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Abstract

USAGI Project [8] has improved Linux
IPv6 [1] stack. IPv6 IPsec is one of the prod-
ucts of our efforts. Linux IPsec [6] stack is im-
plemented based on XFRM architecture which
is introduced in linux-2.5. We design and im-
plement Mobile IPv6 (MIPv6) [4] Stack on the
architecture. MIPv6 uses IPsec for its secure
signaling. Accordingly IPv6 IPsec and MIPv6
closely cooperate each other. In this paper we
describe the architecture and how they work.

1 Introduction

IPv6 is the next version of an Internet Protocol.
The protocol was developed against IPv4 ad-
dress exhaustion. It was developed for not only
spreading address space but improving some
features such as plug and play, aggregatable
routing architecture, IPsec native support and
smooth transition.

IPsec provides security services which are in-
tegrity, authentication, anti-replay attacks and
confidentiality. Because IPsec is mandatory in
IPv6 specification, we must implement IPsec
to conform to it.

MIPv6 provides all IPv6 nodes with mobility
service which allows nodes to remain reach-
able while moving around IPv6 networks.
To support mobility, We need some signal-
ing architecture to notify movement and de-
liver mechanisms to assure reachability. Us-
ing MIPv6, we can keep routability to mobile
node’s home link address and deliver a packet
to mobile node wherever it is on the network.
Because IPv6 is able to process these extension
headers natively, we no longer need to arrange
foreign agents to all links where mobile node
may move to as Mobile IPv4 does, so that IP
mobility is easier to be introduce in IPv6 than
IPv4.

Linux supported IPsec at version 2.5.47. How-
ever it supporting only IPv4 IPsec, we imple-
mented IPsec stack for IPv6. Linux version 2.6
supports IPsec on both IPv6 and IPv4. XFRM
architecture and stackable destination were in-
troduced into the kernel for IPsec packet pro-
cessing [7]. They can be not only for IPsec
packet processing, but also general packet pro-
cessing such as MIPv6. USAGI Project de-
cided to expand the architecture to implement
MIPv6.

To develop Linux MIPv6, we cooperate with
GO/Core Project [2] which is proven in linux-
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2.4.

2 XFRM and stackable destination

XFRM architecture is mainly consist of three
structures which are xfrm_policy, xfrm_state
and xfrm_tmpl. xfrm_policy corresponds to
IPsec policy and xfrm_state to IPsec SA.
xfrm_tmpl is intermediate structure between
xfrm_policy and xfrm_state. Each IPsec pol-
icy and SA database are realized with list of
the structures which are also contained hash
database.

The kernel provides three interface to configure
xfrm structures about IPsec. One is PF_KEY
interface which is standard interface to manip-
ulate IPsec database. another is netlink socket
interface. The last is socket option interface.

Stackable destination is architecture for effi-
cient outbound packet processing. It is a link
list of dst_entry structure which is cached in
xfrm_policy. To create stackable destination,
the kernel linearly searches xfrm_policy with
flow information for a sending packet after
routing looking up. After finding xfrm_policy
corresponding to the flow information, the
kernel searches and gathers xfrm_state from
xfrm_state database by xfrm_tmpl in the
xfrm_policy. Gathering xfrm_states, the ker-
nel builds up stackable destination and sub-
stitutes it into its own member “bundles” to
cache it. Additionally xfrm_policy itself is
cache in flow_cache. Therefore the kernel only
needs to lookup xfrm_policy after second until
xfrm_state expired.

3 IPsec

IPsec functionality is consist of packet process-
ing and key exchanging for automatic keying.
In the implementation of Linux packet process-
ing runs in the kernel and key exchange is done

by a key exchange daemon in user space.

3.1 IPsec database and packet processing

IPsec packet processing is realized with XFRM
architecture and stackable destination. Out-
bound process is explained in previous sec-
tion. With searching XFRM database and
building stackable destination, the kernel gets
list of dst_entry structure. To process each
function which are ah6_output, esp6_output
and ipcomp6_output, the kernel searches inser-
tion point on a packet because a packet is cre-
ated including IPv6 header and other extension
headers before stackable destination process
(Figure 1). The insertion point is before up-
per layer payload, fragmentable destination op-
tions header, IPsec header or fragment header.
This is not efficient because the kernel searches
the insertion point every time when processing
one dst_entry.

Inbound process is simpler than outbound pro-
cess. When packet containing AH or ESP,
the kernel finds xfrm_state corresponding to
received packet and keep pointers of used
xfrm_state in sec_path of skb structure. Af-
ter process of IP layer, the kernel checks
the packet correctly processed with comparing
sec_path and xfrm_policy which is searched
with flow information of the packet (Figure 2).

3.2 Interface for user and IKEd

Current linux kernel provides users with
PF_KEY interface, which however is speci-
fied only for IPsec SA interface and it needs
some extension to configure IPsec policy. Be-
cause this extension is not standardized, there
are some different extensions and it prevents
compatibility of IKEd. Linux adopts the ex-
tension which is compatible with KAME [5]
so that racoon is the IKEd for linux. Racoon
is originally product of KAME project and
its could not compile on Linux. Fortunately
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ported racoon which is provided by ipsec-tools
project [3] is available.

4 Mobile IPv6

4.1 Mobile IPv6

In MIPv6, nodes are classified into 3 types.
One is a Mobile Node (MN) which moves in
the IPv6 Internet bringing its home address
(HoA) assigned in a home link which is a
base of mobility and in which there is a home
agent. Home agent (HA) is another type of
node which is a router and manages MN’s ad-
dresses and supports its signaling and ensures
reachability. The other is a correspondent node
(CN) which is a node communicating with a
MN. CN may be either mobile or stationary.

When MN in a foreign link, it uses a care-of ad-
dress (CoA) which is the address of a foreign
link. MIPv6 accordingly needs to manage rela-
tionship between CoA and HoA. A MN sends
a packet including HoA in an extension header
from CoA.

MIPv6 appends two extension headers and one
option for destination options header. Mobility
Header (MH) is an extension header for sig-
naling to manage binding cache which is a ad-
dress list for optimized routing. Type2 rout-
ing header (RT2) which is different from rout-
ing header in RFC2460 effects destination ad-
dress in IPv6 header and realizes direct rout-
ing according to binding cache. Home Address
Option (HAO) is an option carried by destina-
tion options header to contain HoA which is
an address of a MN in home link and swapped
with CoA. HAO effects source address in IPv6
header.

We describe an outline of the procedure tak-
ing as an example that MN making binding
cache on HA and communicating CN after MN
moving to a foreign link (Figure 3). This pro-

cedure is divided two steps. First is making
IPv6 over IPv6 tunnel between MN and HA
(1-4). After this step, HoA of MN becomes
routable and MN is able to communicate with
all nodes by using HoA via HA through the
tunnel. Second is route optimization between
MN and CN because MN always communicat-
ing via HA (5-8), a packet goes through a su-
perfluous route and communication uses more
network resource.

1. MN sends a Binding Update (BU) to HA.

2. HA updates a binding cache and returns
Binding Acknowledgment (BA) to MN.

3. MN updates a binding update list.

4. At this time, there is a tunnel between MN
and HA.

5. MN sends HoTI to CN through the tunnel
and CoTI to CN directly from CoA.

6. CN keeps contents of HoTI and CoTI. CN
returns HoT via HA and CoT to CoA.

7. When MN receives HoT and CoT, MN
sends BU to CN and updates its own bind-
ing list.

8. Then MN and CN have binding between
HoA and CoA. They communicate di-
rectly with appending HAO and RT2 to
packets. They have an optimized route.

4.2 Implementation

We design MIPv6 in Linux consisted with two
part. One is packet processing for RT2 and
HAO in the kernel and the other is MIPv6 dae-
mon (MIPd) to handle the signaling and man-
age binding cache and binding update list. It
is similar to separation of packet process and
IKEd in IPsec.
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Figure 3: MIPv6 procedure outline

Packet processing for MIPv6 is realized with
XFRM and stackable destination architecture,
because they are general way to process a
packet which matches some selector. Using
XFRM, we can avoid to implement duplicate
functionality in the kernel. MIPv6 needs to
manage a binding cache which specifies an MN
address on the network on CN and HA. It also
needs to manage a binding update list which
is list of sending binding update request for
CN on MN. We have two choices to implement
this functionality in the kernel or userland. Be-
cause we should implement functionalities in
userland if it is possible, we consider to basi-
cally implement it in userland. Implementing
in userland brings us advantages which are eas-
ier extension its functionality than implement-
ing in the kernel and reducing the kernel size.

Our MIPd’s roles are

• processing a signaling message including
an error message

• managing xfrm_policy and xfrm_state of
MIPv6 in the kernel through the netlink

• managing binding cache and binding up-
date list

• moving detection and changing CoA
when MIPd running on MN

4.3 XFRM operation

In this section, we describe MIPd XFRM op-
eration relating each nodes state with an exam-
ple which is a phase of binding update to HA
and making tunnel for routability. It is called
home registration. At first, we initialize MN
and HA to send and receive binding message.
On MN MIPd sets a xfrm_policy which allows
an outbound packet from HoA to HA, proto
MH, and type BU with appending HAO and a
xfrm_state which appends HOA with CoA to a
packet from HoA to HA and including MH of
BU. It also set xfrm_policy to receive BA, the
policy which allows an inbound packet from
HA to HoA including MH of BA with append-
ing RT2 and the inbound xfrm_state which pro-
cesses RT2. Because MIPd on HA can not ex-
pect the source address of BU from MN, it sets
a xfrm_policy which allows an inbound packet
from Any to HA with MH of BU if it has HAO.
It also set xfrm_state which processes HAO in-
cluded in a packet from ANY to HA with MH
of BU. See Figure 6:INITIALIZE.

MIPd on MN sends BU to HA, the packet
matches with the xfrm_policy and process with
the xfrm_state which appends HAO destina-
tion option and swap a source address in IPv6
header with a CoA. HA received the BU from
MN. In the kernel the packet matching the
xfrm_state, the kernel swaps addresses. Then



376 • Linux Symposium 2004 • Volume Two

MIPd on HA receives BU and updates a bind-
ing cache. MIPd configures xfrm_policy and
xfrm_state for route optimization with high
priority. See Figure 6:Routing Optimization.

At this moment, route optimization is available
for all packets between MN and HA. It also sets
up a tunnel between MN and HA. After some
xfrm_policy and xfrm_state configuration it re-
turns BA with RT2. The kernel of MN receives
BA with RT2 and processes it with the inbound
xfrm_state and throws up BA packet to MIPd.
MIPd on MN updates a binding update list and
sets up the tunnel. Each nodes has totally 6
policies at the end of registration.

5 Cooperation of IPsec and MIPv6

MIPv6 uses IPsec for its secure signaling be-
tween MN and HA. Our design uses XFRM
and stackable destination for both IPsec and
MIPv6. MIPv6 needs two kind of IPsec SA
one is a transport mode SA which is used for
signaling. The other is a tunnel mode SA
which is used instead of IPv6 over IPv6 tunnel.
We consider two steps to implement MIPv6
with IPsec about IPesc policy and SA manage-
ment. At first, we implement MIPd to not only
manage xfrm_policy and xfrm_state of MIPv6
but also IPsec and a xfrm_policy for MIPv6
holds both MIPv6 and IPsec xfrm_tmpl. This
implementation has a couple of issues. One is
separation of management of xfrm_policy and
xfrm_state of IPsec into MIPv6 and ordinary
IPsec. Another issue is interaction between the
kernel and IKE daemon. xfrm_policy includ-
ing a xfrm_tmpls of Mobile IPv6 and IPsec
sends a signal for only MIPd. The other is
the order of xfrm_policy. When some situa-
tion such as configuration done with wrong or-
der, a packet which would be originally applied
MIPv6 and IPsec not be applied only IPsec.

For improvement, we will let the kernel hold

two xfrm databases and mediate them be-
cause it is difficult to manage xfrm_tmpl in
a xfrm_policy via userland interface by two
management daemons and the xfrm_policies
have probably different granularity (Figure 7).
In current outbound process, the kernel looks
up single xfrm_ policy database and gets a
xfrm_policy which includes xfrm_tmpl for
IPsec and xfrm_tmpl for MIPv6. How-
ever we will change the kernel to separately
look up IPsec and MIPv6 xfrm databases
and create temporary xfrm_policy which holds
xfrm_tmpl gathered from each xfrm_policy.
The list of xfrm_tmpl must be serialized as
the order of packet processing. For instance,
the kernel must put xfrm_state for AH at the
end of the list. For inbound process, it is
not so difficult, the kernel processes a packet
by using xfrm_state which is searched and
needs to check sec_path in skb against each
xfrm_policy. To make it be efficient, the kernel
should use flow_cache for inbound process.

If we could merge two policies correctly, we
have another issue. MIPv6 needs two IPsec
SA between NM and HA. One is a transport
mode SA for signaling and the other is a tunnel
mode SA for other packet. Taking outbound
SA as an example, a transport mode SA is ap-
plied by the policy whose selector is from HoA
to HA and protocol MH. On the other hand a
tunnel mode SA is applied by the policy whose
selector is from HoA to ANY and protocol
ANY. The packet should be applied the trans-
port mode SA has possibility to be applied the
tunnel mode SA. We can avoid this mismatch
by using priority in xfrm_policy.

racoon has a couple of issues as IKE daemon
for MIPv6. One is that racoon can not han-
dle multiple peers which have address ANY as
peer’s address in its configuration. When it be-
haves as responder on HA, the issue occurs be-
cause despite multiple peers being, each con-
figuration has addresses from ANY to HA thus
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MN HA

xfrm_policy
 src:      ANY
 dst:      HA
 proto:   MH
 type:    BU
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 direct:  in

xfrm_tmpl
 src:     ANY
 dst:     HA
 proc    HAO
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Figure 7: MIPv6 and IPsec output process
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racoon can not distinct peer and fails to search
proper key. The other issue is update ISAKMP
SA end-point address. When MN moves, IKEs
on MN and HA need to detect movement in
some way and update its ISAKMP SAs be-
cause an address of those SAs is CoA. To
solve these issues, we will make racoon handle
the multiple peers listen netlink socket for the
detection and make the kernel notify address
changing via netlink socket.

6 Summary

USAGI Project implements IPv6 IPsec and
MIPv6 by using XFRM and stackable desti-
nation architecture. In this paper we describe
our design, implementation and issues. We
also describe future design of IPv6 IPsec and
MIPv6 which improves flexibility of xfrm con-
figuration.

7 future work

Our future works about MIPv6 are

• implement our new design

• make racoon support MIPv6

• NEMO

• Multihome

• vertical hand-over

Additionally we consider that we should im-
prove or change stackable destination itself be-
cause stackable destination runs after building
a packet. Thus, IPv6 packet processing is not
efficient itself because an IPv6 packet has some
extension header and the order of headers is not
always same as the order of process so that ev-
ery process searches correct point on a packet

from the head. We should improve its packet
processing with keeping xfrm architecture and
cache mechanism.
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