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Abstract

This paper uses a high-performance, event-
driven, HTTP server (theµserver) to compare
the performance of the select, poll, and epoll
event mechanisms. We subject theµserver to
a variety of workloads that allow us to expose
the relative strengths and weaknesses of each
event mechanism.

Interestingly, initial results show that the se-
lect and poll event mechanisms perform com-
parably to the epoll event mechanism in the
absence of idle connections. Profiling data
shows a significant amount of time spent in ex-
ecuting a large number ofepoll_ctl sys-
tem calls. As a result, we examine a variety
of techniques for reducingepoll_ctl over-
head including edge-triggered notification, and
introducing a new system call (epoll_ctlv )
that aggregates severalepoll_ctl calls into
a single call. Our experiments indicate that al-
though these techniques are successful at re-
ducingepoll_ctl overhead, they only im-
prove performance slightly.

1 Introduction

The Internet is expanding in size, number of
users, and in volume of content, thus it is im-
perative to be able to support these changes
with faster and more efficient HTTP servers.

A common problem in HTTP server scala-
bility is how to ensure that the server han-
dles a large number of connections simultane-
ously without degrading the performance. An
event-driven approach is often implemented in
high-performance network servers [14] to mul-
tiplex a large number of concurrent connec-
tions over a few server processes. In event-
driven servers it is important that the server
focuses on connections that can be serviced
without blocking its main process. An event
dispatch mechanism such asselect is used
to determine the connections on which for-
ward progress can be made without invok-
ing a blocking system call. Many different
event dispatch mechanisms have been used
and studied in the context of network applica-
tions. These mechanisms range fromselect ,
poll , /dev/poll , RT signals, and epoll
[2, 3, 15, 6, 18, 10, 12, 4].

The epoll event mechanism [18, 10, 12] is de-
signed to scale to larger numbers of connec-
tions thanselect and poll . One of the
problems withselect and poll is that in
a single call they must both inform the kernel
of all of the events of interest and obtain new
events. This can result in large overheads, par-
ticularly in environments with large numbers
of connections and relatively few new events
occurring. In a fashion similar to that described
by Banga et al. [3] epoll separates mech-
anisms for obtaining events (epoll_wait )
from those used to declare and control interest
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in events (epoll_ctl ).

Further reductions in the number of generated
events can be obtained by using edge-triggered
epoll semantics. In this mode events are only
provided when there is a change in the state of
the socket descriptor of interest. For compat-
ibility with the semantics offered byselect
andpoll , epoll also provides level-triggered
event mechanisms.

To compare the performance of epoll with
select andpoll , we use theµserver [4, 7]
web server. Theµserver facilitates compara-
tive analysis of different event dispatch mech-
anisms within the same code base through
command-line parameters. Recently, a highly
tuned version of the single process event driven
µserver usingselect has shown promising
results that rival the performance of the in-
kernel TUX web server [4].

Interestingly, in this paper, we found that for
some of the workloads consideredselect
andpoll perform as well as or slightly bet-
ter than epoll. One such result is shown in
Figure 1. This motivated further investigation
with the goal of obtaining a better understand-
ing of epoll’s behaviour. In this paper, we de-
scribe our experience in trying to determine
how to best use epoll, and examine techniques
designed to improve its performance.

The rest of the paper is organized as follows:
In Section 2 we summarize some existing work
that led to the development of epoll as a scal-
able replacement forselect . In Section 3 we
describe the techniques we have tried to im-
prove epoll’s performance. In Section 4 we de-
scribe our experimental methodology, includ-
ing the workloads used in the evaluation. In
Section 5 we describe and analyze the results
of our experiments. In Section 6 we summarize
our findings and outline some ideas for future
work.

2 Background and Related Work

Event-notification mechanisms have a long
history in operating systems research and de-
velopment, and have been a central issue in
many performance studies. These studies have
sought to improve mechanisms and interfaces
for obtaining information about the state of
socket and file descriptors from the operating
system [2, 1, 3, 13, 15, 6, 18, 10, 12]. Some
of these studies have developed improvements
to select , poll andsigwaitinfo by re-
ducing the amount of data copied between the
application and kernel. Other studies have re-
duced the number of events delivered by the
kernel, for example, the signal-per-fd scheme
proposed by Chandra et al. [6]. Much of the
aforementioned work is tracked and discussed
on the web site, “The C10K Problem” [8].

Early work by Banga and Mogul [2] found
that despite performing well under laboratory
conditions, popular event-driven servers per-
formed poorly under real-world conditions.
They demonstrated that the discrepancy is due
the inability of the select system call to
scale to the large number of simultaneous con-
nections that are found in WAN environments.

Subsequent work by Banga et al. [3] sought to
improve onselect ’s performance by (among
other things) separating the declaration of in-
terest in events from the retrieval of events on
that interest set. Event mechanisms like se-
lect and poll have traditionally combined these
tasks into a single system call. However, this
amalgamation requires the server to re-declare
its interest set every time it wishes to retrieve
events, since the kernel does not remember the
interest sets from previous calls. This results in
unnecessary data copying between the applica-
tion and the kernel.

The /dev/poll mechanism was adapted
from Sun Solaris to Linux by Provos et al. [15],
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and improved on poll’s performance by intro-
ducing a new interface that separated the decla-
ration of interest in events from retrieval. Their
/dev/poll mechanism further reduced data
copying by using a shared memory region to
return events to the application.

The kqueue event mechanism [9] addressed
many of the deficiencies ofselect andpoll
for FreeBSD systems. In addition to sep-
arating the declaration of interest from re-
trieval, kqueue allows an application to re-
trieve events from a variety of sources includ-
ing file/socket descriptors, signals, AIO com-
pletions, file system changes, and changes in
process state.

The epoll event mechanism [18, 10, 12] inves-
tigated in this paper also separates the declara-
tion of interest in events from their retrieval.
The epoll_create system call instructs
the kernel to create an event data structure
that can be used to track events on a number
of descriptors. Thereafter, theepoll_ctl
call is used to modify interest sets, while the
epoll_wait call is used to retrieve events.

Another drawback ofselect and poll is
that they perform work that depends on the
size of the interest set, rather than the number
of events returned. This leads to poor perfor-
mance when the interest set is much larger than
the active set. The epoll mechanisms avoid this
pitfall and provide performance that is largely
independent of the size of the interest set.

3 Improving epoll Performance

Figure 1 in Section 5 shows the throughput
obtained when using theµserver with the se-
lect, poll, and level-triggered epoll (epoll-LT)
mechanisms. In this graph the x-axis shows
increasing request rates and the y-axis shows
the reply rate as measured by the clients that
are inducing the load. This graph shows re-

sults for the one-byte workload. These re-
sults demonstrate that theµserver with level-
triggered epoll does not perform as well as
select under conditions that stress the event
mechanisms. This led us to more closely ex-
amine these results. Usinggprof , we ob-
served thatepoll_ctl was responsible for a
large percentage of the run-time. As can been
seen in Table 1 in Section 5 over 16% of the
time is spent inepoll_ctl . The gprof out-
put also indicates (not shown in the table) that
epoll_ctl was being called a large num-
ber of times because it is called for every state
change for each socket descriptor. We exam-
ine several approaches designed to reduce the
number ofepoll_ctl calls. These are out-
lined in the following paragraphs.

The first method uses epoll in an edge-
triggered fashion, which requires theµserver
to keep track of the current state of the socket
descriptor. This is required because with the
edge-triggered semantics, events are only re-
ceived for transitions on the socket descriptor
state. For example, once the server reads data
from a socket, it needs to keep track of whether
or not that socket is still readable, or if it will
get another event fromepoll_wait indicat-
ing that the socket is readable. Similar state
information is maintained by the server regard-
ing whether or not the socket can be written.
This method is referred to in our graphs and
the rest of the paperepoll-ET .

The second method, which we refer to as
epoll2, simply callsepoll_ctl twice per
socket descriptor. The first to register with the
kernel that the server is interested in read and
write events on the socket. The second call oc-
curs when the socket is closed. It is used to
tell epoll that we are no longer interested in
events on that socket. All events are handled
in a level-triggered fashion. Although this ap-
proach will reduce the number ofepoll_ctl
calls, it does have potential disadvantages.
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One disadvantage of the epoll2 method is that
because many of the sockets will continue to be
readable or writableepoll_wait will return
sooner, possibly with events that are currently
not of interest to the server. For example, if the
server is waiting for a read event on a socket it
will not be interested in the fact that the socket
is writable until later. Another disadvantage is
that these calls return sooner, with fewer events
being returned per call, resulting in a larger
number of calls. Lastly, because many of the
events will not be of interest to the server, the
server is required to spend a bit of time to de-
termine if it is or is not interested in each event
and in discarding events that are not of interest.

The third method uses a new system call named
epoll_ctlv . This system call is designed to
reduce the overhead of multipleepoll_ctl
system calls by aggregating several calls to
epoll_ctl into one call toepoll_ctlv .
This is achieved by passing an array of epoll
events structures toepoll_ctlv , which then
callsepoll_ctl for each element of the ar-
ray. Events are generated in level-triggered
fashion. This method is referred to in the fig-
ures and the remainder of the paper as epoll-
ctlv.

We useepoll_ctlv to add socket descrip-
tors to the interest set, and for modifying
the interest sets for existing socket descrip-
tors. However, removal of socket descriptors
from the interest set is done by explicitly call-
ing epoll_ctl just before the descriptor is
closed. We do not aggregate deletion oper-
ations because by the timeepoll_ctlv is
invoked, theµserver has closed the descriptor
and theepoll_ctl invoked on that descrip-
tor will fail.

Theµserver does not attempt to batch the clos-
ing of descriptors because it can run out of
available file descriptors. Hence, the epoll-
ctlv method uses both theepoll_ctlv and

the epoll_ctl system calls. Alternatively,
we could rely on theclose system call to
remove the socket descriptor from the inter-
est set (and we did try this). However, this
increases the time spent by theµserver in
close , and does not alter performance. We
verified this empirically and decided to explic-
itly call epoll_ctl to perform the deletion
of descriptors from the epoll interest set.

4 Experimental Environment

The experimental environment consists of a
single server and eight clients. The server con-
tains dual 2.4 GHz Xeon processors, 1 GB of
RAM, a 10,000 rpm SCSI disk, and two one
Gigabit Ethernet cards. The clients are iden-
tical to the server with the exception of their
disks which are EIDE. The server and clients
are connected with a 24-port Gigabit switch.
To avoid network bottlenecks, the first four
clients communicate with the server’s first Eth-
ernet card, while the remaining four use a dif-
ferent IP address linked to the second Ethernet
card. The server machine runs a slightly mod-
ified version of the 2.6.5 Linux kernel in uni-
processor mode.

4.1 Workloads

This section describes the workloads that we
used to evaluate performance of theµserver
with the different event notification mecha-
nisms. In all experiments, we generate HTTP
loads usinghttperf [11], an open-loop work-
load generator that uses connection timeouts to
generate loads that can exceed the capacity of
the server.

Our first workload is based on the widely used
SPECweb99 benchmarking suite [17]. We use
httperf in conjunction with a SPECweb99 file
set and synthetic HTTP traces. Our traces
have been carefully generated to recreate the
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file classes, access patterns, and number of re-
quests issued per (HTTP 1.1) connection that
are used in the static portion of SPECweb99.
The file set and server caches are sized so that
the entire file set fits in the server’s cache. This
ensures that differences in cache hit rates do
not affect performance.

Our second workload is called the one-byte
workload. In this workload, the clients repeat-
edly request the same one byte file from the
server’s cache. We believe that this workload
stresses the event dispatch mechanism by min-
imizing the amount of work that needs to be
done by the server in completing a particular
request. By reducing the effect of system calls
such asread andwrite , this workload iso-
lates the differences due to the event dispatch
mechanisms.

To study the scalability of the event dispatch
mechanisms as the number of socket descrip-
tors (connections) is increased, we useidle-
conn, a program that comes as part of the
httperf suite. This program maintains a steady
number of idle connections to the server (in ad-
dition to the active connections maintained by
httperf). If any of these connections are closed
idleconn immediately re-establishes them. We
first examine the behaviour of the event dis-
patch mechanisms without any idle connec-
tions to study scenarios where all of the con-
nections present in a server are active. We then
pre-load the server with a number of idle con-
nections and then run experiments. The idle
connections are used to increase the number
of simultaneous connections in order to sim-
ulate a WAN environment. In this paper we
present experiments using 10,000 idle connec-
tions, our findings with other numbers of idle
connections were similar and they are not pre-
sented here.

4.2 Server Configuration

For all of our experiments, theµserver is run
with the same set of configuration parameters
except for the event dispatch mechanism. The
µserver is configured to usesendfile to take
advantage of zero-copy socket I/O while writ-
ing replies. We use TCP_CORK in conjunc-
tion with sendfile . The same server op-
tions are used for all experiments even though
the use of TCP_CORK andsendfile may
not provide benefits for the one-byte workload
when compared with simply usingwritev .

4.3 Experimental Methodology

We measure the throughput of theµserver us-
ing different event dispatch mechanisms. In
our graphs, each data point is the result of a
two minute experiment. Trial and error re-
vealed that two minutes is sufficient for the
server to achieve a stable state of operation. A
two minute delay is used between consecutive
experiments, which allows the TIME_WAIT
state on all sockets to be cleared before the sub-
sequent run. All non-essential services are ter-
minated prior to running any experiment.

5 Experimental Results

In this section we first compare the throughput
achieved when using level-triggered epoll with
that observed when usingselect andpoll
under both the one-byte and SPECweb99-
like workloads with no idle connections. We
then examine the effectiveness of the differ-
ent methods described for reducing the num-
ber of epoll_ctl calls under these same
workloads. This is followed by a compari-
son of the performance of the event dispatch
mechanisms when the server is pre-loaded with
10,000 idle connections. Finally, we describe
the results of experiments in which we tune the
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accept strategy used in conjunction with epoll-
LT and epoll-ctlv to further improve their per-
formance.

We initially ran the one byte and the
SPECweb99-like workloads to compare the
performance of the select, poll and level-
triggered epoll mechanisms.

As shown in Figure 1 and Figure 2, for both
of these workloads select and poll perform as
well as epoll-LT. It is important to note that be-
cause there are no idle connections for these
experiments the number of socket descriptors
tracked by each mechanism is not very high.
As expected, the gap between epoll-LT and se-
lect is more pronounced for the one byte work-
load because it places more stress on the event
dispatch mechanism.
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Figure 1: µserver performance on one byte
workload using select, poll, and epoll-LT
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Figure 2: µserver performance on
SPECweb99-like workload using select,
poll, and epoll-LT

We tried to improve the performance of the
server by exploring different techniques for us-

ing epoll as described in Section 3. The effect
of these techniques on the one-byte workload
is shown in Figure 3. The graphs in this figure
show that for this workload the techniques used
to reduce the number ofepoll_ctl calls do
not provide significant benefits when compared
with their level-triggered counterpart (epoll-
LT). Additionally, the performance of select
and poll is equal to or slightly better than each
of the epoll techniques. Note that we omit the
line for poll from Figures 3 and 4 because it is
nearly identical to the select line.
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Figure 3: µserver performance on one byte
workload with no idle connections

We further analyze the results from Figure 3
by profiling theµserver using gprof at the re-
quest rate of 22,000 requests per second. Table
1 shows the percentage of time spent in sys-
tem calls (rows) under the various event dis-
patch methods (columns). The output for sys-
tem calls andµserver functions which do not
contribute significantly to the total run-time is
left out of the table for clarity.

If we compare the select and poll columns
we see that they have a similar breakdown in-
cluding spending about 13% of their time in-
dicating to the kernel events of interest and
obtaining events. In contrast the epoll-LT,
epoll-ctlv, and epoll2 approaches spend about
21 – 23% of their time on their equivalent
functions (epoll_ctl , epoll_ctlv and
epoll_wait ). Despite these extra overheads
the throughputs obtained using the epoll tech-
niques compare favourably with those obtained
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select epoll-LT epoll-ctlv epoll2 epoll-ET poll
read 21.51 20.95 21.41 20.08 22.19 20.97
close 14.90 14.05 14.90 13.02 14.14 14.79
select 13.33 - - - - -
poll - - - - - 13.32
epoll_ctl - 16.34 5.98 10.27 11.06 -
epoll_wait - 7.15 6.01 12.56 6.52 -
epoll_ctlv - - 9.28 - - -
setsockopt 11.17 9.13 9.13 7.57 9.08 10.68
accept 10.08 9.51 9.76 9.05 9.30 10.20
write 5.98 5.06 5.10 4.13 5.31 5.70
fcntl 3.66 3.34 3.37 3.14 3.34 3.61
sendfile 3.43 2.70 2.71 3.00 3.91 3.43

Table 1: gprof profile data for theµserver under the one-byte workload at 22,000 requests/sec

usingselect andpoll . We note that when
using select and poll the application re-
quires extra manipulation, copying, and event
scanning code that is not required in the epoll
case (and does not appear in the gprof data).

The results in Table 1 also show that the
overhead due toepoll_ctl calls is re-
duced in epoll-ctlv, epoll2 and epoll-ET, when
compared with epoll-LT. However, in each
case these improvements are offset by in-
creased costs in other portions of the code.
The epoll2 technique spends twice as much
time in epoll_wait when compared with
epoll-LT. With epoll2 the number of calls
to epoll_wait is significantly higher, the
average number of descriptors returned is
lower, and only a very small proportion of
the calls (less than 1%) return events that
need to be acted upon by the server. On the
other hand, when compared with epoll-LT the
epoll2 technique spends about 6% less time
on epoll_ctl calls so the total amount of
time spent dealing with events is comparable
with that of epoll-LT. Despite the significant
epoll_wait overheads epoll2 performance
compares favourably with the other methods
on this workload.

Using the epoll-ctlv technique, gprof indicates
that epoll_ctlv and epoll_ctl com-
bine for a total of 1,949,404 calls compared
with 3,947,769epoll_ctl calls when us-
ing epoll-LT. While epoll-ctlv helps to reduce
the number of user-kernel boundary cross-
ings, the net result is no better than epoll-
LT. The amount of time taken by epoll-ctlv
in epoll_ctlv and epoll_ctl system
calls is about the same (around 16%) as
that spent by level-triggered epoll in invoking
epoll_ctl.

When comparing the percentage of time epoll-
LT and epoll-ET spend inepoll_ctl we see
that it has been reduced using epoll-ET from
16% to 11%. Although theepoll_ctl time
has been reduced it does not result in an ap-
preciable improvement in throughput. We also
note that about 2% of the run-time (which is
not shown in the table) is also spent in the
epoll-ET case checking, and tracking the state
of the request (i.e., whether the server should
be reading or writing) and the state of the
socket (i.e., whether it is readable or writable).
We expect that this can be reduced but that it
wouldn’t noticeably impact performance.

Results for the SPECweb99-like workload are
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shown in Figure 4. Here the graph shows that
all techniques produce very similar results with
a very slight performance advantage going to
epoll-ET after the saturation point is reached.
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Figure 4: µserver performance on
SPECweb99-like workload with no idle
connections

5.1 Results With Idle Connections

We now compare the performance of the event
mechanisms with 10,000 idle connections. The
idle connections are intended to simulate the
presence of larger numbers of simultaneous
connections (as might occur in a WAN envi-
ronment). Thus, the event dispatch mechanism
has to keep track of a large number of descrip-
tors even though only a very small portion of
them are active.

By comparing results in Figures 3 and 5 one
can see that the performance of select and poll
degrade by up to 79% when the 10,000 idle
connections are added. The performance of
epoll2 with idle connections suffers similarly
to select and poll. In this case, epoll2 suffers
from the overheads incurred by making a large
number ofepoll_wait calls the vast major-
ity of which return events that are not of cur-
rent interest to the server. Throughput with
level-triggered epoll is slightly reduced with
the addition of the idle connections while edge-
triggered epoll is not impacted.

The results for the SPECweb99-like workload
with 10,000 idle connections are shown in Fig-

ure 6. In this case each of the event mecha-
nisms is impacted in a manner similar to that
in which they are impacted by idle connections
in the one-byte workload case.
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Figure 5: µserver performance on one byte
workload and 10,000 idle connections
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Figure 6: µserver performance on
SPECweb99-like workload and 10,000
idle connections

5.2 Tuning Accept Strategy for epoll

The µserver’s accept strategy has been tuned
for use withselect . Theµserver includes a
parameter that controls the number of connec-
tions that are accepted consecutively. We call
this parameter the accept-limit. Parameter val-
ues range from one to infinity (Inf). A value of
one limits the server to accepting at most one
connection when notified of a pending connec-
tion request, while Inf causes the server to con-
secutively accept all currently pending connec-
tions.

To this point we have used the accept strategy
that was shown to be effective forselect by
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Brecht et al. [4] (i.e., accept-limit is Inf). In
order to verify whether the same strategy per-
forms well with the epoll-based methods we
explored their performance under different ac-
cept strategies.

Figure 7 examines the performance of level-
triggered epoll after the accept-limit has been
tuned for the one-byte workload (other val-
ues were explored but only the best values
are shown). Level-triggered epoll with an ac-
cept limit of 10 shows a marked improve-
ment over the previous accept-limit of Inf,
and now matches the performance of select
on this workload. The accept-limit of 10 also
improves peak throughput for the epoll-ctlv
model by 7%. This gap widens to 32% at
21,000 requests/sec. In fact the best accept
strategy for epoll-ctlv fares slightly better than
the best accept strategy for select.
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Figure 7: µserver performance on one byte
workload with different accept strategies and
no idle connections

Varying the accept-limit did not improve the
performance of the edge-triggered epoll tech-
nique under this workload and it is not shown
in the graph. However, we believe that the ef-
fects of the accept strategy on the various epoll
techniques warrants further study as the effi-
cacy of the strategy may be workload depen-
dent.

6 Discussion

In this paper we use a high-performance event-
driven HTTP server, theµserver, to compare
and evaluate the performance of select, poll,
and epoll event mechanisms. Interestingly,
we observe that under some of the work-
loads examined the throughput obtained using
select andpoll is as good or slightly bet-
ter than that obtained with epoll. While these
workloads may not utilize representative num-
bers of simultaneous connections they do stress
the event mechanisms being tested.

Our results also show that a main source of
overhead when using level-triggered epoll is
the large number ofepoll_ctl calls. We
explore techniques which significantly reduce
the number ofepoll_ctl calls, including
the use of edge-triggered events and a system
call, epoll_ctlv , which allows theµserver
to aggregate large numbers ofepoll_ctl
calls into a single system call. While these
techniques are successful in reducing the num-
ber of epoll_ctl calls they do not appear
to provide appreciable improvements in perfor-
mance.

As expected, the introduction of idle connec-
tions results in dramatic performance degrada-
tion when usingselect andpoll , while not
noticeably impacting the performance when
using epoll. Although it is not clear that
the use of idle connections to simulate larger
numbers of connections is representative of
real workloads, we find that the addition of
idle connections does not significantly alter
the performance of the edge-triggered and
level-triggered epoll mechanisms. The edge-
triggered epoll mechanism performs best with
the level-triggered epoll mechanism offer-
ing performance that is very close to edge-
triggered.

In the future we plan to re-evaluate some of
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the mechanisms explored in this paper un-
der more representative workloads that include
more representative wide area network condi-
tions. The problem with the technique of us-
ing idle connections is that the idle connections
simply inflate the number of connections with-
out doing any useful work. We plan to explore
tools similar to Dummynet [16] and NIST Net
[5] in order to more accurately simulate traffic
delays, packet loss, and other wide area net-
work traffic characteristics, and to re-examine
the performance of Internet servers using dif-
ferent event dispatch mechanisms and a wider
variety of workloads.
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