
Large Receive Offload implementation in Neterion
10GbE Ethernet driver

Leonid Grossman
Neterion, Inc.

leonid@neterion.com

Abstract

The benefits of TSO (Transmit Side Offload)
implementation in Ethernet ASICs and device
drivers are well known. TSO is ade factostan-
dard in version 2.6 Linux kernel and provides
a significant reduction in CPU utilization, es-
pecially with 1500 MTU frames. When a sys-
tem is CPU-bound, these cycles translate into a
dramatic increase in throughput. Unlike TOE
(TCP Offload Engine) implementations, state-
less offloads do not break the Linux stack and
do not introduce either security or support is-
sues. The benefits of stateless offloads are espe-
cially apparent at 10 Gigabit rates. TSO hard-
ware support on a 10GbE sender uses a frac-
tion of a single CPU to achieve full line rate,
still leaving plenty of cycles for applications.
On the receiver side, however, the Linux stack
presently does not support an equivalent state-
less offload. Receiver CPU utilization, as a
consequience, becomes the bottleneck that pre-
vents 10GbE adapters from reaching line rate
with 1500 MTU. Neterion Xframe adapter, im-
plementing a LRO (Large Receive Offload) ap-
proach, was designed to address this bottleneck
and reduce TCP processing overhead on the re-
ceiver. Both design and performance results
will be presented.

1 Introduction

With the introduction of 10 Gigabit Ethernet,
server I/O re-entered the “fast network, slow
host” scenario that occurred with both the tran-
sitions to 100Base-T and 1G Ethernet.

Specifically, 10GbE has exposed three major
system bottlenecks that limit the efficiently of
high-performance I/O Adapters:

• PCI-X bus bandwidth

• CPU utilization

• Memory bandwidth

Despite Moore’s law and other advances
in server technology, completely overcoming
these bottlenecks will take time. In the interim,
network developers and designers need to find
reliable ways to work around these limitations.

One approach to improve system I/O perfor-
mance has come through the introduction of
Jumbo frames. Increasing the maximum frame
size to 9600 byte reduces the number of pack-
ets a system has to process and transfer across
the bus.

While Jumbo frames have became universally
supported in all operating systems, they have

• 195 •



196 • Large Receive Offload implementation in Neterion 10GbE Ethernet driver

not been universally deployed outside of the
datacenter.

As a consequence, for the foreseeable future,
networks will still need some kind of offloading
relief in order to process existing 1500 MTU
traffic.

As occurred in previous “fast network, slow
host” scenarios, the need to improve perfor-
mance has triggered renewed industry interest
in developing NIC (Network Interface Card)
hardware assists, including stateless and state-
ful TCP assists, as well as the all-critical op-
erating system support required for widespread
deployment of these NIC assists.

To date, the acceptance of stateless and stateful
TCP assist has varied.

Stateful TCP Offload Engines (TOE) imple-
mentations never achieved any significant mar-
ket traction or OS support. Primary reasons for
lack of adoption include cost, implementation
complexity, lack of native OS support, secu-
rity/TCO concerns, and Moores law. On the
other hand, stateless assists, including check-
sum offload and TSO (Transmit Side Offload)
have achieved universal support in all major
operating systems and became a de-facto stan-
dard for high-end server NICs. TSO is espe-
cially effective for 10GbE applications since it
provides a dramatic reduction in CPU utiliza-
tion and supports 10Gbps line rate for normal
frames on current server systems.

Unfortunately, TSO offloads the transmit-side
only, and there is no similar stateless offload
OS support today on the receive side. To a large
degree, this negates the overall effect of imple-
menting LSO, especially in 10GbE applications
like single TCP session and back-to-back se-
tups.

This is not surprising, since receive-side of-
floads are less straightforward to implement

due to potential out-of-order receive and other
reasons. However, there are several NIC hard-
ware assists that have existed for some time and
could be quite effective, once Linux support is
in place.

For example, some of the current receive-side
assists that are shipped in Neterion 10GbE
NICs and can be used for receive-side stateless
offload include:

• MAC, IP, and TCP IPv4 and IPv6 header
separation; used for header pre-fetching
and LRO (Large Receive Offload). Also
improves PCI bus utilization by providing
better data alignment.

• RTH (Receive Traffic Hashing), based on
Jenkins Hash, and SPDM (Socket Pair Di-
rect Match); used for LRO and RTD (Re-
ceive Traffic Distribution).

• Multiple transmit and receive queues with
advanced steering criteria; used for RTD,
as well as for NIC virtualization, NIC
sharing, and operations on multi-core
CPU architectures.

• MSI and MSI-X interrupts; used in RTD,
as well as for reducing interrupt overhead

• Dynamic utilization-based and timer-
based interrupt moderation schemes; used
to reduce CPU utilization.

2 PCI-X bus bandwidth bottleneck

Theoretically, a PCI-X 1.0 slot is limited in
throughput to 8+Gbps, with a practical TCP
limit (unidirectional or bidirectional) around
7.6Gbps. PCI-X 2.0 and PCI-Express slots
support unidirectional 10Gbps traffic at line
rate Neterion has measured 9.96Gbps (unidi-
rectional) with PCI-X 2.0 Xframe-II adapters.



2005 Linux Symposium • 197

In order to saturate the PCI bus, a high-end
10GbE NIC needs to implement an efficient
DMA engine, as well as support Jumbo frames,
TSO, and data alignment.

3 Memory bandwidth bottleneck

Typically, memory bandwidth is not a limita-
tion in Opteron and Itanium systems, at least
not for TCP traffic. Xeon systems, however,
encounter memory bandwidth limitations be-
fore either PCI bus or CPU saturation occurs.
This can be demonstrated on Xeon systems
with 533Mhz FSB vs. 800Mhz FSB. In any
case, memory bandwidth will increase as a bot-
tleneck concern since advances in silicon mem-
ory architectures proceed at a much slower pace
than CPU advances. Neither stateful nor state-
less TCP offload addresses this problem. Up-
coming RDMA over Ethernet RNIC adapters
will ease memory bandwidth issues, and if
RNIC technology is successful in the market,
this will be one application where TOE can
be deployed (most likely, without exposing the
TOE as a separate interface)

4 CPU utilization bottleneck

On the transmit side, LSO and interrupt mod-
eration provide the desired result Neterion has
achieved utilization in the range of 10-15% of a
single Opteron CPU in order to saturate a PCI-
X 1.0 bus with TCP traffic. On the receive
side, however, CPU utilization emerged as the
biggest bottleneck to achieving 10GbE line rate
with 1500 bytes frames. With current NICs and
operating systems, using multiple processors
doesnt help much because in order to support
cache locality and optimize CPU utilization, a
TCP session needs to be kept on the same CPU.

Without achieving the cache locality, additional
CPU cycles are being used in a very inefficient
fashion. Moores law is often cited as a main ar-
gument against deploying TCP assists and of-
floads. However, the industry wants to deploy
full-rate 10GbE and cannot wait for CPUs that
don’t required offloading. Also, from an ap-
plication prospective CPU utilization expended
on stack processing must drop to single digits,
and on current systems, the only way to achieve
such a low utilization rate for 10GbE process-
ing is to bring in some sort of hardware assist.
The resolution to the CPU bottleneck is to add
Linux support for header separation and pre-
fetching, as well as for Receive Traffic Distri-
bution and Receive Side Offload.

5 Header separation and pre-
fetching

Neterion’s Xframe-II supports several flavors
of true hardware separation of Ethernet, IP and
TCP (both IPv4 and IPv6) headers. This has
been proven to be effective in achieving opti-
mal data alignment, but since cache misses on
headers represent one of the most significant
sources of TCP processing overhead, the real
benefit is expected to come from the ability to
support OS header pre-fetching and LRO.

6 Receive Traffic Distribution

The key to efficient distribution of TCP pro-
cessing across multiple CPUs is maintaining
an even load between processors while at the
same time keeping each TCP session on the
same CPU. In order to accomplish this, the host
must be able to identify each TCP flow and
dynamically associate the flow to its particular
hardware receive queue, particular MSI, DPC,



198 • Large Receive Offload implementation in Neterion 10GbE Ethernet driver

and CPU. In this way, load-balancing multi-
ple TCP sessions across CPUs while preserving
cache locality is possible. Neterion’s Xframe-II
10GbE ASIC achieves this through receive de-
scriptors that carry SPDM or RTH information
on a per packet basis, giving the host enough
visibility into packets to identify and associate
flows.

7 Large Receive Offload

In short, LRO assists the host in processing in-
coming network packets by aggregating them
on-the-fly into fewer but larger packets. This
is done with some hardware assist from the
NIC. It’s important that an LRO implementa-
tion avoid a very expensive state-aware TOE
implementation that would break compatibil-
ity with current operating systems and therefore
have only limited application.

To illustrate the effectiveness of LRO, con-
sider a network passing 1500 MTU packets at
a data rate of 10 Gigabit per second. In this
best possible case network traffic consists of
universally full-sized packets the host-resident
network stack will have to process more than
800,000 packets per second. If it takes on av-
erage 2000 instructions to process each packet
and one CPU clock cycle to execute each in-
struction, processing in the best case will take
consume more than 80% of a 2Ghz CPU, leav-
ing little for doing anything other than receiv-
ing data. This simplified calculation demon-
strates the critical characteristic of networks
that the performance of transport protocols is
dependent upon the granularity of data pack-
ets. The fewer packets presented to the protocol
stacks, the less CPU utilization required leav-
ing more cycle for the host to run applications.

The idea of Large Receive Offload, as the name
implies, is to give the host the same amount of

data but in bigger “chunks.” Reducing the num-
ber of packets the stacks have to process lowers
the load on the CPU. LRO implementation re-
lies on the bursty nature of TCP traffic, as well
as the low packet loss rates that are typical for
10GbE datacenter applications.

To implement Large Receive Offload, Nete-
rion’s Xframe-II 10GbE ASIC separates TCP
headers from the payload and calculates SPDM
or RTH information on a per packet basis. In
this way, it is possible to identify a burst of
consecutive packets that belong to the same
TCP session and can be aggregated into a single
oversized packet. Additionally, the LRO engine
must perform a number of checks on the packet
to ensure that it can be added to an LRO frame.

The initial implementation of Neterion’s LRO
is a combination of hardware (NIC) and soft-
ware (Linux driver). The NIC provides the fol-
lowing:

• multiple hardware-supported receive
queues

• link-layer, IP, and UDP/TCP checksum of-
floading

• header and data split, with link, IP, TCP,
and UDP headers placed in the host-
provided buffers separately from their cor-
responding packet datas

• SPDM or RTH “flow identifier.”

The Linux driver controls the NIC and coordi-
nates operation with the host-resident protocol
stack. It is the driver that links payloads to-
gether and builds a single header for the LRO
packet. If the flow is “interrupted,” such as a se-
quence gap, the driver signals the host-resident
network stack and sends all the accumulated re-
ceive data.



2005 Linux Symposium • 199

The simple algorithm below capitilizes on the
fact that the receive handling code at any point
in time potentially “sees” multiple new frames.
This is because of the interrupt coalescing,
which may or may not be used in combination
with polling (NAPI).

Depending on the interrupt moderation scheme
configured “into” the adapter, at high through-
put we are seeing batches of 10s or 100s re-
ceived frames within a context of a single inter-
rupt.

The same is true for NAPI, except that the re-
ceived “batch” tends to be even bigger, and
the processing is done in thenet_device->
poll() softirq context.

Within this received batch the LRO logic looks
for multiple back-to-back frames that belong to
the same stream.

The 12-step algorithm below is essentially a set
of simple hardware-friendly checks (see check
A, check B, etc. below) and a simple hardware-
friendly header manipulation.

Note that by virtue of being a pseudo-code cer-
tain low-level details were simplified out.

8 Large Receive Offload algorithm

1) for each (Rx descriptor, Rx frame) pair from
the received “batch”:

2) get LRO object that corresponds to the
descriptor->ring.

3) check A:
- should the frame be dropped? (check FCS and
a number of other conditions, including ECC)
if the frame is bad then drop it, increment the
stats, and continue to 1).

4) is the LRO object (located at step 2) empty?
if it contains previously accumulated data, goto
step 6); otherwise proceed with a series of
checks on the first to-be-LROed frame (next).

5) check B:
- is it IP frame?
- IP fragmented?
- passes a check for IP options?
- either TCP or UDP?
- both L3 and L4 offloaded checksums are
good?
- for TCP: passes a check for flags?
- for TCP: passes a check for TCP options? if
any check fails - goto step 11). otherwise goto
to step 10).

6) use hardware-assisted Receive Traffic Hash-
ing (RTH) to check whether the frame belongs
to the same stream; if not (i.e. cannot be LRO-
ed), goto 11).

7) check C:
- IP fragmented?
- passes a check for IP options?
- offloaded checksums are good?
- for TCP: passes a check for flags?
- for TCP: passes a check for TCP options? if
any of the checks fail, goto step 11).

8) check D:
- in-order TCP segment? if not, goto step 11).

9) append the new (the current) frame; update
the header of the first frame in the already LRO-
ed sequence; update LRO state (for the given
ring->LRO) accordingly.

10) check E:
- too much LRO data accumulated? (in terms
of both total size and number of “fragments”)
- is it the last frame in this received “batch”? if
‘no’ on both checks, continue to 1).

11) call netif_rx() or netif_receive_skb() (the
latter for NAPI) for the LRO-ed frame, if ex-
ists; call netif_rx() or netif_receive_skb() for



200 • Large Receive Offload implementation in Neterion 10GbE Ethernet driver

the current frame, if not “appended” within this
iteration (at step 9).

12) reset the LRO object and continue to 1).

9 Conclusion

Stateless hardware assists and TCP offloads
have become a de-facto standard feature in
both high-end Server NICs and operating sys-
tems. Support for additional stateless offloads
on the receive-side, with native driver support
in Linux, is required in order to provide 10Gbps
Ethernet data rates in efficient manner.

10 References

• Xframe 10GbE Programming manual

• The latest Neterion Linux driver code
(available in 2.6 kernel)



Proceedings of the
Linux Symposium

Volume One

July 20nd–23th, 2005
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Stephanie Donovan,Linux Symposium

Review Committee

Gerrit Huizenga,IBM
Matthew Wilcox,HP
Dirk Hohndel,Intel
Val Henson,Sun Microsystems
Jamal Hadi Salimi,Znyx
Matt Domsch,Dell
Andrew Hutton,Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


