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Abstract

One of the primary focus points of 2.5 was fix-
ing up the bit rotting block layer, and as a result
2.6 now sports a brand new implementation of
basically anything that has to do with passing
IO around in the kernel, from producer to disk
driver. The talk will feature an in-depth look
at the IO core system in 2.6 comparing to 2.4,
looking at performance, flexibility, and added
functionality. The rewrite of the IO scheduler
API and the new IO schedulers will get a fair
treatment as well.

No 2.6 talk would be complete without 2.7
speculations, so I shall try to predict what
changes the future holds for the world of Linux
block I/O.

1 2.4 Problems

One of the most widely criticized pieces of
code in the 2.4 kernels is, without a doubt, the
block layer. It’s bit rotted heavily and lacks
various features or facilities that modern hard-
ware craves. This has led to many evils, rang-
ing from code duplication in drivers to mas-
sive patching of block layer internals in ven-
dor kernels. As a result, vendor trees can eas-
ily be considered forks of the 2.4 kernel with
respect to the block layer code, with all of
the problems that this fact brings with it: 2.4
block layer code base may as well be consid-
ered dead, no one develops against it. Hard-
ware vendor drivers include many nasty hacks

and #ifdef’s to work in all of the various
2.4 kernels that are out there, which doesn’t ex-
actly enhance code coverage or peer review.

The block layer fork didn’t just happen for the
fun of it of course, it was a direct result of
the various problem observed. Some of these
are added features, others are deeper rewrites
attempting to solve scalability problems with
the block layer core or IO scheduler. In the
next sections I will attempt to highlight specific
problems in these areas.

1.1 IO Scheduler

The main 2.4 IO scheduler is called
elevator_linus , named after the benev-
olent kernel dictator to credit him for some
of the ideas used. elevator_linus is a
one-way scan elevator that always scans in
the direction of increasing LBA. It manages
latency problems by assigning sequence
numbers to new requests, denoting how many
new requests (either merges or inserts) may
pass this one. The latency value is dependent
on data direction, smaller for reads than for
writes. Internally, elevator_linus uses
a double linked list structure (the kernels
struct list_head ) to manage the request
structures. When queuing a new IO unit with
the IO scheduler, the list is walked to find a
suitable insertion (or merge) point yielding an
O(N) runtime. That in itself is suboptimal in
presence of large amounts of IO and to make
matters even worse, we repeat this scan if the
request free list was empty when we entered



52 • Linux Symposium 2004 • Volume One

the IO scheduler. The latter is not an error
condition, it will happen all the time for even
moderate amounts of write back against a
queue.

1.2 struct buffer_head

The main IO unit in the 2.4 kernel is the
struct buffer_head . It’s a fairly unwieldy
structure, used at various kernel layers for dif-
ferent things: caching entity, file system block,
and IO unit. As a result, it’s suboptimal for ei-
ther of them.

From the block layer point of view, the two
biggest problems is the size of the structure
and the limitation in how big a data region it
can describe. Being limited by the file system
one blocksemantics, it can at most describe a
PAGE_CACHE_SIZEamount of data. In Linux
on x86 hardware that means 4KiB of data. Of-
ten it can be even worse: raw io typically uses
the soft sector size of a queue (default 1KiB)
for submitting io, which means that queuing
eg 32KiB of IO will enter the io scheduler 32
times. To work around this limitation and get
at least to a page at the time, a 2.4 hack was
introduced. This is calledvary_io . A driver
advertising this capability acknowledges that it
can managebuffer_head’s of varying sizes
at the same time. File system read-ahead, an-
other frequent user of submitting larger sized
io, has no option but to submit the read-ahead
window in units of the page size.

1.3 Scalability

With the limit on buffer_head IO size and
elevator_linus runtime, it doesn’t take a
lot of thinking to discover obvious scalability
problems in the Linux 2.4 IO path. To add in-
sult to injury, the entire IO path is guarded by a
single, global lock:io_request_lock . This
lock is held during the entire IO queuing op-
eration, and typically also from the other end

when a driver subtracts requests for IO sub-
mission. A single global lock is a big enough
problem on its own (bigger SMP systems will
suffer immensely because of cache line bounc-
ing), but add to that long runtimes and you have
a really huge IO scalability problem.

Linux vendors have long shipped lock scalabil-
ity patches for quite some time to get around
this problem. The adopted solution is typically
to make the queue lock a pointer to a driver lo-
cal lock, so the driver has full control of the
granularity and scope of the lock. This solu-
tion was adopted from the 2.5 kernel, as we’ll
see later. But this is another case where driver
writers often need to differentiate between ven-
dor and vanilla kernels.

1.4 API problems

Looking at the block layer as a whole (includ-
ing both ends of the spectrum, the producers
and consumers of the IO units going through
the block layer), it is a typical example of code
that has been hacked into existence without
much thought to design. When things broke
or new features were needed, they had been
grafted into the existing mess. No well de-
fined interface exists between file system and
block layer, except a few scattered functions.
Controlling IO unit flow from IO scheduler
to driver was impossible: 2.4 exposes the IO
scheduler data structures (the->queue_head

linked list used for queuing) directly to the
driver. This fact alone makes it virtually im-
possible to implement more clever IO schedul-
ing in 2.4. Even the recently (in the 2.4.20’s)
added lower latency work was horrible to work
with because of this lack of boundaries. Veri-
fying correctness of the code is extremely dif-
ficult; peer review of the code likewise, since a
reviewer must be intimate with the block layer
structures to follow the code.

Another example on lack of clear direction is
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the partition remapping. In 2.4, it’s the driver’s
responsibility to resolve partition mappings.
A given request contains a device and sector
offset (i.e. /dev/hda4 , sector 128) and the
driver must map this to an absolute device off-
set before sending it to the hardware. Not only
does this cause duplicate code in the drivers,
it also means the IO scheduler has no knowl-
edge of the real device mapping of a particular
request. This adversely impacts IO scheduling
whenever partitions aren’t laid out in strict as-
cending disk order, since it causes the io sched-
uler to make the wrong decisions when order-
ing io.

2 2.6 Block layer

The above observations were the initial kick off
for the 2.5 block layer patches. To solve some
of these issues the block layer needed to be
turned inside out, breaking basically anything-
io along the way.

2.1 bio

Given that struct buffer_head was one
of the problems, it made sense to start from
scratch with an IO unit that would be agree-
able to the upper layers as well as the drivers.
The main criteria for such an IO unit would be
something along the lines of:

1. Must be able to contain an arbitrary
amount of data, as much as the hardware
allows. Or as much that makessenseat
least, with the option of easily pushing
this boundary later.

2. Must work equally well for pages that
have a virtual mapping as well as ones that
do not.

3. When entering the IO scheduler and
driver, IO unit must point to an absolute
location on disk.

4. Must be able to stack easily for IO stacks
such as raid and device mappers. This in-
cludes full redirect stacking like in 2.4, as
well as partial redirections.

Once the primary goals for the IO struc-
ture were laid out, thestruct bio was
born. It was decided to base the layout
on a scatter-gather type setup, with thebio

containing a map of pages. If the map
count was made flexible, items 1 and 2 on
the above list were already solved. The
actual implementation involved splitting the
data container from thebio itself into a
struct bio_vec structure. This was mainly
done to ease allocation of the structures so
that sizeof(struct bio) was always con-
stant. Thebio_vec structure is simply a tu-
ple of {page, length, offset} , and the
bio can be allocated with room for anything
from 1 to BIO_MAX_PAGES. Currently Linux
defines that as 256 pages, meaning we can sup-
port up to 1MiB of data in a singlebio for
a system with 4KiB page size. At the time
of implementation, 1MiB was a good deal be-
yond the point where increasing the IO size fur-
ther didn’t yield better performance or lower
CPU usage. It also has the added bonus of
making thebio_vec fit inside a single page,
so we avoid higher order memory allocations
(sizeof(struct bio_vec) == 12 on 32-
bit, 16 on 64-bit) in the IO path. This is an
important point, as it eases the pressure on the
memory allocator. For swapping or other low
memory situations, we ideally want to stress
the allocator as little as possible.

Different hardware can support different sizes
of io. Traditional parallel ATA can do a max-
imum of 128KiB per request, qlogicfc SCSI
doesn’t like more than 32KiB, and lots of high
end controllers don’t impose a significant limit
on max IO size but may restrict the maximum
number of segments that one IO may be com-
posed of. Additionally, software raid or de-
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vice mapper stacks may like special alignment
of IO or the guarantee that IO won’t cross
stripe boundaries. All of this knowledge is ei-
ther impractical or impossible to statically ad-
vertise to submitters of io, so an easy inter-
face for populating abio with pages was es-
sential if supporting large IO was to become
practical. The current solution isint bio_

add_page() which attempts to add a single
page (full or partial) to abio . It returns the
amount of bytes successfully added. Typical
users of this function continue adding pages
to abio until it fails—then it is submitted for
IO throughsubmit_bio() , a newbio is al-
located and populated until all data has gone
out. int bio_add_page() uses statically
defined parameters inside the request queue to
determine how many pages can be added, and
attempts to query a registeredmerge_bvec_

fn for dynamic limits that the block layer can-
not know about.

Drivers hooking into the block layer before the
IO scheduler1 deal withstruct bio directly,
as opposed to thestruct request that are
output after the IO scheduler. Even though the
page addition API guarantees that they never
need to be able to deal with abio that is too
big, they still have to manage local splits at
sub-page granularity. The API was defined that
way to make it easier for IO submitters to man-
age, so they don’t have to deal with sub-page
splits. 2.6 block layer defines two ways to
deal with this situation—the first is the general
clone interface.bio_clone() returns a clone
of abio . A clone is defined as a private copy of
thebio itself, but with a sharedbio_vec page
map list. Drivers can modify the clonedbio

and submit it to a different device without du-
plicating the data. The second interface is tai-
lored specifically to single page splits and was
written by kernel raid maintainer Neil Brown.
The main function isbio_split() which re-

1Also known as atmake_request time.

turns astruct bio_pair describing the two
parts of the originalbio . The twobio ’s can
then be submitted separately by the driver.

2.2 Partition remapping

Partition remapping is handled inside the IO
stack before going to the driver, so that both
drivers and IO schedulers have immediate full
knowledge of precisely where data should end
up. The device unfolding is done automati-
cally by the same piece of code that resolves
full bio redirects. The worker function is
blk_partition_remap() .

2.3 Barriers

Another feature that found its way to some ven-
dor kernels is IO barriers. A barrier is defined
as a piece of IO that is guaranteed to:

• Be on platter (or safe storage at least)
when completion is signaled.

• Not proceed any previously submitted io.

• Not be proceeded by later submitted io.

The feature is handy for journalled file sys-
tems, fsync, and any sort of cache bypassing
IO2 where you want to provide guarantees on
data order and correctness. The 2.6 code isn’t
even complete yet or in the Linus kernels, but it
has made its way to Andrew Morton’s -mm tree
which is generally considered a staging area for
features. This section describes the code so far.

The first type of barrier supported is a soft
barrier. It isn’t of much use for data in-
tegrity applications, since it merely implies
ordering inside the IO scheduler. It is sig-
naled with theREQ_SOFTBARRIERflag inside
struct request . A stronger barrier is the

2Such types of IO includeO_DIRECTor raw.
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hard barrier. From the block layer and IO
scheduler point of view, it is identical to the
soft variant. Drivers need to know about it
though, so they can take appropriate measures
to correctly honor the barrier. So far the ide
driver is the only one supporting a full, hard
barrier. The issue was deemed most impor-
tant for journalled desktop systems, where the
lack of barriers and risk of crashes / power loss
coupled with ide drives generally always de-
faulting to write back caching caused signifi-
cant problems. Since the ATA command set
isn’t very intelligent in this regard, the ide solu-
tion adopted was to issue pre- and post flushes
when encountering a barrier.

The hard and soft barrier share the feature that
they are both tied to a piece of data (abio ,
really) and cannot exist outside of data con-
text. Certain applications of barriers would re-
ally like to issue a disk flush, where finding out
which piece of data to attach it to is hard or
impossible. To solve this problem, the 2.6 bar-
rier code added theblkdev_issue_flush()

function. The block layer part of the code is ba-
sically tied to a queue hook, so the driver issues
the flush on its own. A helper function is pro-
vided for SCSI type devices, using the generic
SCSI command transport that the block layer
provides in 2.6 (more on this later). Unlike
the queued data barriers, a barrier issued with
blkdev_issue_flush() works on all inter-
esting drivers in 2.6 (IDE, SCSI, SATA). The
only missing bits are drivers that don’t belong
to one of these classes—things likeCISS and
DAC960.

2.4 IO Schedulers

As mentioned in section 1.1, there are a num-
ber of known problems with the default 2.4 IO
scheduler and IO scheduler interface (or lack
thereof). The idea to base latency on a unit of
data (sectors) rather than a time based unit is
hard to tune, or requires auto-tuning at runtime

and this never really worked out. Fixing the
runtime problems withelevator_linus is
next to impossible due to the data structure ex-
posing problem. So before being able to tackle
any problems in that area, a neat API to the IO
scheduler had to be defined.

2.4.1 Defined API

In the spirit of avoiding over-design3, the API
was based on initial adaption ofelevator_

linus , but has since grown quite a bit as newer
IO schedulers required more entry points to ex-
ploit their features.

The core function of an IO scheduler is, natu-
rally, insertion of new io units and extraction of
ditto from drivers. So the first 2 API functions
are defined,next_req_fn andadd_req_fn .
If you recall from section 1.1, a new IO
unit is first attempted merged into an exist-
ing request in the IO scheduler queue. And
if this fails and the newly allocated request
has raced with someone else adding an adja-
cent IO unit to the queue in the mean time,
we also attempt to mergestruct request s.
So 2 more functions were added to cater to
these needs,merge_fn andmerge_req_fn .
Cleaning up after a successful merge is done
throughmerge_cleanup_fn . Finally, a de-
fined IO scheduler can provide init and exit
functions, should it need to perform any duties
during queue init or shutdown.

The above described the IO scheduler API
as of 2.5.1, later on more functions were
added to further abstract the IO scheduler
away from the block layer core. More details
may be found in thestruct elevator_s in
<linux/elevator.h> kernel include file.

3Some might, rightfully, claim that this is worse than
no design
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2.4.2 deadline

In kernel 2.5.39,elevator_linus was fi-
nally replaced by something more appropriate,
the deadlineIO scheduler. The principles be-
hind it are pretty straight forward — new re-
quests are assigned an expiry time in millisec-
onds, based on data direction. Internally, re-
quests are managed on two different data struc-
tures. The sort list, used for inserts and front
merge lookups, is based on a red-black tree.
This providesO(log n) runtime for both inser-
tion and lookups, clearly superior to the dou-
bly linked list. Two FIFO lists exist for track-
ing request expiry times, using a double linked
list. Since strict FIFO behavior is maintained
on these two lists, they run inO(1) time. For
back merges it is important to maintain good
performance as well, as they dominate the to-
tal merge count due to the layout of files on
disk. So deadline added a merge hash for
back merges, ideally providingO(1) runtime
for merges. Additionally,deadlineadds a one-
hit merge cache that is checked even before go-
ing to the hash. This gets surprisingly good hit
rates, serving as much as 90% of the merges
even for heavily threaded io.

Implementation details aside,deadlinecontin-
ues to build on the fact that the fastest way to
access a single drive, is by scanning in the di-
rection of ascending sector. With its superior
runtime performance,deadline is able to sup-
port very large queue depths without suffering
a performance loss or spending large amounts
of time in the kernel. It also doesn’t suffer from
latency problems due to increased queue sizes.
When a request expires in the FIFO,dead-
line jumps to that disk location and starts serv-
ing IO from there. To prevent accidental seek
storms (which would further cause us to miss
deadlines),deadline attempts to serve a num-
ber of requests from that location before jump-
ing to the next expired request. This means that
the assigned request deadlines are soft, not a

specific hard target that must be met.

2.4.3 Anticipatory IO scheduler

While deadline works very well for most
workloads, it fails to observe the natural depen-
dencies that often exist between synchronous
reads. Say you want to list the contents of
a directory—that operation isn’t merely a sin-
gle sync read, it consists of a number of reads
where only the completion of the final request
will give you the directory listing. Withdead-
line, you could get decent performance from
such a workload in presence of other IO activi-
ties by assigning very tight read deadlines. But
that isn’t very optimal, since the disk will be
serving other requests in between the depen-
dent reads causing a potentially disk wide seek
every time. On top of that, the tight deadlines
will decrease performance on other io streams
in the system.

Nick Piggin implemented an anticipatory IO
scheduler [Iyer] during 2.5 to explore some in-
teresting research in this area. The main idea
behind the anticipatory IO scheduler is a con-
cept calleddeceptive idleness. When a process
issues a request and it completes, it might be
ready to issue a new request (possibly close
by) immediately. Take the directory listing ex-
ample from above—it might require 3–4 IO
operations to complete. When each of them
completes, the process4 is ready to issue the
next one almost instantly. But the traditional
io scheduler doesn’t pay any attention to this
fact, the new request must go through the IO
scheduler and wait its turn. Withdeadline, you
would have to typically wait 500 milliseconds
for each read, if the queue is held busy by other
processes. The result is poor interactive per-
formance for each process, even though overall
throughput might be acceptable or even good.

4Or the kernel, on behalf of the process.
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Instead of moving on to the next request from
an unrelated process immediately, the anticipa-
tory IO scheduler (hence forth known asAS)
opens a small window of opportunity for that
process to submit a new IO request. If that hap-
pens,ASgives it a new chance and so on. Inter-
nally it keeps a decaying histogram of IOthink
timesto help the anticipation be as accurate as
possible.

Internally,AS is quite likedeadline. It uses the
same data structures and algorithms for sort-
ing, lookups, and FIFO. If the think time is set
to 0, it is very close todeadline in behavior.
The only differences are various optimizations
that have been applied to either scheduler al-
lowing them to diverge a little. IfAS is able to
reliably predict when waiting for a new request
is worthwhile, it gets phenomenal performance
with excellent interactiveness. Often the sys-
tem throughput is sacrificed a little bit, so de-
pending on the workloadAS might not be the
best choice always. The IO storage hardware
used, also plays a role in this—a non-queuing
ATA hard drive is a much better fit than a SCSI
drive with a large queuing depth. The SCSI
firmware reorders requests internally, thus of-
ten destroying any accounting thatAS is trying
to do.

2.4.4 CFQ

The third new IO scheduler in 2.6 is called
CFQ. It’s loosely based on the ideas on
stochastic fair queuing (SFQ [McKenney]).
SFQ is fair as long as its hashing doesn’t col-
lide, and to avoid that, it uses a continually
changing hashing function. Collisions can’t be
completely avoided though, frequency will de-
pend entirely on workload and timing.CFQ
is an acronym for completely fair queuing, at-
tempting to get around the collision problem
that SFQ suffers from. To do so,CFQ does
away with the fixed number of buckets that

processes can be placed in. And using reg-
ular hashing technique to find the appropriate
bucket in case of collisions, fatal collisions are
avoided.

CFQ deviates radically from the concepts that
deadline and AS is based on. It doesn’t as-
sign deadlines to incoming requests to main-
tain fairness, instead it attempts to divide
bandwidth equally among classes of processes
based on some correlation between them. The
default is to hash on thread group id, tgid.
This means that bandwidth is attempted dis-
tributed equally among the processes in the
system. Each class has its own request sort
and hash list, using red-black trees again for
sorting and regular hashing for back merges.
When dealing with writes, there is a little catch.
A process will almost never be performing its
own writes—data is marked dirty in context of
the process, but write back usually takes place
from the pdflushkernel threads. SoCFQ is
actually dividing read bandwidth among pro-
cesses, while treating each pdflush thread as a
separate process. Usually this has very minor
impact on write back performance. Latency is
much less of an issue with writes, and good
throughput is very easy to achieve due to their
inherent asynchronous nature.

2.5 Request allocation

Each block driver in the system has at least
one request_queue_t request queue struc-
ture associated with it. The recommended
setup is to assign a queue to each logical
spindle. In turn, each request queue has
a struct request_list embedded which
holds freestruct request structures used
for queuing io. 2.4 improved on this situation
from 2.2, where a single global free list was
available to add one per queue instead. This
free list was split into two sections of equal
size, for reads and writes, to prevent either
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direction from starving the other5. 2.4 stati-
cally allocated a big chunk of requests for each
queue, all residing in the precious low memory
of a machine. The combination ofO(N) run-
time and statically allocated request structures
firmly prevented any real world experimenta-
tion with large queue depths on 2.4 kernels.

2.6 improves on this situation by dynamically
allocating request structures on the fly instead.
Each queue still maintains its request free list
like in 2.4. However it’s also backed by a mem-
ory pool6 to provide deadlock free allocations
even during swapping. The more advanced
io schedulers in 2.6 usually back each request
by its own private request structure, further
increasing the memory pressure of each re-
quest. Dynamic request allocation lifts some of
this pressure as well by pushing that allocation
inside two hooks in the IO scheduler API—
set_req_fn and put_req_fn . The latter
handles the later freeing of that data structure.

2.6 Plugging

For the longest time, the Linux block layer has
used a technique dubbedplugging to increase
IO throughput. In its simplicity, plugging
works sort of like the plug in your tub drain—
when IO is queued on an initially empty queue,
the queue is plugged. Only when someone asks
for the completion of some of the queued IO is
the plug yanked out, and io is allowed to drain
from the queue. So instead of submitting the
first immediately to the driver, the block layer
allows a small buildup of requests. There’s
nothing wrong with the principle of plugging,
and it has been shown to work well for a num-
ber of workloads. However, the block layer
maintains a global list of plugged queues in-
side thetq_disk task queue. There are three
main problems with this approach:

5In reality, to prevent writes for consuming all re-
quests.

6mempool_t interface from Ingo Molnar.

1. It’s impossible to go backwards from the
file system and find the specific queue to
unplug.

2. Unplugging one queue throughtq_disk

unplugs all plugged queues.

3. The act of plugging and unplugging
touches a global lock.

All of these adversely impact performance.
These problems weren’t really solved until late
in 2.6, when Intel reported a huge scalability
problem related to unplugging [Chen] on a 32
processor system. 93% of system time was
spent due to contention onblk_plug_lock ,
which is the 2.6 direct equivalent of the 2.4
tq_disk embedded lock. The proposed so-
lution was to move the plug lists to a per-
CMU structure. While this would solve the
contention problems, it still leaves the other 2
items on the above list unsolved.

So work was started to find a solution that
would fix all problems at once, and just gen-
erally Feel Right. 2.6 contains a link be-
tween the block layer and write out paths
which is embedded inside the queue, a
struct backing_dev_info . This structure
holds information on read-ahead and queue
congestion state. It’s also possible to go from
a struct page to the backing device, which
may or may not be a block device. So it
would seem an obvious idea to move to a back-
ing device unplugging scheme instead, getting
rid of the globalblk_run_queues() unplug-
ging. That solution would fix all three issues at
once—there would be no global way to unplug
all devices, only target specific unplugs, and
the backing device gives us a mapping from
page to queue. The code was rewritten to do
just that, and provide unplug functionality go-
ing from a specificstruct block_device ,
page, or backing device. Code and interface
was much superior to the existing code base,
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and results were truly amazing. Jeremy Hig-
don tested on an 8-way IA64 box [Higdon] and
got 75–80 thousand IOPS on the stock kernel
at 100% CPU utilization, 110 thousand IOPS
with the per-CPU Intel patch also at full CPU
utilization, and finally 200 thousand IOPS at
merely 65% CPU utilization with the backing
device unplugging. So not only did the new
code provide a huge speed increase on this
machine, it also went from being CPU to IO
bound.

2.6 also contains some additional logic to
unplug a given queue once it reaches the
point where waiting longer doesn’t make much
sense. So where 2.4 will always wait for an ex-
plicit unplug, 2.6 can trigger an unplug when
one of two conditions are met:

1. The number of queued requests reach a
certain limit,q->unplug_thresh . This
is device tweak able and defaults to 4.

2. When the queue has been idle forq->

unplug_delay . Also device tweak able,
and defaults to 3 milliseconds.

The idea is that once a certain number of
requests have accumulated in the queue, it
doesn’t make much sense to continue waiting
for more—there is already an adequate number
available to keep the disk happy. The time limit
is really a last resort, and should rarely trig-
ger in real life. Observations on various work
loads have verified this. More than a handful or
two timer unplugs per minute usually indicates
a kernel bug.

2.7 SCSI command transport

An annoying aspect of CD writing applications
in 2.4 has been the need to use ide-scsi, neces-
sitating the inclusion of the entire SCSI stack
for only that application. With the clear major-
ity of the market being ATAPI hardware, this

becomes even more silly. ide-scsi isn’t without
its own class of problems either—it lacks the
ability to use DMA on certain writing types.
CDDA audio ripping is another application that
thrives with ide-scsi, since the native uniform
cdrom layer interface is less than optimal (put
mildly). It doesn’t have DMA capabilities at
all.

2.7.1 Enhancing struct request

The problem with 2.4 was the lack of abil-
ity to generically send SCSI “like” commands
to devices that understand them. Historically,
only file system read/write requests could be
submitted to a driver. Some drivers made up
faked requests for other purposes themselves
and put then on the queue for their own con-
sumption, but no defined way of doing this ex-
isted. 2.6 adds a new request type, marked by
theREQ_BLOCK_PCbit. Such a request can be
either backed by abio like a file system re-
quest, or simply has a data and length field set.
For both types, a SCSI command data block is
filled inside the request. With this infrastruc-
ture in place and appropriate update to drivers
to understand these requests, it’s a cinch to sup-
port a much better direct-to-device interface for
burning.

Most applications use the SCSI sg API for talk-
ing to devices. Some of them talk directly to
the /dev/sg* special files, while (most) oth-
ers use theSG_IO ioctl interface. The for-
mer requires a yet unfinished driver to trans-
form them into block layer requests, but the lat-
ter can be readily intercepted in the kernel and
routed directly to the device instead of through
the SCSI layer. Helper functions were added
to make burning and ripping even faster, pro-
viding DMA for all applications and without
copying data between kernel and user space at
all. So the zero-copy DMA burning was pos-
sible, and this even without changing most ap-
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plications.

3 Linux-2.7

The 2.5 development cycle saw the most mas-
sively changed block layer in the history of
Linux. Before 2.5 was opened, Linus had
clearly expressed that one of the most impor-
tant things that needed doing, was the block
layer update. And indeed, the very first thing
merged was the complete bio patch into 2.5.1-
pre2. At that time, no more than a handful
drivers compiled (let alone worked). The 2.7
changes will be nowhere as severe or drastic.
A few of the possible directions will follow in
the next few sections.

3.1 IO Priorities

Prioritized IO is a very interesting area that
is sure to generate lots of discussion and de-
velopment. It’s one of the missing pieces of
the complete resource management puzzle that
several groups of people would very much like
to solve. People running systems with many
users, or machines hosting virtual hosts (or
completed virtualized environments) are dy-
ing to be able to provide some QOS guaran-
tees. Some work was already done in this
area, so far nothing complete has materialized.
The CKRM [CKRM] project spear headed by
IBM is an attempt to define global resource
management, including io. They applied a lit-
tle work to theCFQ IO scheduler to provide
equal bandwidth between resource manage-
ment classes, but at no specific priorities. Cur-
rently I have aCFQ patch that is 99% complete
that provides full priority support, using the IO
contexts introduced byAS to manage fair shar-
ing over the full time span that a process ex-
ists7. This works well enough, but only works

7CFQ currently tears down class structures as soon
as it is empty, it doesn’t persist over process life time.

for that specific IO scheduler. A nicer solution
would be to create a scheme that works inde-
pendently of the io scheduler used. That would
require a rethinking of the IO scheduler API.

3.2 IO Scheduler switching

Currently Linux provides no less than 4 IO
schedulers—the 3 mentioned, plus a forth
dubbednoop. The latter is a simple IO sched-
uler that does no request reordering, no latency
management, and always merges whenever it
can. Its area of application is mainly highly
intelligent hardware with huge queue depths,
where regular request reordering doesn’t make
sense. Selecting a specific IO scheduler can
either be done by modifying the source of a
driver and putting the appropriate calls in there
at queue init time, or globally for any queue by
passing theelevator=xxx boot parameter.
This makes it impossible, or at least very im-
practical, to benchmark different IO schedulers
without many reboots or recompiles. Some
way to switch IO schedulers per queue and on
the fly is desperately needed. Freezing a queue
and letting IO drain from it until it’s empty
(pinning new IO along the way), and then shut-
ting down the old io scheduler and moving to
the new scheduler would not be so hard to do.
The queues expose various sysfs variables al-
ready, so the logical approach would simply be
to:

# echo deadline > \
/sys/block/hda/queue/io_scheduler

A simple but effective interface. At least two
patches doing something like this were already
proposed, but nothing was merged at that time.

4 Final comments

The block layer code in 2.6 has come a long
way from the rotted 2.4 code. New features
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bring it more up-to-date with modern hard-
ware, and completely rewritten from scratch
core provides much better scalability, perfor-
mance, and memory usage benefiting any ma-
chine from small to really huge. Going back
a few years, I heard constant complaints about
the block layer and how much it sucked and
how outdated it was. These days I rarely
hear anything about the current state of affairs,
which usually means that it’s doing pretty well
indeed. 2.7 work will mainly focus on fea-
ture additions and driver layer abstractions (our
concept of IDE layer, SCSI layer etc will be
severely shook up). Nothing that will wreak
havoc and turn everything inside out like 2.5
did. Most of the 2.7 work mentioned above
is pretty light, and could easily be back ported
to 2.6 once it has been completed and tested.
Which is also a good sign that nothing really
radical or risky is missing. So things are set-
tling down, a sign of stability.
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