is meant to be a starting point for further
discussions in these areas—we look forward to
working with the Linux community to support
these features.

References

[LDD] J. Corbet, Alessandro Rubini, Greg
Kroah-Hartman,Linux Device Drivers,
3rd Edition, 2005

[DM] David Miller, Re: prequeue still a good
idea?,
http://marc.theaimsgroup.

2005 Linux Symposium • 287

com/?l=linux-netdev&m=
111471509704660&w=2 , Apr 28,
2005

[LWN] LWN, Driver porting: Zero-copy
user-space access, http:
//lwn.net/Articles/28548/ ,
Nov 2003

288 • Accelerating Network Receive Processing

Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

