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1 Abstract

In this paper we address some of the issues
identified during the development and stabi-
lization of Asynchronous I/O (AIO) on Linux
2.6.

We start by describing improvements made to
optimize the throughput of streaming buffered
filesystem AIO for microbenchmark runs.
Next, we discuss certain tricky issues in en-
suring data integrity between AIO Direct I/O
(DIO) and buffered I/O, and take a deeper look
at synchronized I/O guarantees, concurrent
I/O, write-ordering issues and the improve-
ments resulting from radix-tree based write-
back changes in the Linux VFS.

We then investigate the results of using Linux
2.6 filesystem AIO on the performance met-
rics for certain enterprise database workloads
which are expected to benefit from AIO, and
mention a few tips on optimizing AIO for such
workloads. Finally, we briefly discuss the is-
sues around workloads that need to combine
asynchronous disk I/O and network I/O.

2 Introduction

AIO enables a single application thread to
overlap processing with I/O operations for bet-
ter utilization of CPU and devices. AIO can

improve the performance of certain kinds of
I/O intensive applications like databases, web-
servers and streaming-content servers. The
use of AIO also tends to help such applica-
tions adapt and scale more smoothly to varying
loads.

2.1 Overview of kernel AIO in Linux 2.6

The Linux 2.6 kernel implements in-kernel
support for AIO. A low-level native AIO sys-
tem call interface is provided that can be in-
voked directly by applications or used by li-
brary implementations to build POSIX/SUS
semantics. All discussion hereafter in this pa-
per pertains to the native kernel AIO interfaces.

Applications can submit one or more
I/O requests asynchronously using the
io_submit() system call, and ob-
tain completion notification using the
io_getevents() system call. Each
I/O request specifies the operation (typically
read/write), the file descriptor and the pa-
rameters for the operation (e.g., file offset,
buffer). I/O requests are associated with the
completion queue (ioctx) they were submitted
against. The results of I/O are reported as
completion events on this queue, and reaped
usingio_getevents() .

The design of AIO for the Linux 2.6 kernel has
been discussed in [1], including the motivation
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behind certain architectural choices, for exam-
ple:

• Sharing a common code path for AIO and
regular I/O

• A retry-based model for AIO continua-
tions across blocking points in the case of
buffered filesystem AIO (currently imple-
mented as a set of patches to the Linux 2.6
kernel) where worker threads take on the
caller’s address space for executing retries
involving access to user-space buffers.

2.2 Background on retry-based AIO

The retry-based model allows an AIO request
to be executed as a series of non-blocking it-
erations. Each iteration retries the remain-
ing part of the request from where the last it-
eration left off, re-issuing the corresponding
AIO filesystem operation with modified argu-
ments representing the remaining I/O. The re-
tries are “kicked” via a special AIO waitqueue
callback routine,aio_wake_function() ,
which replaces the default waitqueue entry
used for blocking waits.

The high-level retry infrastructure is respon-
sible for running the iterations in the address
space context of the caller, and ensures that
only one retry instance is active at a given time.
This relieves the fops themselves from having
to deal with potential races of that sort.

2.3 Overview of the rest of the paper

In subsequent sections of this paper, we de-
scribe our experiences in addressing several is-
sues identified during the optimization and sta-
bilization efforts related to the kernel AIO im-
plementation for Linux 2.6, mainly in the area
of disk- or filesystem-based AIO.

We observe, for example, how I/O patterns
generated by the common VFS code paths

used by regular and retry-based AIO could
be non-optimal for streaming AIO requests,
and we describe the modifications that ad-
dress this finding. A different set of prob-
lems that has seen some development ac-
tivity are the races, exposures and poten-
tial data-integrity concerns between direct and
buffered I/O, which become especially tricky
in the presence of AIO. Some of these issues
motivated Andrew Morton’s modified page-
writeback design for the VFS using tagged
radix-tree lookups, and we discuss the implica-
tions for the AIOO_SYNCwrite implementa-
tion. In general, disk-based filesystem AIO re-
quirements for database workloads have been a
guiding consideration in resolving some of the
trade-offs encountered, and we present some
initial performance results for such workloads.
Lastly, we touch upon potential approaches to
allow processing of disk-based AIO and com-
munications I/O within a single event loop.

3 Streaming AIO reads

3.1 Basic retry pattern for single AIO read

The retry-based design for buffered filesystem
AIO read works by converting each blocking
wait for read completion on a page into aretry
exit. The design queues an asynchronous no-
tification callback and returns the number of
bytes for which the read has completed so far
without blocking. Then, when the page be-
comes up-to-date, the callback kicks off a retry
continuation in task context. This retry contin-
uation invokes the same filesystem read opera-
tion again using the caller’s address space, but
this time with arguments modified to reflect the
remaining part of the read request.

For example, given a 16KB read request start-
ing at offset 0, where the first 4KB is already
in cache, one might see the following sequence
of retries (in the absence of readahead):
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first time:
fop->aio_read(fd, 0, 16384) = 4096

and when read completes for the second page:
fop->aio_read(fd, 4096, 12288) = 4096

and when read completes for the third page:
fop->aio_read(fd, 8192, 8192) = 4096

and when read completes for the fourth page:
fop->aio_read(fd, 12288, 4096) = 4096

3.2 Impact of readahead on single AIO read

Usually, however, the readahead logic attempts
to batch read requests in advance. Hence, more
I/O would be seen to have completed at each
retry. The logic attempts to predict the optimal
readahead window based on state it maintains
about the sequentiality of past read requests on
the same file descriptor. Thus, given a maxi-
mum readahead window size of 128KB, the se-
quence of retries would appear to be more like
the following example, which results in signif-
icantly improved throughput:

first time:
fop->aio_read(fd, 0, 16384) = 4096,

after issuing readahead
for 128KB/2 = 64KB

and when read completes for the above I/O:
fop->aio_read(fd, 4096, 12288) = 12288

Notice that care is taken to ensure that reada-
heads are not repeated during retries.

3.3 Impact of readahead on streaming AIO
reads

In the case of streaming AIO reads, a sequence
of AIO read requests is issued on the same
file descriptor, where subsequent reads are sub-
mitted without waiting for previous requests to
complete (contrast this with a sequence of syn-
chronous reads).

Interestingly, we encountered a significant
throughput degradation as a result of the in-
terplay of readahead and streaming AIO reads.
To see why, consider the retry sequence for
streaming random AIO read requests of 16KB,

whereo1, o2, o3, ... refer to the ran-
dom offsets where these reads are issued:

first time:
fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,

after issuing readahead for 64KB
as the readahead logic sees the first page
of the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 8KB (notice
the shrinkage of the readahead window
because of non-sequentiality seen by the
readahead logic)

fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after maximally shrinking the readahead
window, turning off readahead and issuing
4KB read in the slow path

fop->aio_read(fd, o4, 16384) = -EIOCBRETRY,
after issuing 4KB read in the slow path

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 8192
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 4096
and when read completes for o4

fop->aio_read(fd, o3, 16384) = 4096
.
.

In steady state, this amounts to a maximally-
shrunk readahead window with 4KB reads at
random offsets being issued serially one at a
time on a slow path, causing seek storms and
driving throughputs down severely.

3.4 Upfront readahead for improved stream-
ing AIO read throughputs

To address this issue, we made the readahead
logic aware of the sequentiality of all pages in a
single read request upfront—before submitting
the next read request. This resulted in a more
desirable outcome as follows:

fop->aio_read(fd, o1, 16384) = -EIOCBRETRY,
after issuing readahead for 64KB
as the readahead logic sees all the 4
pages for the read

fop->aio_read(fd, o2, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window shrinks to
4+1=5 pages)
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fop->aio_read(fd, o3, 16384) = -EIOCBRETRY,
after issuing readahead for 20KB, as the
readahead logic sees all 4 pages of the
read (the readahead window is maintained
at 4+1=5 pages)

.

.
and when read completes for o1

fop->aio_read(fd, o1, 16384) = 16384
and when read completes for o2

fop->aio_read(fd, o2, 16384) = 16384
and when read completes for o3

fop->aio_read(fd, o3, 16384) = 16384
.
.

3.5 Upfront readahead and sendfile regres-
sions

At first sight it appears that upfront readahead
is a reasonable change for all situations, since
it immediately passes to the readahead logic
the entire size of the request. However, it has
the unintended, potential side-effect of losing
pipelining benefits for really large reads, or op-
erations like sendfile which involve post pro-
cessing I/O on the contents just read. One way
to address this is to clip the maximum size
of upfront readahead to the maximum reada-
head setting for the device. To see why even
that may not suffice for certain situations, let
us take a look at the following sequence for
a webserver that uses non-blocking sendfile to
serve a large (2GB) file.

sendfile(fd, 0, 2GB, fd2) = 8192,
tells readahead about up to 128KB
of the read

sendfile(fd, 8192, 2GB - 8192, fd2) = 8192,
tells readahead about 8KB - 132KB
of the read

sendfile(fd, 16384, 2GB - 16384, fd2) = 8192,
tells readahead about 16KB-140KB
of the read

...

This confuses the readahead logic about the
I/O pattern which appears to be 0–128K, 8K–
132K, 16K–140K instead of clear sequentiality
from 0–2GB that is really appropriate.

To avoid such unanticipated issues, upfront
readahead required a special case for AIO

alone, limited to the maximum readahead set-
ting for the device.

3.6 Streaming AIO read microbenchmark
comparisons

We explored streaming AIO throughput im-
provements with the retry-based AIO imple-
mentation and optimizations discussed above,
using a custom microbenchmark called aio-
stress [2]. aio-stress issues a stream of AIO
requests to one or more files, where one can
vary several parameters including I/O unit size,
total I/O size, depth of iocbs submitted at a
time, number of concurrent threads, and type
and pattern of I/O operations, and reports the
overall throughput attained.

The hardware included a 4-way 700MHz
Pentium® III machine with 512MB of RAM
and a 1MB L2 cache. The disk subsystem
used for the I/O tests consisted of an Adaptec
AIC7896/97 Ultra2 SCSI controller connected
to a disk enclosure with six 9GB disks, one
of which was configured as an ext3 filesystem
with a block size of 4KB for testing.

The runs compared aio-stress throughputs for
streaming random buffered I/O reads (i.e.,
without O_DIRECT), with and without the
previously described changes. All the runs
were for the case where the file was not al-
ready cached in memory. The above graph
summarizes how the results varied across in-
dividual request sizes of 4KB to 64KB, where
I/O was targeted to a single file of size 1GB,
the depth of iocbs outstanding at a time being
64KB. A third run was performed to find out
how the results compared with equivalent runs
using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all
block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.
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Figure 1: Comparisons of streaming random
AIO read throughputs

4 AIO DIO vs cached I/O integrity
issues

4.1 DIO vs buffered races

Stephen Tweedie discovered several races be-
tween DIO and buffered I/O to the same file
[3]. These races could lead to potential stale-
data exposures and even data-integrity issues.
Most instances were related to situations when
in-core meta-data updates were visible before
actual instantiation or resetting of correspond-
ing data blocks on disk. Problems could also
arise when meta-data updates were not visible
to other code paths that could simultaneously
update meta-data as well. The races mainly af-
fected sparse files due to the lack of atomicity
between the file flush in the DIO paths and ac-
tual data block accesses.

The solution that Stephen Tweedie came
up with, and which Badari Pulavarty re-
ported to Linux 2.6, involved protecting block
lookups and meta-data updates with the inode
semaphore (i_sem ) in DIO paths for both read
and write, atomically with the file flush. Over-
writing of sparse blocks in the DIO write path
was modified to fall back to buffered writes.
Finally, an additional semaphore (i_alloc_
sem) was introduced to lock out deallocation

of blocks by a truncate while DIO was in
progress. The semaphore was implemented
held in shared mode by DIO and in exclusive
mode by truncate.

Note that handling the new locking rules (i.e.,
lock ordering of i_sem first and theni_
alloc_sem ) while allowing for filesystem-
specific implementations of the DIO and file-
write interfaces had to be handled with some
care.

4.2 AIO-DIO specific races

The inclusion of AIO in Linux 2.6 added some
tricky scenarios to the above-described prob-
lems because of the potential races inherent in
returning without waiting for I/O completion.
The interplay of AIO-DIO writes and truncate
was a particular worry as it could lead to cor-
ruption of file data; for example, blocks could
get deallocated and reallocated to a new file
while an AIO-DIO write to the file was still in
progress. To avoid this, AIO-DIO had to return
with i_alloc_sem held, and only release it
as part of I/O completion post-processing. No-
tice that this also had implications for AIO can-
cellation.

File size updates for AIO-DIO file extends
could expose unwritten blocks if they hap-
pened before I/O completed asynchronously.
The case involving fallback to buffered I/O
was particularly non-trivial if a single request
spanned allocated and sparse regions of a
file. Specifically, part of the I/O could have
been initiated via DIO then continued asyn-
chronously, while the fallback to buffered I/O
occurred and signaled I/O completion to the
application. The application may thus have
reused its I/O buffer, overwriting it with other
data and potentially causing file data corrup-
tion if writeout to disk had still been pending.

It might appear that some of these problems
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could be avoided if I/O schedulers guaranteed
the ordering of I/O requests issued to the same
disk block. However, this isn’t a simple propo-
sition in the current architecture, especially in
generalizing the design to all possible cases,
including network block devices. The use of
I/O barriers would be necessary and the costs
may not be justified for these special-case situ-
ations.

Instead, a pragmatic approach was taken in or-
der to address this based on the assumptions
that true asynchronous behaviour was really
meaningful in practice, mainly when perform-
ing I/O to already-allocated file blocks. For
example, databases typically preallocate files
at the time of creation, so that AIO writes
during normal operation and in performance-
critical paths do not extend the file or encounter
sparse regions. Thus, for the sake of correct-
ness, synchronous behaviour may be tolerable
for AIO writes involving sparse regions or file
extends. This compromise simplified the han-
dling of the scenarios described earlier. AIO-
DIO file extends now wait for I/O to complete
and update the file size. AIO-DIO writes span-
ning allocated and sparse regions now wait for
previously- issued DIO for that request to com-
plete before falling back to buffered I/O.

5 Concurrent I/O with synchro-
nized write guarantees

An application opts for synchronized writes
(by using theO_SYNCoption on file open)
when the I/O must be committed to disk be-
fore the write request completes. In the case
of DIO, writes directly go to disk anyway. For
buffered I/O, data is first copied into the page
cache and later written out to disk; if synchro-
nized I/O is specified then the request returns
only after the writeout is complete.

An application might also choose to synchro-

nize previously-issued writes to disk by invok-
ing fsync(), which writes back data from the
page cache to disk and waits for writeout to
complete before returning.

5.1 Concurrent DIO writes

DIO writes formerly held the inode semaphore
in exclusive mode until write completion. This
helped ensure atomicity of DIO writes and
protected against potential file data corruption
races with truncate. However, it also meant that
multiple threads or processes submitting par-
allel DIOs to different parts of the same file
effectively became serialized synchronously.
If the same behaviour were extended to AIO
(i.e., having thei_sem held through I/O com-
pletion for AIO-DIO writes), it would signif-
icantly degrade throughput of streaming AIO
writes as subsequent write submissions would
block until completion of the previous request.

With the fixes described in the previous sec-
tion, such synchronous serialization is avoid-
able without loss of correctness, as the inode
semaphore needs to be held only when looking
up the blocks to write, and not while actual I/O
is in progress on the data blocks. This could al-
low concurrent DIO writes on different parts of
a file to proceed simultaneously, and efficient
throughputs for streaming AIO-DIO writes.

5.2 Concurrent O_SYNCbuffered writes

In the original writeback design in the Linux
VFS, per-address space lists were maintained
for dirty pages and pages under writeback for
a given file. Synchronized write was imple-
mented by traversing these lists to issue write-
outs for the dirty pages and waiting for write-
back to complete on the pages on the writeback
list. The inode semaphore had to be held all
through to avoid possibilities of livelocking on
these lists as further writes streamed into the
same file. While this helped maintain atomicity
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of writes, it meant that parallelO_SYNCwrites
to different parts of the file were effectively
serialized synchronously. Further, dependence
on i_sem -protected state in the address space
lists across I/O waits made it difficult to retry-
enable this code path for AIO support.

In order to allow concurrentO_SYNCwrites to
be active on a file, the range of pages to be
written back and waited on could instead be
obtained directly through a radix-tree lookup
for the range of offsets in the file that was be-
ing written out by the request [4]. This would
avoid traversal of the page lists and hence the
need to holdi_sem across the I/O waits. Such
an approach would also make it possible to
completeO_SYNCwrites as a sequence of non-
blocking retry iterations across the range of
bytes in a given request.

5.3 Data-integrity guarantees

Background writeout threads cannot block on
the inode semaphore like O_SYNC/fsync writ-
ers. Hence, with the per-address space lists
writeback model, some juggling involving
movement across multiple lists was required
to avoid livelocks. The implementation had
to make sure that pages which by chance got
picked up for processing by background write-
outs didn’t slip from consideration when wait-
ing for writeback to complete for a synchro-
nized write request. The latter would be partic-
ularly relevant for ensuring synchronized-write
guarantees that impacted data integrity for ap-
plications. However, as Daniel McNeil’s anal-
ysis would indicate [5], getting this right re-
quired the writeback code to write and wait
upon I/O and dirty pages which were initiated
by other processes, and that turned out to be
fairly tricky.

One solution that was explored was per-
address space serialization of writeback to en-
sure exclusivity to synchronous writers and

shared mode for background writers. It in-
volved navigating issues with busy-waits in
background writers and the code was begin-
ning to get complicated and potentially fragile.

This was one of the problems that finally
prompted Andrew Morton to change the entire
VFS writeback code to use radix-tree walks in-
stead of the per-address space pagelists. The
main advantage was that avoiding the need
for movement across lists during state changes
(e.g., when re-dirtying a page if its buffers were
locked for I/O by another process) reduced the
chances of pages getting missed from consid-
eration without the added serialization of entire
writebacks.

6 Tagged radix-tree based write-
back

For the radix-tree walk writeback design to per-
form as well as the address space lists-based
approach, an efficient way to get to the pages
of interest in the radix trees is required. This
is especially so when there are many pages in
the pagecache but only a few are dirty or under
writeback. Andrew Morton solved this prob-
lem by implementing tagged radix-tree lookup
support to enable lookup of dirty or writeback
pages in O(log64(n)) time [6].

This was achieved by adding tag bits for each
slot to each radix-tree node. If a node is
tagged, then the corresponding slots on all the
nodes above it in the tree are tagged. Thus,
to search for a particular tag, one would keep
going down sub-trees under slots which have
the tag bit set until the tagged leaf nodes are
accessed. A tagged gang lookup function is
used for in-order searches for dirty or write-
back pages within a specified range. These
lookups are used to replace the per-address-
space page lists altogether.
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To synchronize writes to disk, a tagged radix-
tree gang lookup of dirty pages in the byte-
range corresponding to the write request is per-
formed and the resulting pages are written out.
Next, pages under writeback in the byte-range
are obtained through a tagged radix-tree gang
lookup of writeback pages, and we wait for
writeback to complete on these pages (without
having to hold the inode semaphore across the
waits). Observe how this logic lends itself to be
broken up into a series of non-blocking retry it-
erations proceeding in-order through the range.

The same logic can also be used for a whole
file sync, by specifying a byte-range that spans
the entire file.

Background writers also use tagged radix-tree
gang lookups of dirty pages. Instead of always
scanning a file from its first dirty page, the in-
dex where the last batch of writeout terminated
is tracked so the next batch of writeouts can be
started after that point.

7 Streaming AIO writes

The tagged radix-tree walk writeback approach
greatly simplifies the design of AIO support for
synchronized writes, as mentioned in the previ-
ous section,

7.1 Basic retry pattern for synchronized AIO
writes

The retry-based design for buffered AIOO_
SYNCwrites works by converting each block-
ing wait for writeback completion of a page
into a retry exit. The conversion point queues
an asynchronous notification callback and re-
turns to the caller of the filesystem’s AIO
write operation the number of bytes for which
writeback has completed so far without block-
ing. Then, when writeback completes for that
page, the callback kicks off a retry continuation
in task context which invokes the same AIO

write operation again using the caller’s address
space, but this time with arguments modified to
reflect the remaining part of the write request.

As writeouts for the range would have already
been issued the first time before the loop to
wait for writeback completion, the implemen-
tation takes care not to re-dirty pages or re-
issue writeouts during subsequent retries of
AIO write. Instead, when the code detects that
it is being called in a retry context, it simply
falls through directly to the step involving wait-
on-writeback for the remaining range as speci-
fied by the modified arguments.

7.2 Filtered waitqueues to avoid retry storms
with hashed wait queues

Code that is in a retry-exit path (i.e., the return
path following a blocking point where a retry is
queued) should in general take care not to call
routines that could wakeup the newly-queued
retry.

One thing that we had to watch for was calls
to unlock_page() in the retry-exit path.
This could cause a redundant wakeup if an
async wait-on-page writeback was just queued
for that page. The redundant wakeup would
arise if the kernel used the same waitqueue
on unlock as well as writeback completion for
a page, with the expectation that the waiter
would check for the condition it was waiting
for and go back to sleep if it hadn’t occurred. In
the AIO case, however, a wakeup of the newly-
queued callback in the same code path could
potentially trigger a retry storm, as retries kept
triggering themselves over and over again for
the wrong condition.

The interplay of unlock_page() and
wait_on_page_writeback() with
hashed waitqueues can get quite tricky for
retries. For example, consider what happens
when the following sequence in retryable code
is executed at the same time for 2 pages,px
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and py, which happen to hash to the same
waitqueue (Table 1).

lock_page(p)
check condition and process
unlock_page(p)
if (wait_on_page_writeback_wq(p)

== -EIOCBQUEUED)
return bytes_done

The above code could keep cycling between
spurious retries onpx andpy until I/O is done,
wasting precious CPU time!

If we can ensure specificity of the wakeup with
hashed waitqueues then this problem can be
avoided. William Lee Irwin’s implementation
of filtered wakeup support in the recent Linux
2.6 kernels [7] achieves just that. The wakeup
routine specifies a key to match before invok-
ing the wakeup function for an entry in the
waitqueue, thereby limiting wakeups to those
entries which have a matching key. For page
waitqueues, the key is computed as a function
of the page and the condition (unlock or write-
back completion) for the wakeup.

7.3 Streaming AIO write microbenchmark
comparisons

The following graph compares aio-stress
throughputs for streaming random buffered
I/O O_SYNCwrites, with and without the
previously-described changes. The compari-
son was performed on the same setup used for
the streaming AIO read results discussed ear-
lier. The graph summarizes how the results var-
ied across individual request sizes of 4KB to
64KB, where I/O was targeted to a single file
of size 1GB and the depth of iocbs outstand-
ing at a time was 64KB. A third run was per-
formed to determine how the results compared
with equivalent runs using AIO-DIO.

With the changes applied, the results showed
an approximate 2x improvement across all
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Figure 2: Comparisons of streaming random
AIO write throughputs.

block sizes, bringing throughputs to levels that
match the corresponding results using AIO-
DIO.

8 AIO performance analysis for
database workloads

Large database systems leveraging AIO can
show marked performance improvements com-
pared to those systems that use synchronous
I/O alone. We use IBM® DB2® Universal
Database™ V8 running an online transaction
processing (OLTP) workload to illustrate the
performance improvement of AIO on raw de-
vices and on filesystems.

8.1 DB2 page cleaners

A DB2 page cleaner is a process responsible
for flushing dirty buffer pool pages to disk.
It simulates AIO by executing asynchronously
with respect to the agent processes. The num-
ber of page cleaners and their behavior can be
tuned according to the demands of the system.
The agents, freed from cleaning pages them-
selves, can dedicate their resources (e.g., pro-
cessor cycles) towards processing transactions,
thereby improving throughput.
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CPU1 CPU2
lock_page(px)
...
unlock_page(px)

lock_page(py)
wait_on_page_writeback_wq(px) ...

unlock_page(py) -> wakes up p1
triggering

<----------------------------------- a retry
lock_page(px) wait_on_page_writeback_wq(py)
...
unlock_page(py) ---- wakes up py --- causes retry ---->

Table 1: Retry storm livelock with redundant wakeups on hashed wait queues

8.2 AIO performance analysis for raw devices

Two experiments were conducted to measure
the performance benefits of AIO on raw de-
vices for an update-intensive OLTP database
workload. The workload used was derived
from a TPC[8] benchmark, but is in no way
comparable to any TPC results. For the first ex-
periment, the database was configured with one
page cleaner using the native Linux AIO inter-
face. For the second experiment, the database
was configured with 55 page cleaners all using
the synchronous I/O interface. These experi-
ments showed that a database, properly con-
figured in terms of the number of page clean-
ers with AIO, can out-perform a properly con-
figured database using synchronous I/O page
cleaning.

For both experiments, the system configuration
consisted of DB2 V8 running on a 2-way AMD
Opteron system with Linux 2.6.1 installed. The
disk subsystem consisted of two FAStT 700
storage servers, each with eight disk enclo-
sures. The disks were configured as RAID-0
arrays with a stripe size of 256KB.

Table 2 shows the relative database perfor-
mance with and without AIO. Higher numbers
are better. The results show that the database
performed 9% better when configured with one

page cleaner using AIO, than when it was
configured with 55 page cleaners using syn-
chronous I/O.

Configuration Relative
Throughput

1 page cleaner with AIO 133
55 page cleaners without AIO 122

Table 2: Database performance with and with-
out AIO.

Analyzing the I/O write patterns (see Table 3),
we see that one page cleaner using AIO was
sufficient to keep the buffer pools clean un-
der a very heavy load, but that 55 page clean-
ers using synchronous I/O were not, as in-
dicated by the 30% agent writes. This data
suggests that more page cleaners should have
been configured to improve the performance of
the case with synchronous I/O. However, ad-
ditional page cleaners consumed more mem-
ory, requiring a reduction in bufferpool size
and thereby decreasing throughput. For the
test configuration, 55 cleaners was the optimal
number before memory constraints arose.

8.3 AIO performance analysis for filesystems

This section examines the performance im-
provements of AIO when used in conjunction
with filesystems. This experiment was per-
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Configuration Page cleaner Agent
writes (%) writes (%)

1 page cleaner with
AIO

100 0

55 page cleaners with-
out AIO

70 30

Table 3: DB2 write patterns for raw device
configurations.

formed using the same OLTP benchmark as in
the previous section.

The test system consisted of two 1GHz AMD
Opteron processors, 4GB of RAM and two
QLogic 2310 FC controllers. Attached to the
server was a single FAStT900 storage server
and two disk enclosures with a total of 28 15K
RPM 18GB drives. The Linux kernel used
for the examination was 2.6.0+mm1, which in-
cludes the AIO filesystem support patches [9]
discussed in this paper.

The database tables were spread across multi-
ple ext2 filesystem partitions. Database logs
were stored on a single raw partition.

Three separate tests were performed, utilizing
different I/O methods for the database page
cleaners.

Test 1. Synchronous (Buffered) I/O.

Test 2. Asynchronous (Buffered) I/O.

Test 3. Direct I/O.

The results are shown in Table 4 as rela-
tive commercial processing scores using syn-
chronous I/O as the baseline (i.e., higher is bet-
ter).

Looking at the efficiency of the page clean-
ers (see Table 5), we see that the use of AIO
is more successful in keeping the buffer pools
clean. In the synchronous I/O and DIO cases,
the agents needed to spend more time cleaning

Configuration Commercial Processing
Scores

Synchronous I/O 100
AIO (Buffered) 113.7
DIO 111.9

Table 4: Database performance on filesystems
with and without AIO.

buffer pool pages, resulting in less time pro-
cessing transactions.

Configuration Page cleaner Agent
writes (%) writes (%)

Synchronous I/O 37 63
AIO (buffered) 100 0
DIO 49 51

Table 5: DB2 write patterns for filesystem con-
figurations.

8.4 Optimizing AIO for database workloads

Databases typically use AIO for streaming
batches of random, synchronized write re-
quests to disk (where the writes are directed
to preallocated disk blocks). This has been
found to improve the performance of OLTP
workloads, as it helps bring down the num-
ber of dedicated threads or processes needed
for flushing updated pages, and results in re-
duced memory footprint and better CPU uti-
lization and scaling.

The size of individual write requests is deter-
mined by the page size used by the database.
For example, a DB2 UDB installation might
use a database page size of 8KB.

As observed in previous sections, the use of
AIO helps reduce the number of database page
cleaner processes required to keep the buffer-
pool clean. To keep the disk queues maximally
utilized and limit contention, it may be prefer-
able to have requests to a given disk streamed
out from a single page cleaner. Typically a
set of of disks could be serviced by each page
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cleaner if and when multiple page cleaners
need to be used.

Databases might also use AIO for reads, for ex-
ample, for prefetching data to service queries.
This usually helps improve the performance of
decision support workloads. The I/O pattern
generated in these cases is that of streaming
batches of large AIO reads, with sizes typically
determined by the file allocation extent size
used by the database (e.g., a DB2 installation
might use a database extent size of 256KB).
For installations using buffered AIO reads, tun-
ing the readahead setting for the corresponding
devices to be more than the extent size would
help improve performance of streaming AIO
reads (recall the discussion in Section 3.5).

9 Addressing AIO workloads in-
volving both disk and communi-
cations I/O

Certain applications need to handle both disk-
based AIO and communications I/O. For com-
munications I/O, the epoll interface—which
provides support for efficient scalable event
polling in Linux 2.6—could be used as ap-
propriate, possibly in conjunction withO_
NONBLOCKsocket I/O. Disk-based AIO on
the other hand, uses the native AIO APIio_
getevents for completion notification. This
makes it difficult to combine both types of I/O
processing within a single event loop, even
when such a model is a natural way to program
the application, as in implementations of the
application on other operating systems.

How do we address this issue? One option is to
extend epoll to enable it to poll for notification
of AIO completion events, so that AIO comple-
tion status can then be reaped in a non-blocking
manner. This involves mixing both epoll and
AIO API programming models, which is not
ideal.

9.1 AIO poll interface

Another alternative is to add support for
polling an event on a given file descriptor
through the AIO interfaces. This function, re-
ferred to as AIO poll, can be issued through
io_submit() just like other AIO opera-
tions, and specifies the file descriptor and
the eventset to wait for. When the event
occurs, notification is reported throughio_
getevents() .

The retry-based design of AIO poll works by
converting the blocking wait for the event into
a retry exit.

The generic synchronous polling code fits
nicely into the AIO retry design, so most of the
original polling code can be used unchanged.
The private data area of the iocb can be used
to hold polling-specific data structures, and a
few special cases can be added to the generic
polling entry points. This allows the AIO poll
case to proceed without additional memory al-
locations.

9.2 AIO operations for communications I/O

A third option is to add support for AIO op-
erations for communications I/O. For exam-
ple, AIO support for pipes has been imple-
mented by converting the blocking wait for
I/O on pipes to aretry exit. The generic pipe
code was also structured such that conversion
to AIO retries was quite simple, the only signif-
icant change was using the currentio_wait
context instead of a locally defined waitqueue,
and returning early if no data was available.

However, AIO pipe testing did show signifi-
cantly more context switches then the 2.4 AIO
pipe implementation, and this was coupled
with much lower performance. The AIO core
functions were relying on workqueues to do
most of the retries, and this resulted in constant
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switching between the workqueue threads and
user processes.

The solution was to change the AIO core
to do retries inio_submit() and in io_
getevents() . This allowed the process to
do some of its own work while it is scheduled
in. Also, retries were switched to a delayed
workqueue, so that bursts of retries would trig-
ger fewer context switches.

While delayed wakeups helped with pipe
workloads, it also caused I/O stalls in filesys-
tem AIO workloads. This was because a de-
layed wakeup was being used even when a user
process was waiting inio_getevents() .
When user processes are actively waiting for
events, it proved best to trigger the worker
thread immediately.

General AIO support for network operations
has been considered but not implemented so far
because of lack of supporting study that pre-
dicts a significant benefit over what epoll and
non-blocking I/O can provide, except for the
scope for enabling potential zero-copy imple-
mentations. This is a potential area for future
research.

10 Conclusions

Our experience over the last year with AIO de-
velopment, stabilization and performance im-
provements brought us to design and imple-
mentation issues that went far beyond the ini-
tial concern of converting key I/O blocking
points to be asynchronous.

AIO uncovered scenarios and I/O patterns that
were unlikely or less significant with syn-
chronous I/O alone. For example, the issues we
discussed around streaming AIO performance
with readahead and concurrent synchronized
writes, as well as DIO vs buffered I/O com-
plexities in the presence of AIO. In retrospect,

this was the hardest part of supporting AIO—
modifiying code that was originally designed
only for synchronous I/O.

Interestingly, this also meant that AIO ap-
peared to magnify some problems early. For
example, issues with hashed waitqueues that
led to the filtered wakeup patches, and reada-
head window collapses with large random
reads which precipitated improvements to the
readahead code from Ramachandra Pai. Ul-
timately, many of the core improvements that
helped AIO have had positive benefits in al-
lowing improved concurrency for some of the
synchronous I/O paths.

In terms of benchmarking and optimizing
Linux AIO performance, there is room for
more exhaustive work. Requirements for AIO
fsync support are currently under considera-
tion. There is also a need for more widely used
AIO applications, especially those that take ad-
vantaged of AIO support for buffered I/O or
bring out additional requirements like network
I/O beyond epoll or AIO poll. Finally, investi-
gations into API changes to help enable more
efficient POSIX AIO implementations based
on kernel AIO support may be a worthwhile
endeavor.
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