
Fault Injection Test Harness
a tool for validating driver robustness

Louis Zhuang
Intel Corp.

louis.zhuang@intel.com,

louis.zhuang@acm.org

Stanley Wang
Intel Corp.

stanley.wang@intel.com

Kevin Gao
Intel Corp.

kevin.gao@intel.com

Abstract

FITH (Fault Injection Test Harness) is a tool
for validating driver robustness. Without
changing existing code, it can intercept arbi-
trary MMIO/PIO access and IRQ handler in
driver.

Firstly I’ll first list the requirements and design
for Fault Injection. Next, we discuss a cou-
ple of new generally useful implementation in
FITH

1. KMMIO - the ability to dynamically hook
into arbitrary MMIO operations.

2. KIRQ - the ability to hook into an arbi-
trary IRQ handler,

Then I’ll demonstrate how the FITH can help
developers to trace and identify tricky issues
in their driver. Performance benchmark is also
provided to show our efforts in minimizing the
impact to system performance. At last, I’ll
elaborate on current and future efforts and con-
clude.

1 Introduction

High-availability (HA) systems must respond
gracefully to fault conditions and remain oper-
ational during unexpected software and hard-
ware failures. Each layer of the software stack
of a HA system must be fault tolerant, produc-
ing acceptable output or results when encoun-
tering system, software or hardware faults, in-
cluding faults that theoretically should not oc-
cur. An empirical study [2] shows that 60-
70% of kernel space defects can be attributed
to device driver software. Some defect con-
ditions (such as hardware failure, system re-
source shortages, and so forth) seldom hap-
pen, however, it is difficult to simulate and
reproduce without special assistant hardware,
such as an In-Circuit Emulator. In these situa-
tions, it is difficult to predict what would hap-
pen should such a fault occur at some time in
the future. Consequently, device drivers that
are highly available or hardened are designed
to minimize the impact of failures to a system’s
overall functionality.

Developing hardened drivers requires employ-
ing fault avoidance software development tech-
niques early in the development phase. To



Linux Symposium 525

eliminate faults during development and con-
firm a driver’s level of hardening, a developer
can test a device driver by injecting or simulat-
ing fault events or conditions. The focus of this
paper is on the injection or simulation of hard-
ware faults. Injection of software faults will be
considered in future version.

FITH simulates hardware-induced software er-
rors without modifying the original driver. It
offers flexible customization of hardware fault
simulation as well as provides command-line
tool for facilitating test development. FITH can
also provide the ability to log the route of an in-
jected fault, thereby enabling driver developers
to diagnose the tested driver.

2 Requirements

This section describes some requirements for
FITH; we derived as part of the development.

The only behavioral requirement is that FITH
should not impact functionality of the tested
driver. The tested driver should work as if there
is no FITH at all.

There are various functionality requirements
that need to be considered. Most center around
the interception of resources access. FITH
needs to have capability to intercept accesses
for MMIO, IO, IRQ and PCI configuration.
The other major requirement is about handling
after interception. FITH needs to have capa-
bility to support the complex and customized
post-handling, such as tracing hardware status,
emulating fake hardware register, injecting er-
ror data and logging.

With respect to performance, there are basi-
cally two overriding goals:

• minimize the impact to system perfor-
mance when the tested driver doesn’t en-
able FITH.

• minimize the number of instructions in
critical kernel path, such as exception and
interrupt part.

3 Architecture

FITH consists of four components: intercep-
tors, faultsets, configuration tools, and a fault
injection manager. The configuration tools
provide the command-line utilities needed to
customize a faultset for a driver. Three in-
terceptors will be implemented to catch IO,
MMIO and IRQ access. When a driver tries to
access a hardware resource, the IO interceptor
captures this access and asks the fault injection
manager if there is a corresponding item in the
faultset. If there is, the fault injection manager
determines how to inject the appropriate fault
according to the associated properties defined
in the faultset. The fault injection manager then
returns this information to the interceptor, so
the interceptor injects the actual fault into the
hardware.

IRQ fault injection is somewhat different from
the other types of fault injection. Hardware
triggers the IRQ, and a kernel IRQ interrupt
handler delivers this event to the IRQ inter-
ceptor. The IRQ interceptor then checks the
faultset to determine whether a specific fault
is available to inject into the event. 1 illus-
trates how the interceptor interacts with the
other subsystems.

The interceptor sits between the hardware and
the device driver and modifies information
based on certain conditions in the driver’s
namespace. An interceptor for one driver does
not affect the interceptor for others. As a mat-
ter of fact, the hardware that the driver observes
is the hardware that our interceptor wraps.



Linux Symposium 526

Figure 1: Architecture of FITH

4 KMMIO—Interceptor of MMIO
access

One of those requirementsof FITH is the abil-
ity to hook to a specific memory mapped IO re-
gion before the user of the region gets access.
A fault injection test case may need to just note
when a given region is being read/written, take
some action before the caller returns from the
read or write operation, or change the value
that is being read or written.

4.1 Approaches for capturing MMIO accesses

There are several hardware/software ap-
proaches for capaturing MMIO accesses.

• Overriding MMIO functions.

Memory mapped IO access can be cap-
tured by overriding MMIO functions,
such as readb() and writeb() .
The major advantage is this method is
platform-independent because all Linux
platforms support these MMIO functions.
Disadvantages are

1. Any driver that accesses MMIO
without using the standard MMIO

functions cannot be intercepted.

2. A special FITH header file needs to
be added to the driver code, and the
driver needs to be recompiled.

3. There are some differences between
the “released driver” and the “driver
with FITH.” The driver that is vali-
dated and verified is the driver with
FITH rather than the released driver.

• Setting Watch Points.

IA-32 architecture provides extensive de-
bugging facilities for debugging code and
monitoring code execution. These facili-
ties can also be used to intercept memory
access. The major advantages are

1. The driver does not need to be re-
compiled.

2. There have been a good patch to sup-
port it.[3]

On the other hand, there are several disad-
vantages:

1. In IA32 architecture, this is a trap
type of exception, which means that
the processor generates the excep-
tion after the IO instruction has been
executed, so this method cannot do
fault injection in write operation.

2. There are only four watch points that
can be used. This may be not enough
in a complex environment.

• Trapping MMIO access by using Page-
Fault Exceptions.

Like normal memory, MMIO is handled
by a page-protection mechanism. There-
fore, MMIO access can be intercepted by
capturing page faults. The method clears
the PE (PRESENT) bit of the PTE (Page
Table Entry) of the MMIO address so that



Linux Symposium 527

the processor triggers a page-fault excep-
tion when MMIO is accessed. The major
advantages are

1. In IA32 architecture, this is a fault
type of exception, which means that
the processor generates an exception
before MMIO access is executed, so
this method can do fault injection in
write operation.

2. The driver does not need to be re-
compiled. There is a disadvan-
tage in the method—because the
unit of intercepted MMIO is the size
of a page (4k in IA-32), an adja-
cent MMIO access may unnecessar-
ily trigger an exception, system per-
formance might be impacted.

Based on FITH requirements and our analysis
above, we implemented a page-fault method to
capture MMIO.

4.2 Implementation

We also followed the same usage style like
what kprobes provides, with aregister_
kmmio_probe() function for adding
the probe, and aunregister_kmmio_
probe() function for removing the probe.
The register_kmmio_probe adds the
probe into internal list and set the page
which the probe is on as UNPRESENT. After
register_kmmio_probe , any access on
the page will trigger a page-fault exception
and fall into KMMIO core.

To get the control in page-fault exception,
we need some tweaks tofaults.c . KM-
MIO needs to add an additional path here.
When the page-fault falls into KMMIO, KM-
MIO looks up the fault address in probe hash
list. If the fault address is one of probes, the
pre_handler of the probe is called.

diff −Nru a/arch/i386/mm/fault.c

b/arch/i386/mm/fault.c

−−− a/arch/i386/mm/fault.c Thu May 15

15:52:08 2003

+++ b/arch/i386/mm/fault.c Thu May 15 15:52:08

2003

@@−80,6 +81,9 @@

/ ∗ get the address ∗/

__asm__("movl %%cr2,%0":"=r"

(address));

+ if (is_kmmio_active() && kmmio_handler(regs,

address))

+ return;

+

/ ∗ It’s safe to allow irq’s after cr2 has been saved ∗/

if (regs −>eflags & X86_EFLAGS_IF)

local_irq_enable();

Figure 2: Patch against fault.c

Then, KMMIO tries to recover normal exe-
cution. It sets the page as PRESENT. But
KMMIO needs to do more than this. Be-
cause the probe should be re-enabled after cur-
rent instruction which trigger the page-fault
exception, KMMIO enables single-step before
exiting page-fault exception. Similar to the
change tofaults.c , KMMIO needs to patch
traps.c to get the control when the single-
step exception is triggered.

After the instruction, which triggers the page-
fault execption, is executed, a single-step ex-
ecption is triggered and falls into KMMIO
again. If there is a probe on the fault ad-
dress, KMMIO calls thepost_handler of
the probe. Then KMMIO sets the page as UN-
PRESENT again to enable the probe on the
page.



Linux Symposium 528

diff −Nru a/arch/i386/kernel/traps.c

b/arch/i386/kernel/traps.c

−−− a/arch/i386/kernel/traps.c Thu May 15

15:52:08 2003

+++ b/arch/i386/kernel/traps.c Thu May 15

15:52:08 2003

@@−524,6 +525,9 @@

__asm__ __volatile__("movl %%db6,%0" : "=r"

(condition));

+ if (post_kmmio_handler(condition, regs))

+ return;

+

/ ∗ It’s safe to allow irq’s after DR6 has been saved ∗/

if (regs −>eflags & X86_EFLAGS_IF)

local_irq_enable();

Figure 3: Patch against traps.c

5 KIRQ—Interceptor of IRQ han-
dler

Placing hooks into IRQ handler of devices is
a straight task. KIRQ stores IRQ handler of
the device intostruct kirq and modifies
the IRQ chain in kernel to replace IRQ han-
dler of the device with KIRQ’s handler. When
the device’s interrupt falls into KIRQ, it calls
handler of the hook. Based on return value
of handler of hook, KIRQ calls the original
handler of the device in turn.

6 Example

The serial device driver in Linux kernel was
used in our fault injection trials. Four steps
were involved in developing the fault injection
tests:

1. Identify resources that needs to be fault in-
jected.

2. Prepare the faultset data source.

3. Set up the test environment.

4. Run the workload and analyze the results.

6.1 Preparing the Faultset Data Source

FITH supports faultset scripts and action code
segments. They can be used for customizing
For example, a transmission error fault would
modify data when the driver received the hard-
ware status from the register. The faultset de-
scription looks like the following:

<?xml version="1.0" encoding="UTF-8" ? >

<fsml

xmlns=

"http://fault-injection.sourceforge.net/FSML/" >

<trigger id="2"

type="r"

len="1"

addr="0x3FD"

bitmask="0"

min="0"

max="0"

skip="0"

protection_mask="0"

hz="0" >

<action code −segment="cs_001" / >

</trigger >

</fsml >

Figure 4: Faultset description example

The corresponding code segment looked like
the following:

6.2 Setting Up the Test Environment

There are three steps:

1. load FITH kernel modules.



Linux Symposium 529

#include <fith/state_machine.h >

unsigned long pointer=0;

int inject_faults(struct

context ∗cur) {
// translate the bus address into linear address
line_addr = fith_bus2line(pointer);

// inject errors in data by going though
// the device special
// structure data
// ...

return 0;

};

/ ∗ cs_001 is called by trigger "001" in FSML
∗ script when IO port 0x3FD
∗ (Command Register) is written. ∗ /

int cs_001(struct state_machine ∗sm,

struct context ∗cur) {
unsigned long line_addr;

if (cur −>data==‚a‚) {
// check if it is ’a’ character
inject_faults(cur);

}
return 0;

};

Figure 5: Code segment example

2. set up the faultsets by Fault Injection
Command-Line (ficl) configuration tool.

3. load the serial driver.

6.3 Running the Workload and Analyzing the
Results

To validate the serial driver, a well-chosen
workload was run to stress the driver when it
accessed the device. FITH injected faults be-
tween the driver and device and logged these

operations. The fault-induced results and in-
jected faults were later analyzed.

7 System Performance Impact

In this section we assess the performance im-
pact of current implementation of FITH.

7.1 LMbench

LMbench is a general OS benchmark designed
to measure all sides of OS from application
view. This is useful for generating a set of
apples to apples systems comparisons between
pure Linux kernel and FITH-enabled Linux
kernel.

All experiments were performed on a dual
Pentium-III 933, 512K L2 Cache, 512 MB
RAM system. The “52-pure” data was ob-
tained by running on a vanilla 2.5.52 linux ker-
nel. The “cs@1901” data was obtained by run-
ning on a patched 2.5.52 Linux kernel (which
contained KMMIO KIRQ etc. patches). There
are no active probes in “cs@1901” experiment.

Because FITH patches Linux kernel in page-
fault exception path, the potential impacts
should be in memory management subsystem.
Current FITH implementation, however, has
minimized the impact when there are no ac-
tive probes. Differences between two experi-
ments are so small that they are buried by test-
ing noise.

8 Acknowledgements

We specially thanks following persons for their
kind help and feedback:

David Edwards (for initial prototype and de-
sign), Frank Wang and Elton Yang (for project
plan and support), Fleming Feng (for feedback



Linux Symposium 530

LMB ENCH 2.0 SUMMARY

Basic system parameters
Host OS Description Mhz
52-pure Linux 2.5.52 i686-pc-linux-gnu 932
cs@1901 Linux 2.5.52 i686-pc-linux-gnu 932

Processor, Processes - times in microseconds - smaller is better
Host OS Mhz null null open selct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
52-pure Linux 2.5.52 932 0.39 0.68 22.9 24.4 27.2 1.09 4.47 210. 996. 5050
cs@1901 Linux 2.5.52 932 0.37 0.68 22.7 24.0 31.5 1.06 4.51 221. 1052. 5202

*Local* Communication latencies in microseconds - smaller is better
Host OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
52-pure Linux 2.5.52 7.109 33.4 41.7 61.6 81.1 110.2 110.
cs@1901 Linux 2.5.52 7.137 15.2 41.8 61.1 81.1 109.8 134.

File & VM system latencies in microseconds - smaller is better
Host OS 0K File 10K File Mmap Prot Page

Create Delete Create Delete Latency Fault Fault
52-pure Linux 2.5.52 92.5 46.0 225.6 75.3 2053.0 0.885 2.00000
cs@1901 Linux 2.5.52 93.4 46.5 229.2 77.1 2063.0 0.765 2.00000

*Local* Communication bandwidths in MB/s - bigger is better
Host OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
52-pure Linux 2.5.52 40.7
cs@1901 Linux 2.5.52 41.0

Figure 6: LM Benchmark

and requirement), Rusty Lynch (for sysfs inter-
face in FITH).

References

[1] David A. Edwards, “An Approach to
Injecting Faults into Hardened Software,”
Proceedings of the Ottawa Linux
Symposium,
http://wwww.linuxsymposium.org
/2002

[2] Andy Chou, Junfeng Yang, Benjamin Chelf
etc., “An Empirical Study of Operating
System Errors,” 2001,
http://www.stanford.edu
/˜engler/metrics-sosp-01.ps

[3] Vamsi Krishna, Rusty Russell etc., “Kernel
Probes for Linux,”

http://www-124.ibm.com/linux
/projects/kprobes/



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


