
We Are Not Getting Any Younger: A New Approach to
Time and Timers

John Stultz, Nishanth Aravamudan, Darren Hart
IBM Linux Technology Center

{johnstul, dvhltc, nacc}@us.ibm.com

Abstract

The LinuxR© time subsystem, which once pro-
vided only tick granularity via a simple pe-
riodic addition to xtime, now must provide
nanosecond resolution. As more and more
unique timekeeping hardware becomes avail-
able, and as virtualization and low-latency de-
mands grow, the complexity of maintenance
and bug resolution increases.

We are proposing a significant re-work of the
time keeping subsystem of the kernel. Ad-
ditionally, we demonstrate some possible en-
hancements this re-work facilitates: a more
flexible soft-timer subsystem and dynamic in-
terrupt source management.

1 The Newtimeofday Subsystem

The functionality required of thetimeofday
subsystem is deceptively simple. We must
provide a monotonically increasing system
clock, a fast and accurate method for gen-
erating the time of day, and a method for
making small adjustments to compensate for
clock drift. In the existing code, these
are provided by thewall_to_monotonic

offset to do_gettimeofday() , the do_

gettimeofday() function and the Network

Time Protocal(NTP)adjtimex() interface.
This basic functionality, however, is required to
meet increasingly stringent demands. Perfor-
mance must improve and time resolution must
increase, while keeping correctness. Meeting
these demands with the current code has be-
come difficult, thus new methods for time keep-
ing must be considered.

1.1 Terminology

Before we get into the paper, let us just cover
some quick terminology used, so there is no
confusion.

System Time A monotonically increasing
value that represents the amount of time
the system has been running.

Wall Time (Time of Day) A value represent-
ing the the human time of day, as seen on
a wrist-watch.

Timesource A representation of a free running
counter running at a known frequency,
usually in hardware.

Hardware-Timer (Interrupt Source) A bit
of hardware that can be programmed to
generate an interrupt at a specific point in
time. Frequently the hardware-timer can
be used as a timesource as well.

• 219 •



220 • We Are Not Getting Any Younger: A New Approach to Time and Timers

Soft-Timer A software kernel construct that
runs a callback at a specified time.

Tick A periodic interrupt generated by a
hardware-timer, typically with a fixed in-
terval defined byHZ. Normally used for
timekeeping and soft-timer management.

1.2 Reasons for Change

1.2.1 Correctness

So, why are we proposing these changes?
There are many reasons, but the most important
one is correctness. It is critical that time flow
smoothly, accurately and does not go back-
wards at any point. The existing interpolation-
based timekeeping used by most arches1 is er-
ror prone.

Quickly, let us review how the existing time-
keeping code works. The code is tick-based,
so thetimeofday is incremented a constant
amount (plus a minor adjustment for NTP) ev-
ery tick. A simplified pseudo-code example
of this tick-based scheme would look like Fig-
ure 1.

Since, in this code,abs(ntp_adjustment)

is always smaller thenNSECS_PER_TICK, time
cannot go backwards. Thus, the only issue
with this example is that the resolution of time
is not very granular, e.g. only 1 millisecond
when HZ = 1000. To solve this, the existing
timeofday code uses a high-resolution time-
source to interpolate with the tick-based time
keeping. Again, using a simplified pseudo-
code example we get something like Figure 2.

The idea is that the interpolation function
(cycles2ns(now - hi_res_base) ) will

1Throughout this paper, we will refer to the software
architecture(s), i.e. those found inlinux-source/
arch , as arch(es) and to hardware architecture(s) as ar-
chitecture(s).

smoothly give the inter-tick position in time.
Now, a sharp eye will notice that this has
some potential problems. If the interpolation
function does not cover the entire tick interval
(NSECS_PER_TICK + ntp_adjustment ),
time will jump forward. More worrisome
though, if at any time the value of the inter-
polation function grows to be larger than the
tick interval, there is the potential for time to
go backwards. These two conditions can be
caused by a number of factors: calibration
error, changes tontp_adjustment ’s value,
interrupt handler delay, timesource frequency
changes, and lost ticks.

The first three cases typically lead to a small
single-digit microsecond error, and thus, a
small window for inconsistency. As proces-
sor speeds increase,gettimeofday takes less
time and small interpolation errors become
more apparent.

Timesource frequency changes are more diffi-
cult to deal with. While they are less common,
some laptops do not notify thecpufreq sub-
system when they change processor frequency.
Should the user boot off of battery power, and
the system calibrate the timesource at the slow
speed then later plug into the wall, the TSC fre-
quency can triple causing much more obvious
(two tick length) errors.

Lost timer interrupts also cause large and eas-
ily visible time inconsistencies. If a bad driver
blocks interrupts for too long, or a BIOS SMI
interrupt blocks the OS from running, it is pos-
sible for the value of the interpolation func-
tion to grow to multiple tick intervals in length.
When a timer interrupt is finally taken though,
only one interval is accumulated. Since chang-
ing HZ to 1000 on most systems, missed timer
interrupts have become more common, causing
large time inconsistencies and clock drift.

Attempts have been made (in many cases by
one of the authors of this paper) to reduce the



2005 Linux Symposium • 221

timer_interrupt():
xtime += NSECS_PER_TICK + ntp_adjustment

gettimeofday():
return xtime

Figure 1: A tick-basedtimeofday implementation

timer_interrupt():
hi_res_base = read_timesource()
xtime += NSECS_PER_TICK + ntp_adjustment

gettimeofday():
now = read_timesource()
return xtime + cycles2ns(now - hi_res_base)

Figure 2: An interpolatedgettimeofday()

impact of lost ticks by trying to detect and com-
pensate for them. At interrupt time, the interpo-
lation function is used to see how much time
has passed, and any lost ticks are then emu-
lated. One problem with this method of de-
tecting lost ticks is that it results in false pos-
itives when timesource frequency changes oc-
cur. Thus, instead of time inconsistencies, time
races three times faster on those systems, ne-
cessitating additional heuristics.

In summary, the kernel uses a buggy method
for calculating time using both ticks and time-
sources, neither of which can be trusted in all
situations. This is not good.

1.2.2 A Much Needed Cleanup

Another problem with the current time keep-
ing code is how fractured the code base has
become. Every arch calculates time in basi-
cally the same manner, however, each one has
its own implementation with minor differences.
In many cases bugs have been fixed in one
or two arches but not in the rest. The arch
independent code is fragmented over a num-
ber of files (time.c, timer.c, time.h, timer.h,

times.h, timex.h), where the divisions have lost
any meaning or reason. Without clear and ex-
plicit purpose to these files, new code has been
added to these files haphazardly, making it even
more difficult to make sense of what is chang-
ing.

The lack of opacity in the current timekeeping
code is an issue as well. Since almost all of
the timekeeping variables are global and have
no clear interface, they are accessed in a num-
ber of different ways in a number of different
places in the code. This has caused much con-
fusion in the way kernel code accesses time.
For example, consider the many possible ways
to calculate uptime shown in Figure 3.

Clearly some of these examples are more cor-
rect than others, but there is not one clear way
of doing it. Since different ways to calculate
time are used in the kernel, bugs caused by mix-
ing methods are common.

1.2.3 Needed Flexibility

The current system also lacks flexibility. Cur-
rent workarounds for things like lost ticks cause



222 • We Are Not Getting Any Younger: A New Approach to Time and Timers

uptime = jiffies * HZ
uptime = (jiffies - INITIAL_JIFFIES) * HZ
uptime = ((jiffies - INITIAL_JIFFIES) * ACTHZ) >> 8
uptime = xtime.tv_sec + wall_to_monotonic.tv_sec
uptime = monotonic_clock() / NSEC_PER_SEC;

Figure 3: Possible ways to calculate uptime

bugs elsewhere. One such place is virtualiza-
tion, where the guest OS may be halted for
many ticks while another OS runs. This re-
quires the hypervisor to emulate a number of
successive ticks when the guest OS runs. The
lost tick compensation code notes the hang
and tries to compensate on the first tick, but
then the next ticks arrive causing time to run
too fast. Needless to say, this dependency on
ticks increases the difficulty of correctly imple-
menting deeper kernel changes like those pro-
posed in other patches such as: Dynamic Ticks,
NO_IDLE_HZ, Variable System Tick, and High
Res Timers.

1.3 Related Work

1.3.1 timer_opts

Now that we are done complaining about all
the problems of the current timekeeping sub-
system, one of the authors should stand up and
claim his portion of the responsibility. John
Stultz has been working in this area off and
on for the last three years. His largest set of
changes was the i386-specifictimer_opts re-
organization. The main purpose of that code
was to modularize the high-resolution interpo-
lator to allow for easy addition of alternative
timesources. At that time the i386 arch sup-
ported the PIT and the TSC, and it was nec-
essary to add support for a third timesource,
the Cyclone counter. Thanks, in part, to to the
timer_opts changes the kernel now supports
the ACPI PM and HPET timesources, so in a

sense the code did what was needed, but it is
not without its problems.

The first and most irritating issue is the name.
While it is calledtimer_opts , nothing in the
structure actually uses any of the underlying
hardware as a hardware-timer. Part of this
confusion comes from the fact that hardware-
timers can frequently be used as counters or
timesources, but not the other way around, as
timesources do not necessarilly generate inter-
rupts. The lack of precision in naming and
speaking about the code has caused continuing
difficulty in discussing the issues surrounding
it.

The other problem with thetimer_opts

structure is that its interface is too flexible and
openly defined. It is unclear for those writ-
ing new timer_opt modules, how to use the
interface as intended. Additionally, fixing a
bug or adding a feature requires implementing
the same code across eachtimer_opt mod-
ule, leading to excessive code duplication. That
along with additional interfaces being added
(each needing their own implementation) has
caused thetimer_opts modules to become
ugly and confusing. A cleanup is in order.

Finally, while the timer_opts structure is
somewhat modular, the list of available time-
sources becomes fixed at build-time. Hav-
ing the “clock=” boot-time parameter is use-
ful, allowing users to override the default time-
source; however, more flexibility in providing
new timesources at run-time would be helpful.



2005 Linux Symposium • 223

1.3.2 time_interpolator

Right about the time thetimer_opts struc-
ture got into the kernel, a similar bit of code
called “time interpolation hooks” showed up
implementing a somewhat similar interface. An
additional benefit of this code was that it was
arch independent, promising the ability to share
interpolator “drivers” between different arches
that had the same hardware. John followed a
bit of its discussion and intended to move the
i386 code over to it, but was distracted by other
work requirements. That and the never-ending
2.6 freeze kept him from actually attempting
the change.

John finally got a chance to really look at the
code when he implemented the Cyclone inter-
polator driver. The code was nice and more
modular than thetimer_opts interface, but
still had some of the same faults: it left too
much up to the driver to implement and the
getoffset() , update() , and reset()
interfaces were not intuitive. Impressively,
much of the time-interpolator code has been re-
cently re-written, resolving many of issues and
influencing this proposal. However, the time-
interpolator design is still less than ideal. NTP
adjustments are done by intentionally under-
shooting in converting from cycles to nanosec-
onds, causing time to run just a touch slow, and
thus, forcing NTP to only make adjustments
forward in time. This trick avoids time incon-
sistencies from NTP adjustments, but causes
time drift on systems that do not run NTP.
Additionally, while interpolation errors are no
longer an issue, the code is still tick based,
which makes it more difficult to understand and
extend.

1.4 Our Proposal

Before we get into the implementation details
of our proposal, let us review the goals:

1. Clean up and simplify time related code.
2. Provide clean and cleartimeofday in-

terfaces.
3. Use nanoseconds as the fundamental time

unit.
4. Stop using tick-based time and avoid in-

terpolation.
5. Make much of the implementation arch in-

dependent.
6. Use a modular design, allowing time-

source drivers to be installed at runtime.

The core implementation has three main com-
ponents: thetimeofday code, timesource
management, and the NTP state machine.

1.4.1 timeofday Core

The core of the timekeeping code provides
methods for getting a monotonically increasing
system time and the wall time. To avoid unnec-
essary complication, we layer these two values
in a simple way. The monotonically increas-
ing system time, accessed viamonotonic_

clock() is the base layer. On top of that
we add a constant offsetwall_time_offset

to calculate the wall time value returned by
do_gettimeofday() . The code looks like
Figure 4.

The first thing to note in Figure 4, is that
the timeofday code is not using interpo-
lation. The amount of time accumulated in
the periodic_hook() function is the exact
same as would be calculated inmonotonic_

clock() . This means thetimeofday code
is no longer dependent on timer interrupts be-
ing received at a regular interval. If a tick
arrives late, that is okay, we will just ac-
cumulate the actual amount of time that has
past and reset theoffset_base . In fact,
periodic_hook() does not need to be called



224 • We Are Not Getting Any Younger: A New Approach to Time and Timers

nsec_t system_time
nsec_t wall_time_offset
cycle_t offset_base
int ntp_adj
struct timesource_t ts

monotonic_clock():
now = read_timesource(ts)
return system_time + cycles2ns(ts, now - offset_base, ntp_adj)

gettimeofday():
return monotonic_clock() + wall_time_offset

periodic_hook():
now = read_timesource(ts)
interval = cycles2ns(ts, now - offset_base, ntp_adj)
system_time += interval
offset_base = now
ntp_adj = ntp_advance(interval)

Figure 4: The new timekeeping psuedo-code

from timer_interrupt() , instead it can be
called from a soft-timer scheduled to run ev-
ery number of ticks. Additionally, notice that
NTP adjustments are done smoothly and con-
sistenetly throughout the time interval between
periodic_hook() calls. This avoids the in-
terpolation error that occurs with the current
code when the NTP adjustment is only applied
at tick time. Another benefit is that the core al-
gorithm is shared between all arches. This con-
solidates a large amount of redundant arch spe-
cific code, which simplifies maintenance and
reduces the number of arch specific time bugs.

1.4.2 Timesource Management

The timesource management code defines a
timesource, and provides accessor functions for
reading and converting timesource cycle val-
ues to nanoseconds. Additionally, it provides
the interface for timesources to be registered,
and then selected by the kernel. The timesoure
structure is defined in Figure 5.

In this structure, thepriority field allows
for the best available timesource to be chosen.
The type defines if the timesource can be di-
rectly accessed from the on-CPU cycle counter,
via MMIO, or via a function call, which are de-
fined by theread_fnct andmmio_ptr point-
ers respectively. Themask value ensures that
subtraction between counter values from coun-
ters that are less then 64 bits do not need spe-
cial overflow logic. Themult andshift ap-
proximate the frequency value of cycles over
nanoseconds, wherefrequency ≈ mult

2shift
Finally, theupdate_callback() is used as
a notifier for a safe point where the time-
source can change itsmult or shift values
if needed, e.g. in the case ofcpufreq scaling.

A simple exampletimesource structure can
be seen in Figure 6. This small HPET driver
can even be shared between i386, x86-64 and
ia64 arches (or any arch that supports HPET).
All that is necessary is an initialization function
that sets themmio_ptr and mult then calls
register_timesource() . This can be done



2005 Linux Symposium • 225

struct timesource_t {
char* name;
int priority;
enum {

TIMESOURCE_FUNCTION,
TIMESOURCE_CYCLES,
TIMESOURCE_MMIO_32,
TIMESOURCE_MMIO_64

} type;
cycle_t (*read_fnct)(void);
void __iomem *mmio_ptr;
cycle_t mask;
u32 mult;
u32 shift;
void (*update_callback)(void);

};

Figure 5: Thetimesource structure

struct timesource_t timesource_hpet = {
.name = ‘‘hpet’’,
.priority = 300,
.type = TIMESOURCE_MMIO_32,
.mmio_ptr = NULL,
.mask = (cycle_t)HPET_MASK,
.mult = 0,
.shift = HPET_SHIFT,

};

Figure 6: The HPETtimesource structure

at any time while the system is running, even
from a module. At that point, the timesource
management code will choose the best avail-
able timesource using the priority field. Al-
ternatively, asysfs interface allows users to
override the priority list and, while the system
is running, manually select a timesource to use.

1.4.3 NTP

The NTP subsystem provides a way for the
kernel to keep track of clock drift and calcu-
late how to adjust for it. Briefly, the core
interface from the timekeeping perspective is
ntp_advance() , which takes a time interval

and increments the NTP state machine by that
amount, and then returns the signed parts per
million adjustment value to be used to adjust
time consistently over the next interval.

1.4.4 Related Changes

Other areas affected by this proposal are
VDSO or vsyscallgettimeofday() imple-
mentations. These are chunks of kernel
code mapped into user-space that implement
gettimeofday() . These implementations
are somewhat hackish, as they require heavy
linker magic to map kernel variables into the
address space twice. In the current code, this



226 • We Are Not Getting Any Younger: A New Approach to Time and Timers

dual mapping further entangles the global vari-
ables used for timekeeping. Luckily, our pro-
posed changes can adapt to handle these cases.

The timesource structure has been designed
to be a fairly translucent interface. Thus,
any timesource of type MMIOor CYCLES
can be easily used in a VDSO. By making
a call to an arch specific function whenever
the base time values change, the arch indepen-
dent and specific code are able to be cleanly
split. This avoids tangling thetimeofday
code with ugly linker magic, while still letting
these significant optimizations occur in what-
ever method is appropriate for each arch.

1.5 What Have We Gained?

With these new changes, we have simplified the
way time keeping is done in the kernel while
providing a clear interface to the required func-
tionality. We have provided higher resolution,
nanoseconds based, time keeping. We have
streamlined the code and allowed for meth-
ods which further increase gettimeofday per-
formance. And finally, we have organized and
cleaned up the code to fix a number of problem-
atic bugs in the current implementation.

With a foundation of clean code and clear in-
terfaces has been laid, we can look for deeper
cleanups. A clear target for improvement is
the soft-timer subsystem. Thetimeofday re-
work clearly redefines the split between system
time andjiffies . Changing the soft-timer
subsystem to human-time frees the kernel from
inaccurate, tick-based time (see §3.2).

2 Human-Time

2.1 Why Human-Time Units?

Throughout the kernel, time is expressed in
units of jiffies , which is only a timer inter-
rupt counter. Since the interrupt interval differs
between archs, the amount of time one jiffy rep-
resents is not absolute. In contrast, the amount
of time one nanosecond represents is an inde-
pendent concept.

When discussing human-time units, e.g. sec-
onds, nanoseconds, etc., and the kernel, there
are two main questions to be asked: “Why
should the kernel interfaces change to use
human-time units?” and “Why should the in-
ternal structures and algorithms change to use
human-time units?” If a good answer to the lat-
ter can be found, then the former simply fol-
lows from it; a good answer can and will be
provided, but we feel there are several reasons
to make the interface change regardless of any
changes to the infrastructure.

2.1.1 Interfaces in Human-Time

First of all, human-time units are the units of
our thought; simultaneously, the units of com-
puter design are in human-time (or their in-
verse for frequency measurements). The re-
lation between human-time units and jiffies is
vague, while it is clear how one human-time
unit relates to another. Additionally, human-
time units are effectively unbounded in terms of
expressivity. That is to say, as systems achieve
higher and higher granularity—currently ex-
pressed by moving to higher values ofHZ—we
simply multiply all of the existing constants by
an appropriate power of 10 and change the in-
ternal resolution.



2005 Linux Symposium • 227

2.1.2 Infrastructure in Human-Time

The most straight-forward argument in favor
of human-time interfaces stems from our pro-
posed changes to the soft-timer subsystem. If
the underlying algorithm adds and expires soft-
timers in human-time units, then it follows that
the interfaces to the subsystem should use the
same units. But why change the infrastruc-
ture in the first place? All of the arguments
mentioned in §2.1.1 apply equally well here.
But our fundamental position—as alluded to in
§1.2—is that the tick-basedjiffies value is
a poor representation of time.

The current soft-timer subsystem relies on the
periodic timer tick, and its resolution is linked
at compile time to the timer interrupt frequency
value HZ. This approach to timer manage-
ment works well for timers with expiration val-
ues at least an order of magnitude longer than
that period. Higher resolution timers present
several problems for a tick-based soft-timer
system. The most obvious problem is that a
timer set for a period shorter than a single tick
cannot be handled efficiently. Even calls to
nanosleep() with delays equal to the period
of HZ will often experience latencies of three
ticks!

On i386, for example,HZ is 1000, which indi-
cates a timer interrupt should occur every mil-
lisecond. Because of limitations in hardware,
the closest we can come to that is about 999,876
nanoseconds, just a little too fast. This actual
frequency is represented by theACTHZcon-
stant. Sincejiffies is kept inHZ units in-
stead ofACTHZunits, when requests are made
for one millisecond, two ticks are required to
ensure one full millisecond elapses (instead of
999,876 nanoseconds). Then, since we do not
know where in the current tick we are, an ex-
tra jiffy must be added. So a one millisecond
nanosleep() turns into three jiffies.

2.1.3 A Concrete Example

To clarify our arguments, consider the example
code in Figure 7.

It is clear that the old code is attempting to sleep
for the shortest time possible (a single jiffy).
Internally, a soft-timer will be added with an
expires value of jiffies + 1. How long
does thisexpires value actually represent? It
is hard to say, as it depends on the value ofHZ,
which changed from 2.4 to 2.6. Perhaps it is 10
milliseconds (2.4), or perhaps it is one millisec-
ond (2.6). What about the new kernel hacker
who copies the code and uses it themselves—
what assumption will they make regarding the
timeout indicated? What happens whenHZhas
a dynamic value? Clearly, problems abound
with this small chunk of code.

Consider, in contrast, the code after an update
by the Kernel-Janitors2 project. Now, it is un-
clear how the soft-timer subsystem will trans-
late the milliseconds parameter tomsleep()
into an internalexpires value, but in all hon-
esty, that does not matter to the author. It is
clear, however, that the author intends for the
task to sleep for at least 10 milliseconds.HZ
can change to any value it likes and the request
is the same. In this case, it is up to the soft-timer
subsystem to handle converting from human-
time to jiffies and not other kernel devel-
opers (rejoice!).

These changes are in the best interest of the ker-
nel; they will help with the long-term maintain-
ability of much code, particularly in drivers.

3 The New soft-timer Subsystem

We have already argued that a human-time soft-
timer subsystem is in the best interest of the

2http://www.kerneljanitors.org/



228 • We Are Not Getting Any Younger: A New Approach to Time and Timers

Old:

set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(1);

New:

msleep(10);

Figure 7: Two possible ways to sleep

kernel. Is such a change feasible? More impor-
tantly, what are the potential performance im-
pacts of such a change? How should the inter-
faces be modified to accomodate the new sys-
tem?

3.1 The Status Quo in Soft-Timers

A full exposition of the current soft-timer sub-
system is beyond the scope of this paper. In-
stead, we will give a rough overview of the
important terms necessary to understand the
changes we hope to make. Additionally, keep-
ing our comments in mind while examining this
complex code should make the details easier to
see and understand. Like much of the kernel,
the soft-timer subsystem is defined by its data
structures.

3.1.1 Buckets and Bucket Entries

There are five “buckets” in the soft-timer sub-
system. Bucket one is special and designated
the “root bucket.” Each bucket is actually
an array ofstruct timer_list s. The root
bucket contains 256 bucket entries, while the
remaining four buckets each contain 64.3 Each
entry represents an interval of jiffies; all soft-
timers in a given entry haveexpires values

3This was the only possibility beforeCONFIG_
SMALL_BASE was introduced. If CONFIG_
SMALL_BASE=y, then bucket one is 64 entries wide
and the other four buckets are each 16. Seekernel/
timer.c .

in that entry’s interval. Thus, when a timer
in a particular entry is expired, all timers in
that entry are expired, i.e. sorting is not nec-
essary. In bucket one, each entry represents
one jiffy. In bucket two, each entry represents
a range of 256 jiffies. In bucket three, each
entry represents a range of 64× 256= 16384
jiffies. Buckets four and five’s entries repre-
sent intervals of 64×64×256= 1048576 and
64× 64× 64× 256= 6467108864 jiffies, re-
spectively.

Imagine that we fix the first entry in bucket one
(which we will designatetv1 4) to be the ini-
tial value ofjiffies (which we can pretend
is zero). Then, treating the buckets like the ar-
rays they are,tv1[7] represents the timers
set to expire seven jiffies from now. Similarly,
tv3[4] represents the timers withexpires
values satisfying 82175≤ expires < 98559.
The perceptive reader may have noticed a very
nice relationship between buckettv[n] and
tv[n+1] : a single entry oftv[n+1] repre-
sents a span of jiffies exactly equal to the to-
tal span of all oftv[n] ’s entries. Thus, once
tv[n] is empty, we can refill it by pulling, or
“cascading,” an appropriate entry fromtv[n+
1] down.5

4The name given to the buckets in the code is “time
vector.”

5See kernel/timer.c::cascade() if you
have any doubts.



2005 Linux Symposium • 229

3.1.2 Adding Timers

Imagine we keep a global value,timer_

jiffies , indicating thejiffies value the
last time timers were expired. Then take the
expires value stored in thetimer_list ,
which is in absolute jiffy units, and subtract
timer_jiffies , thus giving a relative jiffy
value.6 Then determine into which entry the
timer should be added by simple comparisons.

Keep in mind that for each bucket, we know
the exact value of the least significantX bits,
i.e. for all entries intv2 , the bottom eight bits
are zero. Therefore, we can throw away those
bits when indexing the bucket. Similarly, we
also know the maximum value of any timer’s
expires field in a given bucket. Thus, we
can ignore the top 18 bits intv2 . We are now
at a six-bit value, which exactly indexes our 64-
entry wide bucket! Similar logic holds true for
the remaining buckets. All the gory details are
available inkernel/timer.c::internal_

add_timer() .

3.1.3 Expiring Timers

Expiration follows the addition algorithm
pretty closely. Comparetimer_jiffies to
jiffies : if jiffies is greater, then we
know that time has elapsed since we last ex-
pired timers and there might be timers to ex-
pire. We then search throughtv1 , beginning at
the index corresponding to the lower eight bits
of timer_jiffies , which would be timers
added immediately after the last time we added
expired timers. We expire all those timers and
then incrementtimer_jiffies . This pro-
cess repeats until eithertimer_jiffies =
jiffies or we have reached the end oftv1 .
In the former case, we are done expiring timers
and we can exit the expiration routine. In the

6Relative totimer_jiffies , not jiffies .

latter case, we need to cascade an appropri-
ate entry from a higher bucket down into tv1.7

The strategy is to figure out which interval we
are currently in relative to our system-wide ini-
tial value and re-add the corresponding timers
to the system. This forces those timers which
should be expired now intotv1 . Thus, we
only ever need to considertv1 when expir-
ing timers. Timer expiration is accomplished
by invoking the timer’s callback function and
removing the timer from the bucket.

3.2 What To Keep?

Our proposal is simple: keep the data struc-
tures and the algorithms for addition and ex-
piration. Rather than fix the entry width to
be one jiffy in tv1 , we define a new unit:
the timerinterval . This unit represents the
best resolution of soft-timer addition and expi-
ration. To convert from human-time units, we
use a newnsecs_to_timerintervals()

function. This allows us to preserve the
algorithmic design of the soft-timer subsys-
tem, which expects the timer’sexpires
field to be anunsigned long . Correspond-
ingly, we do not base our last expiration time
(now stored inlast_timer_time instead of
timer_jiffies ) and current expiration time
on jiffies , but on the newtimeofday
subsystem’sdo_monotonic_clock() . Fi-
nally, we store the last expiration time in a
more sensibly named variabled,last_timer_

time , rather thantimer_jiffies .

We actually require two conversion functions.
On addition of soft-timers, we usensecs_to_

timerintervals_ceiling() , and on ex-
piration of soft-timers, we usensecs_to_

timerintervals_floor() . This insures

7I hope all of you were highly suspi-
cious of my claims and took a look at
kernel/timer.c::cascade() .



230 • We Are Not Getting Any Younger: A New Approach to Time and Timers

that timers are not expired early. In the sim-
plest case, where we wish to approximate the
current millisecond granularity ofHZ= 1000,
the pseudocode shown in Figure 8 achieves the
conversion.

In short,timerintervals , not jiffies are
now the units of the soft-timer subsystem. The
new system is extremely flexible. By chang-
ing the previous example’s value ofTIMER_

INTERVAL_BITS , we are able to change the
overall resolution of the soft-timer subsystem.
We have made the soft-timer subsystem inde-
pendent of the periodic timer tick.

3.3 New Interfaces

As was already mentioned, the new human-
time infrastructure enables several new human-
time interfaces. The reader should be aware
that existing interfaces will continue to be sup-
ported, although they will be less precise as
jiffies and human-time do not directly corre-
spond to one another.

3.3.1 add_timer , mod_timer

After a careful review of the code, we be-
lieve theadd_timer() interface should be
deprecated. It duplicates the code inmod_
timer() , using timer->expires as the
expires value. Since we are moving away
from the current use ofmod_timer() , where
the parameter is in jiffies, to a system using
nanoseconds (a 64-bit value), we would like
to avoid reworking thetimer_list struc-
ture. mod_timer() is also deprecated with
the new system, as we provide one clear in-
terface to both add and modify timers,set_

timer_nsecs (see §3.3.2).

3.3.2 set_timer_nsecs

This function accepts, as parameters, a
timer_list to modify and an absolute num-
ber of nanoseconds, modifying thetimer_
list ’s expires field accordingly. This is,
in our new code, the preferred way to add and
modify timers.

3.3.3 schedule_timeout_nsecs

schedule_timeout_nsecs() allows for
relative timeouts, e.g. 10,000,000 nanoseconds
(10 milliseconds) or 100 nanoseconds. The
soft-timer subsystem will convert the relative
human-time value to an appropriate absolute
timerinterval value.

3.4 Future Direction and Enhancements

One area which has not received sufficient
attention is the setting of timers using a
relative expires parameter. That is, we
should be able to specifyset_timer_rel_

nsecs(timer, 10) andtimer ’s expires
value should be modified to 10 nanosec-
onds from now. Due to the higher preci-
sion of do_monotonic_clock() in contrast
to jiffies , we must be careful to pick an ap-
propriate and consistent function to determine
when “now” is.

4 Dynamic Interrupt Source Man-
agement

4.1 Interrupt Source Management

With the changes to the soft-timer subsystem
(see §3.2), we can address issues related to the



2005 Linux Symposium • 231

#define TIMER_INTERVAL_BITS 20
nsecs_to_timerintervals_ceiling(nsecs):

return (((nsecs-1) >> TIMER_INTERVAL_BITS) & ULONG_MAX)+1

nsecs_to_timerintervals_floor(nsecs):
return (nsecs >> TIMER_INTERVAL_BITS) & ULONG_MAX

Figure 8: ApproximatingHZ= 1000 with the new soft-timer subsystem

reliance on a periodic tick. With power con-
strained devices, we want to avoid unneccesary
interrupts, keeping the processor in a low power
mode as long as possible. In a virtual envi-
ronent, it is useful to know how long between
events a guest OS can be off the CPUs.

Many people have attacked these various prob-
lems individually and have been met with some
success and some resistance. The new time
system discussed in §1.5 enables the time sys-
tem to do without the periodic tick and, there-
fore, frees the soft-timer system to follow suit.
Currently, when the system timer interrupt is
raised, its interrupt handler is run and all the
expired timers are executed—which could be
a lot, a few, or none at all. This polled ap-
proach to timer management is not very effi-
cient and hinders improvements for virtualiza-
tion and power constrained devices.

4.2 A New Approach

By changing the soft-timer implementation to
schedule interrupts as needed, we can have a
more efficient event based (rather than polled)
soft-timer system. Our proposed changes lever-
age the existingNO_IDLE_HZ code to calcu-
late when the next timer is due to expire and
schedule an interrupt accordingly. This frees
soft-timers from the periodic system tick and
the associated overhead it imposes. Unfortu-
nately, some decisions still have to be made as
to how often we are willing to stop what we
are doing and expire the timers. This period
of time, thetimerinterval , is configurable

(see §3.2). The length of atimerinterval

unit places the lower bound on the soft-timer
resolution, while the hard-timer defines the
upper bound of how long we can wait be-
tween expiring timers. The default of our
proposed changes places the lower bound at
about one millisecond, and the upper bound
of the PIT, for example, would be 55 mil-
liseconds. Hardware permitting, higher reso-
lution timers are acheived by simply reducing
thetimerinterval unit length and we get the
functionality ofNO_IDLE_HZfor free!

4.3 Implementation

At the time of this writing, the implementa-
tion is undergoing development. This section
outlines our proposed changes with some extra
detail given to portions that are already imple-
mented.

The new interrupt source management system
consists of a slightly modified version of the
NO_IDLE_HZcode, arch specificset_next_

timer_interrupt() and a new next_

timer_interrupt() routines, and calls to
these routines in__run_timers() and
set_timer_nsecs() (see §3.3.2).

The formernext_timer_interrupt() rou-
tine has been renamed tonext_timer_

expires() to avoid confusion between the
next timer’sexpires and when the the next
interrupt is due to fire. The routine was updated
to use the slightly modified soft-timer struc-
tures discussed in §3.2.



232 • We Are Not Getting Any Younger: A New Approach to Time and Timers

The arch-specific next_timer_

interrupt() routine returns the time in
absolute nanoseconds of when the next
hard-timer interrupt will fire.

The arch-specific set_next_timer_

interrupt() routine accepts an abso-
lute nanosecond parameter specifying when
the user would like the next interrupt to fire.
Depending on the hard-timer being used, the
routine calculates the optimal time to fire
the next interrupt and returns that value to
the caller. Because interrupt sources vary
greatly in their implementation (counters vs.
decrementers, memory mapped vs. port I/O
vs. registers, etc.), each source must be treated
individually. For example, older hardware that
is dependant on the PIT as an interrupt source
will not get higher resolution soft-timers or
very long intervals between interrupts simply
because the PIT is painfully slow to program
(about 5.5 microseconds in our tests), and
only 16 bits wide. At about 1.2 MHz the
PIT’s maximum delay is only 55 milliseconds.
Fortunately, systems that must use the PIT can
do so without incurring a penalty since the
PIT interrupt scheduling function is free to
reprogram the hardware only when it makes
sense to do so. We have discussed the specifics
of the PIT, but other interrupt sources such
as local APICs, HPETs, decrementers, etc.
provide more suitable interrupt sources. Since
set_next_timer_interrupt() is arch
specific, it can be#defined to do nothing
for those archs that would prefer to rely on a
periodic interrupt.

Projects such as Dynamic Ticks, Variable Sys-
tem Tick, High Res Timers,NO_IDLE_HZ,
etc. attempt to solve the limitations of the cur-
rent soft-timer system. They approach each
problem individually by adding code on top
of the existing tick based system. In con-
trast, by integrating dynamically scheduled in-
terrupts with the new time and soft-timer sys-

tems discussed earlier, we create a clean, sim-
ple solution that avoids the overhead of periodic
ticks and provides similar functionality.

Conclusion

We have reimplemented thetimeofday sub-
system to be independent ofjiffies , thus re-
solving a number of outstanding bugs and lim-
itations. We have also demonstrated how these
changes facilitate cleanups and new features in
the soft-timer subsystem. We have reoriented
the time and timer subsystems to be human-
time based, thus improving flexibility, readabil-
ity, and maintainability.

Legal Statement

Copyright c© 2005 IBM.

This work represents the view of the authors and
does not necessarily represent the view of IBM.

IBM and the IBM logo are trademarks or registered
trademarks of International Business Machines Cor-
poration in the United States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make
them available in all countries in which IBM oper-
ates.

This document is provied “AS IS,” with no express
or implied warranties. Use the information in this
document at your own risk.



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


