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Abstract

This paper presents several techniques for re-
ducing the bootup time of the Linux kernel, in-
cluding Execute-In-Place (XIP), avoidance of
calibrate_delay() , and reduced prob-
ing by certain drivers and subsystems. Using
a variety of techniques, the Linux kernel can
be booted on embedded hardware in under 500
milliseconds. Current efforts and future direc-
tions of work to improve bootup time are de-
scribed.

1 Introduction

Users of consumer electronics products expect
their devices to be available for use very soon
after being turned on. Configurations of Linux
for desktop and server markets exhibit boot
times in the range of 20 seconds to a few min-
utes, which is unacceptable for many consumer
products.

No single item is responsible for overall poor
boot time performance. Therefore a number
of techniques must be employed to reduce the
boot up time of a Linux system. This paper
presents several techniques which have been
found to be useful for embedded configurations
of Linux.

2 Overview of Boot Process

The entire boot process of Linux can be
roughly divided into 3 main areas: firmware,
kernel, and user space. The following is a list
of events during a typical boot sequence:

1. power on

2. firmware (bootloader) starts

3. kernel decompression starts

4. kernel start

5. user space start

6. RC script start

7. application start

8. first available use

This paper focuses on techniques for reducing
the bootup time up until the start of user space.
That is, techniques are described which reduce
the firmware time, and the kernel start time.
This includes activities through the completion
of event 4 in the list above.

The actual kernel execution begins with
the routinestart_kernel() , in the file
init/main.c .

An overview of major steps in the initialization
sequence of the kernel is as follows:
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• start_kernel()

– init architecture

– init interrupts

– init memory

– start idle thread

– call rest_init()

* start ‘init’ kernel thread

The init kernel thread performs a few
other tasks, then callsdo_basic_setup() ,
which calls do_initcalls() , to run
through the array of initialization routines for
drivers statically linked in the kernel. Finally,
this thread switches to user space byexecve -
ing to the first user space program, usually
/sbin/init .

• init (kernel thread)

– call do_basic_setup()

* call do_initcalls()

· init buses and drivers

– prepare and mount root filesystem

– call run_init_process()

* call execve() to start user
space process

3 Typical Desktop Boot Time

The boot times for a typical desktop system
were measured and the results are presented
below, to give an indication of the major areas
in the kernel where time is spent. While the
numbers in these tests differ somewhat from
those for a typical embedded system, it is use-
ful to see these to get an idea of where some of
the trouble spots are for kernel booting.

3.1 System

An HP XW4100 Linux workstation system
was used for these tests, with the following
characteristics:

• Pentium 4 HT processor, running at 3GHz

• 512 MB RAM

• Western Digital 40G hard drive on hda

• Generic CDROM drive on hdc

3.2 Measurement method

The kernel used was 2.6.6, with the KFI patch
applied. KFI stands for “Kernel Function In-
strumentation”. This is an in-kernel system
to measure the duration of each function ex-
ecuted during a particular profiling run. It
uses the-finstrument-functions op-
tion of gcc to instrument kernel functions
with callouts on each function entry and exit.
This code was authored by developers at Mon-
taVista Software, and a patch for 2.6.6 is avail-
able, although the code is not ready (as of the
time of this writing) for general publication.
Information about KFI and the patch are avail-
able at:

http://tree.celinuxforum.org/pubwiki

/moin.cgi

/KernelFunctionInstrumentation

3.3 Key delays

The average time for kernel startup of the test
system was about 7 seconds. This was the
amount of time for just the kernel and NOT the
firmware or user space. It corresponds to the
period of time between events 4 and 5 in the
boot sequence listed in Section 2.
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Some key delays were found in the kernel
startup on the test system. Table 1 shows
some of the key routines where time was spent
during bootup. These are the low-level rou-
tines where significant time was spent inside
the functions themselves, rather than in sub-
routines called by the functions.

Kernel Function No. of Avg. call Total
calls time time

delay_tsc 5153 1 5537
default_idle 312 1 325
get_cmos_time 1 500 500
psmouse_sendbyte 44 2.4 109
pci_bios_find_device 25 1.7 44
atkbd_sendbyte 7 3.7 26
calibrate_delay 1 24 24

Note: Times are in milliseconds.

Table 1: Functions consuming lots of time dur-
ing a typical desktop Linux kernel startup.

Note that over 80% of the total time of the
bootup (almost 6 seconds out of 7) was spent
busywaiting indelay_tsc() or spinning in
the routinedefault_idle() . It appears
that great reductions in total bootup time could
be achieved if these delays could be reduced,
or if it were possible to run some initialization
tasks concurrently.

Another interesting point is that the routine
get_cmos_time() was extremely variable
in the length of time it took. Measurements
of its duration ranged from under 100 millisec-
onds to almost one second. This routine, and
methods to avoid this delay and variability, are
discussed in section 9.

3.4 High-level delay areas

Since delay_tsc() is used (via various
delay mechanisms) for busywaiting by a
number of different subsystems, it is helpful to
identify the higher-level routines which end up
invoking this function.

Table 2 shows some high-level routines called
during kernel initialization, and the amount of
time they took to complete on the test ma-
chine. Duration times marked with a tilde de-
note functions which were highly variable in
duration.

Kernel Function Duration time

ide_init 3327
time_init ~500
isapnp_init 383
i8042_init 139
prepare_namespace ~50
calibrate_delay 24

Note: Times are in milliseconds.

Table 2: High-level delays during a typical
startup.

For a few of these, it is interesting to examine
the call sequences underneath the high-level
routines. This shows the connection between
the high-level routines that are taking a long
time to complete and the functions where the
time is actually being spent.

Figures 1 and 2 show some call sequences for
high-level calls which take a long time to com-
plete.

In each call tree, the number in parentheses is
the number of times that the routine was called
by the parent in this chain. Indentation shows
the call nesting level.

For example, in Figure 1,do_probe() is
called a total of 31 times byprobe_hwif() ,
and it callside_delay_50ms() 78 times,
andtry_to_identify() 8 times.

The timing data for the test system showed
that IDE initialization was a significant con-
tributor to overall bootup time. The call se-
quence underneathide_init() shows that
a large number of calls are made to the routine
ide_delay_50ms() , which in turn calls
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ide_init->
probe_for_hwifs(1)->

ide_scan_pcibus(1)->
ide_scan_pci_dev(2)->

piix_init_one(2)->
init_setup_piix(2)->

ide_setup_pci_device(2)->
probe_hwif_init(2)->

probe_hwif(4)->
do_probe(31)->

ide_delay_50ms(78)->
__const_udelay(3900)->

__delay(3900)->
delay_tsc(3900)

try_to_identify(8)->
actual_try_to_identify(8)->

ide_delay_50ms(24)->
__const_udelay(1200)->

__delay(1200)->
delay_tsc(1200)

Figure 1: IDE init call tree

isapnp_init->
isapnp_isolate(1)->

isapnp_isolate_rdp_select(1)->
__const_udelay(25)->

__delay(25)->
delay_tsc(25)

isapnp_key(18)->
__const_udelay(18)->

__delay(18)->
delay_tsc(18)

Figure 2: ISAPnP init call tree

__const_udelay() very many times. The
busywaits inide_delay_50ms() alone ac-
counted for over 5 seconds, or about 70% of
the total boot up time.

Another significant area of delay was the ini-
tialization of the ISAPnP system. This took
about 380 milliseconds on the test machine.

Both the mouse and the keyboard drivers used
crude busywaits to wait for acknowledgements
from their respective hardware.

Finally, the routinecalibrate_delay()
took about 25 milliseconds to run, to compute
the value ofloops_per_jiffy and print
(the related)BogoMips for the machine.

The remaining sections of this paper discuss
various specific methods for reducing bootup
time for embedded and desktop systems. Some
of these methods are directly related to some of
the delay areas identified in this test configura-
tion.

4 Kernel Execute-In-Place

A typical sequence of events during bootup is
for the bootloader to load a compressed kernel
image from either disk or Flash, placing it into
RAM. The kernel is decompressed, either dur-
ing or just after the copy operation. Then the
kernel is executed by jumping to the function
start_kernel() .

Kernel Execute-In-Place (XIP) is a mechanism
where the kernel instructions are executed di-
rectly from ROM or Flash.

In a kernel XIP configuration, the step of copy-
ing the kernel code segment into RAM is omit-
ted, as well as any decompression step. In-
stead, the kernel image is stored uncompressed
in ROM or Flash. The kernel data segments
still need to be initialized in RAM, but by elim-
inating the text segment copy and decompres-
sion, the overall effect is a reduction in the time
required for the firmware phase of the bootup.

Table 3 shows the differences in time duration
for various parts of the boot stage for a sys-
tem booted with and without use of kernel XIP.
The times in the table are shown in millisec-
onds. The table shows that using XIP in this
configuration significantly reduced the time to
copy the kernel to RAM (because only the data
segments were copied), and completely elim-
inated the time to decompress the kernel (453
milliseconds). However, the kernel initializa-
tion time increased slightly in the XIP configu-
ration, for a net savings of 463 milliseconds.

In order to support an Execute-In-Place con-
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Boot Stage Non-XIP time XIP time

Copy kernel to RAM 85 12
Decompress kernel 453 0
Kernel initialization 819 882
Total kernel boot time 1357 894

Note: Times are in milliseconds. Results are for
PowerPC 405 LP at 266 MHz

Table 3: Comparison of Non-XIP vs. XIP
bootup times

figuration, the kernel must be compiled and
linked so that the code is ready to be exe-
cuted from a fixed memory location. There
are examples of XIP configurations for ARM,
MIPS and SH platforms in the CELinux
source tree, available at:http://tree.
celinuxforum.org/

4.1 XIP Design Tradeoffs

There are tradeoffs involved in the use of XIP.
First, it is common for access times to flash
memory to be greater than access times to
RAM. Thus, a kernel executing from Flash
usually runs a bit slower than a kernel execut-
ing from RAM. Table 4 shows some of the re-
sults from running thelmbench benchmark
on system, with the kernel executing in a stan-
dard non-XIP configuration versus an XIP con-
figuration.

Operation Non-XIP XIP

stat() syscall 22.4 25.6
fork a process 4718 7106
context switching for 16
processes and 64k data size

932 1109

pipe communication 248 548

Note: Times are in microseconds. Results are for
lmbench benchmark run on OMAP 1510 (ARM9 at
168 MHz) processor

Table 4: Comparison of Non-XIP and XIP per-
formance

Some of the operations in the benchmark took
significantly longer with the kernel run in the
XIP configuration. Most individual operations
took about 20% to 30% longer. This perfor-
mance penalty is suffered permanently while
the kernel is running, and thus is a serious
drawback to the use of XIP for reducing bootup
time.

A second tradeoff with kernel XIP is between
the sizes of various types of memory in the
system. In the XIP configuration the kernel
must be stored uncompressed, so the amount
of Flash required for the kernel increases, and
is usually about doubled, versus a compressed
kernel image used with a non-XIP configura-
tion. However, the amount of RAM required
for the kernel is decreased, since the kernel
code segment is never copied to RAM. There-
fore, kernel XIP is also of interest for reducing
the runtime RAM footprint for Linux in em-
bedded systems.

There is additional research under way to in-
vestigate ways of reducing the performance
impact of using XIP. One promising technique
appears to be the use of “partial-XIP,” where a
highly active subset of the kernel is loaded into
RAM, but the majority of the kernel is executed
in place from Flash.

5 Delay Calibration Avoidance

One time-consuming operation inside the ker-
nel is the process of calibrating the value used
for delay loops. One of the first routines in
the kernel,calibrate_delay() , executes
a series of delays in order to determine the cor-
rect value for a variable calledloops_per_
jiffy , which is then subsequently used to ex-
ecute short delays in the kernel.

The cost of performing this calibration is, in-
terestingly, independent of processor speed.
Rather, it is dependent on the number of iter-
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ations required to perform the calibration, and
the length of each iteration. Each iteration re-
quires 1 jiffy, which is the length of time de-
fined by the HZ variable.

In 2.4 versions of the Linux kernel, most plat-
forms defined HZ as 100, which makes the
length of a jiffy 10 milliseconds. A typical
number of iterations for the calibration opera-
tion is 20 to 25, making the total time required
for this operation about 250 milliseconds.

In 2.6 versions of the Linux kernel, a few plat-
forms (notably i386) have changed HZ to 1000,
making the length of a jiffy 1 millisecond. On
those platforms, the typical cost of this calibra-
tion operation has decreased to about 25 mil-
liseconds. Thus, the benefit of eliminating this
operation on most standard desktop systems
has been reduced. However, for many embed-
ded systems, HZ is still defined as 100, which
makes bypassing the calibration useful.

It is easy to eliminate the calibration operation.
You can directly edit the code ininit/main.

c:calibrate_delay() to hardcode a value
for loops_per_jiffy , and avoid the cali-
bration entirely. Alternatively, there is a patch
available athttp://tree.celinuxforum.

org/pubwiki/moin.cgi/PresetLPJ

This patch allows you to use a kernel config-
uration option to specify a value forloops_
per_jiffy at kernel compile time. Alterna-
tively, the patch also allows you to use a ker-
nel command line argument to specify a preset
value forloops_per_jiffy at kernel boot
time.

6 Avoiding Probing During Bootup

Another technique for reducing bootup time is
to avoid probing during bootup. As a general
technique, this can consist of identifying hard-
ware which is known not to be present on one’s

machine, and making sure the kernel is com-
piled without the drivers for that hardware.

In the specific case of IDE, the kernel sup-
ports options at the command line to allow the
user to avoid performing probing for specific
interfaces and devices. To do this, you can
use the IDE and harddrivenoprobe options
at the kernel command line. Please see the
file Documentation/ide.txt in the ker-
nel source tree for details on the syntax of using
these options.

On the test machine, IDEnoprobe options
were used to reduce the amount of probing dur-
ing startup. The test machine had only a hard
drive on hda (ide0 interface, first device) and
a CD-ROM drive on hdc (ide1 interface, first
device).

In one test,noprobe options were specified
to suppress probing of non-used interfaces and
devices. Specifically, the following arguments
were added to the kernel command line:

hdb=none hdd=none ide2=noprobe

The kernel was booted and the result was
that the functionide_delay_50ms() was
called only 68 times, anddelay_tsc() was
called only 3453 times. During a regular
kernel boot without these options specified,
the functionide_delay_50ms() is called
102 times, anddelay_tsc() is called 5153
times. Each call todelay_tsc() takes
about 1 millisecond, so the total time savings
from using these options was 1700 millisec-
onds.

These IDEnoprobe options have been avail-
able at least since the 2.4 kernel series, and are
an easy way to reduce bootup time, without
even having to recompile the kernel.
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7 Reducing Probing Delays

As was noted on the test machine, IDE ini-
tialization takes a significant percentage of
the total bootup time. Almost all of this
time is spent busywaiting in the routineide_
delay_50ms() .

It is trivial to modify the value of the time-
out used in this routine. As an experiment,
this code (located in the filedrivers/ide/
ide.c ) was modified to only delay 5 millisec-
onds instead of 50 milliseconds.

The results of this change were interesting.
When a kernel with this change was run on
the test machine, the total time for theide_
init() routine dropped from 3327 millisec-
onds to 339 milliseconds. The total time spent
in all invocations of ide_delay_50ms()
was reduced from 5471 milliseconds to 552
milliseconds. The overall bootup time was re-
duced accordingly, by about 5 seconds.

The ide devices were successfully detected,
and the devices operated without problem on
the test machine. However, this configuration
was not tested exhaustively.

Reducing the duration of the delay in theide_
delay_50ms() routine provides a substan-
tial reduction in the overall bootup time for the
kernel on a typical desktop system. It also has
potential use in embedded systems where PCI-
based IDE drives are used.

However, there are several issues with this
modification that need to be resolved. This
change may not support legacy hardware
which requires long delays for proper probing
and initializing. The kernel code needs to be
analyzed to determine if any callers of this rou-
tine really need the 50 milliseconds of delay
that they are requesting. Also, it should be de-
termined whether this call is used only in ini-
tialization context or if it is used during regular

runtime use of IDE devices also.

Also, it may be that 5 milliseconds does not
represent the lowest possible value for this de-
lay. It is possible that this value will need to
be tuned to match the hardware for a particular
machine. This type of tuning may be accept-
able in the embedded space, where the hard-
ware configuration of a product may be fixed.
But it may be too risky to use in desktop con-
figurations of Linux, where the hardware is not
known ahead of time.

More experimentation, testing and validation
are required before this technique should be
used.

IMPORTANT NOTE: You should probably not
experiment with this modification on produc-
tion hardware unless you have evaluated the
risks.

8 Using the “quiet” Option

One non-obvious method to reduce overhead
during booting is to use thequiet option on
the kernel command line. This option changes
the loglevel to 4, which suppresses the output
of regular (non-emergency) printk messages.
Even though the messages are not printed to
the system console, they are still placed in the
kernel printk buffer, and can be retrieved after
bootup using thedmesg command.

When embedded systems boot with a serial
console, the speed of printing the characters
to the console is constrained by the speed of
the serial output. Also, depending on the
driver, some VGA console operations (such as
scrolling the screen) may be performed in soft-
ware. For slow processors, this may take a sig-
nificant amount of time. In either case, the cost
of performing output of printk messages during
bootup may be high. But it is easily eliminated
using thequiet command line option.
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Table 5 shows the difference in bootup time of
using thequiet option and not, for two dif-
ferent systems (one with a serial console and
one with a VGA console).

9 RTC Read Synchronization

One routine that potentially takes a long time
during kernel startup isget_cmos_time() .
This routine is used to read the value of the ex-
ternal real-time clock (RTC) when the kernel
boots. Currently, this routine delays until the
edge of the next second rollover, in order to en-
sure that the time value in the kernel is accurate
with respect to the RTC.

However, this operation can take up to one full
second to complete, and thus introduces up to
1 second of variability in the total bootup time.
For systems where the target bootup time is un-
der 1 second, this variability is unacceptable.

The synchronization in this routine is easy
to remove. It can be eliminated by re-
moving the first two loops in the function
get_cmos_time() , which is located in
include/asm-i386/mach-default/

mach_time.h for the i386 architecture. Sim-
ilar routines are present in the kernel source
tree for other architectures.

When the synchronization is removed, the rou-
tine completes very quickly.

One tradeoff in making this modification is that
the time stored by the Linux kernel is no longer
completely synchronized (to the boundary of a
second) with the time in the machine’s realtime
clock hardware. Some systems save the system
time back out to the hardware clock on system
shutdown. After numerous bootups and shut-
downs, this lack of synchronization will cause
the realtime clock value to drift from the cor-
rect time value.

Since the amount of un-synchronization is up
to a second per boot cycle, this drift can be
significant. However, for some embedded ap-
plications, this drift is unimportant. Also, in
some situations the system time may be syn-
chronized with an external source anyway, so
the drift, if any, is corrected under normal cir-
cumstances soon after booting.

10 User space Work

There are a number of techniques currently
available or under development for user space
bootup time reductions. These techniques are
(mostly) outside the scope of kernel develop-
ment, but may provide additional benefits for
reducing overall bootup time for Linux sys-
tems.

Some of these techniques are mentioned briefly
in this section.

10.1 Application XIP

One technique for improving application
startup speed is application XIP, which is sim-
ilar to the kernel XIP discussed in this paper.
To support application XIP the kernel must be
compiled with a file system where files can be
stored linearly (where the blocks for a file are
stored contiguously) and uncompressed. One
file system which supports this is CRAMFS,
with the LINEAR option turned on. This is a
read-only file system.

With application XIP, when a program is ex-
ecuted, the kernel program loader maps the
text segments for applications directly from the
flash memory of the file system. This saves the
time required to load these segments into sys-
tem RAM.
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Platform Speed console w/o quiet with quiet difference
type option option

SH-4 SH7751R 240 MHz VGA 637 461 176
OMAP 1510 (ARM 9) 168 MHz serial 551 280 271

Note: Times are in milliseconds

Table 5: Bootup time with and without thequiet option

10.2 RC Script improvements

Also, there are a number of projects which
strive to decrease total bootup time of a system
by parallelizing the execution of the system
run-command scripts (“RC scripts”). There is
a list of resources for some of these projects at
the following web site:

http://tree.celinuxforum.org/
pubwiki/moin.cgi/

BootupTimeWorkingGroup

Also, there has been some research conducted
in reducing the overhead of running RC scripts.
This consists of modifying the multi-function
programbusybox to reduce the number and
cost of forks during RC script processing, and
to optimize the usage of functions builtin to the
busybox program. Initial testing has shown a
reduction from about 8 seconds to 5 seconds
for a particular set of Debian RC scripts on an
OMAP 1510 (ARM 9) processor, running at
168 MHz.

11 Results

By use of the some of the techniques men-
tioned in this paper, as well as additional tech-
niques, Sony was able to boot a 2.4.20-based
Linux system, from power on to user space dis-
play of a greeting image and sound playback,
in 1.2 seconds. The time from power on to the
end of kernel initialization (first user space in-
struction) in this configuration was about 110

milliseconds. The processor was a TI OMAP
1510 processor, with an ARM9-based core,
running at 168 MHz.

Some of the techniques used for reducing the
bootup time of embedded systems can also be
used for desktop or server systems. Often, it
is possible, with rather simple and small mod-
ifications, to decrease the bootup time of the
Linux kernel to only a few seconds. In the
desktop configuration of Linux presented here,
techniques from this paper were used to re-
duced the total bootup time from around 7 sec-
onds to around 1 second. This was with no
loss of functionality that the author could de-
tect (with limited testing).

12 Further Research

As stated in the beginning of the paper, numer-
ous techniques can be employed to reduce the
overall bootup time of Linux systems. Further
work continues or is needed in a number of ar-
eas.

12.1 Concurrent Driver Init

One area of additional research that seems
promising is to structure driver initializations
in the kernel so that they can proceed in par-
allel. For some items, like IDE initialization,
there are large delays as buses and devices are
probed and initialized. The time spent in such
busywaits could potentially be used to perform
other startup tasks, concurrently with the ini-
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tializations waiting for hardware events to oc-
cur or time out.

The big problem to be addressed with con-
current initialization is to identify what ker-
nel startup activities can be allowed to occur
in parallel. The kernel init sequence is already
a carefully ordered sequence of events to make
sure that critical startup dependencies are ob-
served. Any system of concurrent driver ini-
tialization will have to provide a mechanism
to guarantee sequencing of initialization tasks
which have order dependencies.

12.2 Partial XIP

Another possible area of further investiga-
tion, which has already been mentioned, is
“partial XIP,” whereby the kernel is executed
mostlyin-place. Prototype code already exists
which demonstrates the mechanisms necessary
to move a subset of an XIP-configured kernel
into RAM, for faster code execution. The key
to making partial kernel XIP useful will be to
ensure correct identification (either statically or
dynamically) of the sections of kernel code that
need to be moved to RAM. Also, experimenta-
tion and testing need to be performed to deter-
mine the appropriate tradeoff between the size
of the RAM-based portion of the kernel, and
the effect on bootup time and system runtime
performance.

12.3 Pre-linking and Lazy Linking

Finally, research is needed into reducing the
time required to fixup links between programs
and their shared libraries.

Two systems that have been proposed and ex-
perimented with are pre-linking and lazy link-
ing. Pre-linking involves fixing the location in
virtual memory of the shared libraries for a sys-
tem, and performing fixups on the programs of
the system ahead of time. Lazy linking consists

of only performing fixups on demand as library
routines are called by a running program.

Additional research is needed with both of
these techniques to determine if they can pro-
vide benefit for current Linux systems.
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