
relayfs: An Efficient Unified Approach for
Transmitting Data from Kernel to User Space

Tom Zanussizanussi@us.ibm.com

Karim Yaghmourkarim@opersys.com

Robert Wisniewskibob@watson.ibm.com

Richard Moorerichardj_moore@uk.ibm.com

Michel Dagenaismichel.dagenais@polymtl.ca

Abstract

Linux has several mechanisms for relaying in-
formation about the system and applications to
the user. Some examples include printk and
other syslog events, evlog, ltt, oprofile, etc.
Each subsystem has its own method for relay-
ing information from the kernel to user space.
Some of these mechanisms have difficulties,
e.g. logging of printk messages is unreliable.
In addition to selected difficulties, the replica-
tion of code and maintenance is undesirable. In
this paper we describe a high-speed data relay
filesystem that satisfies the buffering require-
ments of the above subsystems while providing
a unified, efficient, and reliable relay mecha-
nism. relayfs allows subsystems to log data ef-
ficiently and safely using lockless technology
that is designed to scale well on multiproces-
sor systems. relayfs includes the flexibility to
be expanded should other subsystems need ad-
ditional services, but has a simple design in-
tended to meet the needs of currently available
subsystems. In this paper we discuss the ar-
chitecture, implementation, and usage of re-
layfs. relayfs uses channels that allow data to
be directed to a suitable buffer or buffers for
the subsystems that allocated the channel. We
describe the kernel API and file naming con-
ventions, address init-time issues, and discuss
performance trade-offs available using relayfs.

Finally we demonstrate how existing subsys-
tems use relayfs to log their data.

1 Introduction

Sharing data between the kernel and user-space
applications requires buffering. For relatively
small transfers, such as passing variables or
small data arrays, the normal system call API
is sufficient; the overhead required for safely
transferring data across the kernel boundary is
acceptable. For larger data transfers, the sub-
system generating the data is responsible for
providing a buffering and transfer mechanism
to deliver the data to user space. With in-
creasing system speed and growing demand for
more information regarding the kernel’s opera-
tion, many of the conventional buffering mech-
anisms have reached their limits. Further, the
buffering and transfer code for each of the sub-
systems is replicated and needs to be indepen-
dently maintained.

To address these challenges, we designed and
implemented relayfs. relayfs is a unified, re-
liable, efficient, and simple mechanism for
transferring large amounts of data between the
kernel and user space. The algorithms used
for relayfs have been designed to handle both
high frequency and large data applications such
as kernel tracing. To satisfy these demand-



Linux Symposium 495

xlog/channel1

xlog/channel3

xlog/channel2

printk/channel1

.

.

.

relayfs

printk

xlog

User−space

Kernel Subsystems /mnt/xlog/channel1

/mnt/xlog/channel2

/mnt/xlog/channel3

/mnt/printk/channel1

Figure 1: relayfs architecture

ing clients, relayfs is a high-speed, low-impact
data relay filesystem. Data logged by a sub-
system using relayfs appears under the direc-
tory where the filesystem is mounted. For ex-
ample, if relayfs is mounted under /mnt, printk
data may appear in /mnt/printk/data. Although
this paper focuses on the use of relayfs for ker-
nel subsystems, user-space clients can also be
served by relayfs.

relayfs provides the abstraction of achannelto
the subsystem using its services. Channels and
files have a 1-to-1 mapping. A given subsystem
may log data to multiple channels. For exam-
ple, a tracing subsystem may log the majority
of its data to one channel and create a control
channel for less frequent but informative events
such as new process creation. printk could, for
example, use different channels to log informa-
tion from devices versus the memory system.
Alternatively, a kernel developer could create
a separate channel for just the events in newly
written (and currently being debugged) code,
so as to view only those.

relayfs has a simple design and mechanisms

intended to meet the demands of current sub-
systems while affording flexibility in meeting
new requirements of future subsystems. re-
layfs provides the option of using locking or
lockless data logging. The lockless option is
very efficient but introduces potential difficul-
ties as discussed later. relayfs provides the
choice of using per-processor buffers or a sin-
gle buffer shared across the machine. It also
provides choice between block or packet deliv-
ery of events. The trade-offs of these options
are discussed later as well.

In addition to these options, relayfs reduces
code replication among subsystems by provid-
ing mechanisms common to the subsystems.
These include handling overflow issues, pro-
viding efficient timestamping on events, pro-
viding efficient delivery to user space, and han-
dling dynamic allocation and de-allocation of
memory needed to provide the buffering. Tests
conducted using relayfs have shown it can han-
dle significant amounts of data with very low
overhead.

The rest of the paper is structured as follows.



Linux Symposium 496

Section 2 describes the channel architecture
and the lockless algorithm. Section 3 describes
how the code is structured and where to find the
implementation files. Section 4 describes the
interface to relayfs, the different options avail-
able, and how it handles overflows. Section 5
describes the impact and performance of re-
layfs. Section 6 describes how to modify some
example subsystems to use relayfs. Section 7
concludes.

2 Architecture

Figure 1 presents the relayfs architecture. Ker-
nel subsystems create and use different relayfs
channels to log their data, while user-space ap-
plications see those same channels as files lo-
cated in the mounted relayfs filesystem.

2.1 Channels

The main building block of relayfs is a channel.
To relay data to user-space applications, kernel
subsystems allocate channels to transfer their
data. Multiple channels can be used to imple-
ment any data multiplexing desired, including
using one channel per CPU to implement per-
CPU buffering.

The buffering implemented by relayfs is trans-
parent to the client subsystem. Writing to the
channel requires that the following be speci-
fied: channel ID, pointer to the data, and size
of data. relayfs does not parse the data being
relayed; it just transfers bytes. Because some
relayfs clients may implement a particular data
protocol (for example, special markings on
buffer ends), relayfs provides callback func-
tions for its clients when significant changes in
the channel buffers occur. The callbacks are
optional.

From user space, channels are accessed as files.
relayfs implements the standard operations re-

quired for normal file manipulation. For exam-
ple, to gain access to a relayfs file, applications
can perform read() operation on the file speci-
fying a number of bytes. Alternatively the ap-
plication can mmap() in the file and reference
the contents of the file via memory pointer.

2.2 Lockless Event Logging

An important feature of relayfs is its abil-
ity to write data to buffers without requiring
locks. Previous lockless logging schemes[2]
used fixed-length events with valid bits. There
are several advantages to using variable-length
events (assuming the random access problem
is solved, see Section 4.2). The algorithm
integrated into relayfs allows variable-length
events to be logged without locking.

Each process attempts toreserveenough space
in the buffer immediately after the current
index for the event it wants to log. Once
the process makes a successful reservation,
it may proceed to log its data. To reserve
space, each process attempts to atomically in-
crement the current index using acompare
and store . The process that successfully
increments (as determined by the return value
of thecompare and store operation) the
index has the right to proceed to log data into
the buffer; failing processes retry. Figure 2
shows on the left, in step 1, two processes,
A and B, attempting to log events of different
lengths after the current index from the initial
configuration in step 0. Each process attempts
to increment the current index by the size of the
event being logged. The process that succeeds,
in this case B, will log the event immediately
following the old current index (see step 2).
This will be followed by process A’s data, as-
suming no other competing processes attempt
to log more data (see step 3). Because it is im-
portant to guarantee monotonically increasing
timestamps, processes must re-determine the
timestamp during each attempt to atomically



Linux Symposium 497

proc A

B A

proc B

B 2

3

current index

current index

current index

current index

current index

1

0

Figure 2: Illustration of Lockless Event Logging

eventReserve(length, *indexPtr, *timestampPtr)
integer: oldIndex, newIndex
EvtCtl: *evtCtlPtr

update evtCtlPtr
do

oldIndex = evtCtlPtr->index
newIndex = oldIndex + length
if (newIndex >= buffer end)

eventReserveSlow(length, indexPtr, timestampPtr)
// generates filler event, sets timestamp, moves to new buffer

return
*timestampPtr = getTimestamp()

while (!CompareAndStore(&(evtCtlPtr->index), oldIndex, newIndex))
*indexPtr = oldIndex & INDEXMASK // confine index to buffer bounds

eventLog(majorID, minorID, data)
integer: index, timestamp, length

length = length of data
eventReserve(length, &index, &timestamp)
evtArray[index] = logEvtHeader(timestamp, length, majorID, minorID)
evtArray[index+1 ... index+length] = data
eventCommit(index, length) // optional, see explanation in text

Figure 3: Pseudo code for lockless event logging

increment the index.

The memory used for logging is logically di-
vided into buffers. Once a buffer is full, the
logging facility proceeds to the subsequent
buffer and the previous buffer is available to
be written out. The pseudo code appears in
Figure 3 and complete C code can be obtained
by downloading relayfs from the relayfs web
site[1].

Despite having good performance, complica-
tions can arise from using the lockless algo-

rithm. A process’s execution may be inter-
rupted after it has reserved space to log an
event, but before it actually performs the log.
The interruption can occur because the pro-
cess is preempted, blocks for a long time, or
is killed. Depending on where (in the sequence
of code in Figure 3) the process is interrupted,
different problems occur. If the process has
had a chance to write the event header, but not
the data, then only the data will be unrecov-
erable. If, however, the process has not yet
logged the event header then it is possible the



Linux Symposium 498

rest of the buffer will be uninterpretable. Only
by locking, making the kernel perform the log,
and disabling interrupts can this problem be
prevented (in practice there are low-level ker-
nel events that would still exhibit the problem).
There are methods that avoid these difficulties.

If the reason the process’s execution was inter-
rupted was due to preemption, then it is likely
the process will run again soon and finish fill-
ing in the event before another entity notices,
thus posing no real problem. If the reason for
the process’s interruption was because the pro-
cess was killed, then the data will never finish
being logged. The last line of pseudo-code de-
tects this situation. TheeventCommit func-
tion updates a per-buffer count of the amount
of data that has been logged to that buffer.
The count is zeroed during thestart new
buffer code. When the code responsible
for writing the data (to a network stream, file,
etc.) writes this buffer, it can compare the
amount of data logged to this buffer with the
buffer’s size and report an anomaly if they do
not match. If the reason the process was inter-
rupted was because of a long blocking opera-
tion, it is possible that both the current buffer
will not have enough data logged, and that the
same buffer, when reused in the future, will
have too much (because the long-blocked pro-
cess was unblocked and logged data into a re-
cycled buffer). Again the per-buffer counts can
detect this situation.

Besides a per-buffer count there are other pos-
sible ways to detect or minimize the occurrence
of corrupted data. For example, it is possible to
use a flag in a per-process data structure to in-
dicate to the kernel that a process should not
be killed while the flag is set. Other possibili-
ties include zero-filling a buffer before use, or
keeping a side array of valid bits for the header
data. In practice the probability of corrupt-
ing a buffer, and the ease with which tools can
handle the situation, reduces the issue’s impor-

tance except perhaps in setups where recreat-
ing the situation generating the logged data is
very difficult. In those cases the locking ver-
sion of the event logging may be the best op-
tion.

3 Implementation

The relayfs code is structured as follows: the
public API and common relay code are con-
tained in fs/relayfs/relay.c, with the scheme-
specific code in fs/relayfs/relay_lockless.c
and fs/relayfs/relay_locking.c. The file
fs/relayfs/inode.c implements the VFS layer on
top of the relay channel code.

relayfs can be compiled either directly into the
kernel or as a kernel module.

4 Interface and Use

relayfs is used both as a temporary repository
for logged data and as a filesystem from which
user-space clients may retrieve logged data.
The first of these is supported by set of kernel-
space APIs. For the second, relayfs is mounted
as a filesystem:

mount -t relayfs relayfs /mnt/relay

Kernel subsystems (also referred to as kernel
clients) create and write to channels via the
kernel API described below. The contents of
these channels are available to user-space pro-
grams via a standard file abstraction that can
be read using mmap() or read(). relayfs pro-
vides automatic support for locking or lockless
logging, overflow handling, data delivery, and
timestamping.

4.1 Interface

This section describes the basic usage
of the kernel and user APIs. Com-



Linux Symposium 499

plete details can be found in Documenta-
tion/filesystems/relayfs.txt. To initiate data
logging, a kernel client creates a channel rela-
tive to the mountpoint of the relayfs filesystem
via relay_open():

int channel_id =
relay_open("file", ...);

This would cause the creation of a relayfs file
named /mnt/relay/file, assuming relayfs was
mounted at /mnt/relay.

relayfs does not impose any namespace con-
ventions; clients may choose names as they
wish. We recommend the adoption of the con-
vention whereby a client specifies a top-level
directory name that is closely associated with
the corresponding subsystem. For example, the
Linux Trace Toolkit would manage the names-
pace under /mnt/relay/trace, printk would use
/mnt/relay/printk, driver debugging channels
might use /mnt/relay/debug/drivers/mydriver,
etc.

A kernel client can then log a variable-length
data item to the channel via relay_write(),
given the channel id.

relay_write(channel_id, data,
count,...);

In user space, a program can open the relayfs
file and wait in a read() loop waiting for data.

fd = open("/mnt/relay/file", ...);

while(1) {
n = read(fd, buf, sizeof(buf));
if(n <= 0) {

close(fd);
break;

}
}

Alternatively, the file can be mmap()’ed and
directly accessed via a pointer to the mapped
buffer when data is ready.

fd = open("/mnt/relay/file", ...);
char *map = mmap(..., fd, ...);

void on_ready(count) {
write(diskfile, map, count);

}

There are five callbacks that can optionally be
registered by the kernel client when a chan-
nel is opened. These are used to notify the
client when significant events occur (buffer
start, buffer end, event deliver, buffers full,
buffer resize) and are described below.

4.2 Channel and data management schemes

The channel data for a given channel is inter-
nally managed via one of two schemes defined
at channel creation. They arelocklessor lock-
ing. The lockless scheme is described in Sec-
tion 2. The locking scheme is a simple two-
buffer ping-pong scheme. One of the buffers is
the current write buffer, into which events are
written, and the other is the current read buffer,
from which events are read (by, for instance, a
user daemon). When the current write buffer
is filled, it becomes the current read buffer and
the current read buffer becomes the new write
buffer. The key feature of the locking scheme
is that the channel is locked (the exact seman-
tics are described below) while space is allo-
cated for the event and for the duration of the
write.

The reason two schemes exist is that while it
would be ideal to have all channels managed
by the lockless scheme, the availability of the
lockless scheme depends on the availability of
a cmpxchg instruction or a generic equivalent,
which does not exist on all Linux platforms.
Thus, the locking scheme is available as a fall-
back scheme for those platforms that cannot
support the lockless scheme.

relayfs channels are implemented as circular
buffers divided into a number of sub-buffers.
If a scheme has not been explicitly specified,
the channel creation code will choose lock-
less. The number and size of these sub-buffers



Linux Symposium 500

are specified at channel creation (or with cer-
tain restrictions can be dynamically sized after-
ward). For efficiency reasons, in the lockless
code, both of these are a power of 2. Having
each buffer size be a power of 2 allows a cheap
logicaland comparison to determine if the end
of a buffer has been reached. Having the num-
ber of buffers be a power of 2 allows a cheaper
operation to be performed to ensure the index
remains within the memory allocated for the
buffers. Both of these operations occur on the
fast path of every event log and thus are criti-
cal. The index value could be interpreted as a
straight index into a single circular buffer, but
for other reasons multiple buffers are prefer-
able. For example, breaking up the buffers into
multiple sub-buffers rather than a single large
buffer allows flexibility in buffer processing,
allows more timely delivery of events to user
space, and minimizes the impact of potential
data corruption.

One aspect of using the lockless scheme is the
use of variable-length events. There are trade-
offs between using fixed-length or variable-
length events. Fixed-size events allow for sim-
pler logging and reading out as the consumer
of events always knows the starting point of
an event. This allows validity bits to be used,
and allows invalid events to be skipped. Fixed-
length events allow easy random access to
the data stream, aiding reading and display-
ing large files. The disadvantages of fixed-
length events are that they waste space, they
take longer to write (to disk or network) be-
cause extra data needs to be written for short
events, and they make it complicated to log
data that is larger than the fixed size. The
lockless scheme obtains the benefits of each
by ensuring that events never cross medium-
scale alignment boundaries. We insert filler
events as necessary to align the event stream.
Data analysis tools can skip to any of the align-
ment points in a large event buffer and can be-
gin interpreting events from that point. This

unused

unused

unused

unused

unused

reserved

uncommitted 1
1
0
1
1
0

1

0

offsetbuf idindex

3 bits 18 bits

bufs_produced: 38
bufs_consumed: 35
buffer_complete[]:

alloc_size: 2M

rchan_info:
n_bufs: 8
buf_size: 256K

Figure 4: Buffer layout.

technique provides the advantages of variable-
length events and still allows fast access to all
parts of a large file. A filler event is a header
with a length equal to the remainder of the cur-
rent buffer; no data need be logged. For the
clients we have studied this alignment wastes
little space. Other applications that have few
large events and whose events frequently end
on buffer boundaries will exhibit similar be-
havior. This technique does not provide com-
pletely random access, but is a close enough
approximation that it allows post-processing
tools to make it appear to the end user that the
stream is completely random access.

Figure 4 shows a 2M buffer divided into 8 sub-
buffers of 256K (in this case, 256K would be
the alignment boundary described above). This
splits the index logically into a 3-bit portion
containing the buffer id and 18 bits contain-
ing the current offset within the buffer. The
rchan_info struct, retrieved via relay_info(),



Linux Symposium 501

contains a snapshot of the current state of the
channel. The data in Figure 4 shows that 35
sub-buffers have been consumed and 38 have
been produced. The buffer_complete array
shows the completeness state of all of the sub-
buffers not including the current one. As Fig-
ure 4 shows, sub-buffer 3 is not yet complete
as there is still a pending write. This is also
the reason buffers_consumed has not caught up
with buffers_produced. The user-space client
suspends processing the sub-buffers when it
encounters the incomplete buffer until such
time as the buffer becomes complete, or is
“lapped”, in which case the buffer contents
would be lost.

4.3 Buffer start/end callbacks

Two of the five channel callbacks registered
by the kernel client exist to allow the client
to be notified when sub-buffer boundaries are
crossed, i.e. when buffer switches occur. These
callbacks are invoked in the slow path of event
logging, which is executed when an event
write would overflow the current sub-buffer.
The buffer_end() callback is invoked to allow
the kernel subsystem the opportunity to per-
form end-of-buffer processing on the just-filled
buffer. To allow space for data even when a
buffer is exactly filled, there needs to be space
reserved at the end of the buffer into which
the client can write an unused count. This is
the purpose of the end_reserve parameter to re-
lay_open. It specifies the number of bytes at
the end of each sub-buffer that should be left
alone by the logging algorithm and left avail-
able for the client to write data. Similarly, the
buffer_start() callback is invoked to give the
client an opportunity to write header data at the
beginning of a sub-buffer. The start_reserve
parameter to relay_open() allows the client to
specify a value for this purpose. One of the
parameters of the buffer_start() callback is the
buffer id, which has a value of zero for the very

first buffer in the channel. Clients can check for
this value and optionally write channel header
data in the position reserved for it by the chan-
nel_start_reserve parameter of relay_open().

4.4 Channel attributes

The characteristics of a given channel are de-
rived from a set of channel attributes specified
when the channel is opened. These are:

• scheme: lockless or locking. Indicates
which of the logging algorithms to use. If
’any’ is specified, relayfs attempts to use
the lockless scheme; if unavailable it re-
verts to the locking scheme.

• SMP usage: global or SMP. Applies
only if the locking scheme is being used.
Global indicates that the channel is be-
ing shared across multiple processors. In
this case lock acquisition involves a spin-
lock_irqsave/restore. The SMP option in-
dicates per-processor channels and thus
lock acquisition can use the cheaper lo-
cal_irqsave/restore.

• delivery mode: bulk or packet. If bulk de-
livery mode is specified, the kernel client
is notified via the delivery callback when
complete buffers become available. If
packet delivery mode is specified, the de-
livery callback is invoked after each write.
Bulk delivery is suited for clients logging
large volumes of data. They would be no-
ticeably affected by callbacks after each
event, but still may be interested in the
beginnings and ends of buffers. Less de-
manding clients may require notification
for each event logged. Clients specify
callbacks to, for example, signal a user-
level program indicating data is ready.
This is a typical mode of operation for a
bulk data client and is somewhat less typ-
ical for packet client as its user-space pro-



Linux Symposium 502

gram is often polling for the next piece of
data. Either type of client may be inter-
ested in filtering the data and/or dispatch-
ing events to other channels or subsys-
tems. Typically, packet clients would be
more interested in data filtering due to the
more manageable volume of events.

• timestamping: TSC or gettimeofday()
deltas. This attribute allows the client to
choose the granularity and cost of times-
tamping. Timestamping is optional and
timestamps are not written to a channel
unless explicitly requested. Events are
timestamped by relay_write() timestamp
events using either the efficient TSC (or
equivalent cheap clock on other architec-
tures), or a slower but globally consistent
gettimeofday() time delta method. get-
timeofday() is also a fallback in the cases
where the TSC, or an equivalent clock
counter, is unavailable on a given archi-
tecture. In brief, part of the task of writ-
ing an event involves obtaining the cur-
rent TSC, or the current gettimeofday()
value. If the gettimeofday() option is cho-
sen each timestamp is the difference be-
tween the current time and the time when
the buffer was started. The value logged
is either the TSC value or this difference
and is written at the offset within the event
slot specified by the td_offset parameter
of relay_write() (if the parameter value is
negative, the timestamp is not written).
The start and end buffer gettimeofday()
and TSC (if applicable) values are avail-
able as parameters to the buffer_start()
and buffer_end() kernel client callbacks.
If a client is interested in timestamping,
it can write these values into the reserved
space for later inter-buffer correlation.

4.5 Channel overflow handling

As with any buffering scheme, data may be
written into a channel faster than the channel’s
clients can read it out. relayfs channel clients
have three options for dealing with an over-
flow:

• do nothing, writers overwrite old data
(flight recorder mode)

• suspend writing into the channel, causing
loss of new events

• resize the channel, making more space for
writers

The first two options are controlled by the re-
turn value of the buffers_full() callback. This
callback provides the client with the option of
what action to take if the consumer has not kept
pace with the logging. A value of 0 directs re-
layfs to continue logging events, overwriting
the oldest data. A value of 1 directs relayfs
to discard subsequent events until the over-
flow situation has been resolved. In this case,
an events_lost count is kept and is available
via relay_info(). Once the consumer (usually
the user-space daemon reading from the chan-
nel) has caught up, the relayfs client can call
relay_resume() to allow the channel to con-
tinue logging events. To implement this, the
client needs to keep the channel informed of
how many buffers it has read. It increments
the count of buffers consumed by calling re-
lay_buffers_consumed(n_buffers). This value
is compared with the channel’s count of buffers
produced (tracked on the buffer-switch slow
path) to determine whether a buffers-full con-
dition exists. If the difference is greater than or
equal to the number of sub-buffers in the chan-
nel, the buffers are considered full and the call-
back is invoked.

The third option, resizing the channel, is avail-
able to clients that have specified non-zero val-
ues for the resize_min and resize_max parame-
ters to relay_open() when the channel was cre-
ated. If (during the buffer-switch slow path)



Linux Symposium 503

relayfs detects that the channel is almost full
(if 3/4 of the sub-buffers remain unread, by de-
fault), the needs_resize() callback is invoked
with parameter values containing a suggested
new sub-buffer size and/or sub-buffer count,
which can be used to expand the buffer space.
The client can use these values (or ignore
them and supply its own) to allocate a new
buffer for the channel via the API function re-
lay_resize_channel(). This function can block,
so it should not be called with spinlocks held.
If called from user context, it directly allo-
cates the new buffer, which is available upon
return. If called from within interrupt context,
the allocation is put onto a work queue, and
the client is notified upon completion via an-
other call to the needs_resize() callback. Once
the new buffer is allocated, the client can call
relay_replace_buffer() to replace the channel’s
buffer. This function can be called from any
context. Clients call it when they can guarantee
the replacement does not interfere with other
channel activity, such as outstanding writes.
Reducing the buffer size follows a similar path.
When relayfs detects that the “almost-full”
condition has not existed for a period of time (1
minute by default), the needs_resize() callback
is invoked with the new suggested (smaller)
sub-buffer values. Buffer reduction is handled
by the client in a similar manner to buffer ex-
pansion. Clients can choose to ignore the de-
tails of buffer resizing. To do so, they specify
a non-zero value for the autoresize parameter
to relay_open() causing buffer re-allocation re-
quests to be placed onto a work queue. The re-
sizing strategy reflects empirical observations
that channel traffic tends to be bursty in nature
with sudden activity creating immediate short-
term need for increased buffer capacity, which
after a short period is no longer needed.

Config. avg time difference
per run

(in seconds)

1 756.1
2 766.7 +1.40%
3 771.3 +2.01%

Figure 5: LTT on relayfs test results.

5 Testing

To test the efficiency of relayfs, we ran LTT,
a very demanding client of relayfs, while per-
forming 10 kernel compiles under each of the
following conditions:

1. not tracing anything (baseline)

2. tracing everything, daemon not writing to
disk

3. tracing everything, daemon writing to
disk

Testing was performed on a 4-way 700MHz
Pentium III system. The tests generated large
amounts of data for relayfs to process. Approx-
imately 200 million events comprising about
2 gigabytes were generated during each 10-
compile run. As can be seen from the results in
Figure 5, the overhead of relayfs was at most
1.4 percent (a portion of this overhead is in
fact due to tracing code), demonstrating the ef-
ficiency of relayfs.

6 Example client subsystems

In this section we examine some practical uses
of relayfs. In particular, we discuss how re-
layfs can be used as an engine for printk and
LTT, how it can be used for driver debugging,
and how it could become a replacement for rv-
malloc and rvfree.



Linux Symposium 504

6.1 printk

We have developed a version of printk that re-
places the static printk buffer with a dynam-
ically resizeable relayfs channel. This solves
the lost printk problem by providing reliable
printk logging services. A dynamically resize-
able channel prevents lost printk messages in
normal usage, but it can also prevent the loss
of init-time printk messages. At init-time (be-
fore free_initmem()), the contents of the static
printk buffer are copied into the relayfs chan-
nel created for printk. The static printk buffer
used at init-time is marked as __initdata and
is subsequently discarded. A benefit of this
scheme is that the printk kernel buffer can be
made relatively large. In fact, it can be large
enough so that it does not overflow even when
copious boot messages are printed on a large
system. The relayfs version of printk modi-
fies the syslog(3) system call to read from the
printk channel instead of from the static ker-
nel buffer. Since /proc/kmsg also uses sys-
log(3) to retrieve data from the kernel buffer,
user-space programs that read from the printk
buffer do not need to be modified to use the
relayfs version of printk. The relayfs version
of printk adds commands to syslog(3) allowing
user-mode clients to manually resize the printk
channel; these of course must be coded for. See
the relayfs web page[1] for code and status.

6.2 Linux Trace Toolkit

LTT creates a separate bulk-delivery chan-
nel for each processor. The LTT ker-
nel client replicates the inner workings
of relay_write by using the relayfs low-
level API described briefly in Documenta-
tion/filesystems/relayfs.txt. More detail can be
found by examining trace() in kernel/trace.c
and the relay_write() implementation. It uses
the low-level API to obtain maximum perfor-
mance from relayfs, because system tracing is

one of the most demanding clients. We would
expect most subsystems to function acceptably
using the described APIs, but the low-level API
is available for those requiring maximum per-
formance. The low-level API allows a client
to write directly into the reserved slot in the
channel, rather than passing the address of a
buffer to relay_write for it to copy. By doing
so, LTT avoids the overhead of forcing trace()
to collate its fields into a separate buffer before
passing it to relay_write, and avoids putting the
event data on the stack (in reality this would not
be possible because some events can be 8K in
length). This is more convenient than having
trace() manage a staging buffer between poten-
tially multiple writers.

rchan = rchan_get(channel_handle);
if (rchan == NULL)

return -ENODEV;

/* this is a nop for lockless */
relay_lock_channel(rchan, flags);

reserved =
relay_reserve(rchan,

data_size, &time_stamp,
&time_delta, &reserve_code,
&interrupting);

if (reserved == NULL)
goto check_buffer_switch_signal;

bytes_written +=
relay_write_direct(reserved,

&event_id, sizeof(event_id));
bytes_written +=

relay_write_direct(reserved,
&data, sizeof(data));

relay_commit(rchan, reserved,
bytes_written, reserve_code,
interrupting);

relay_unlock_channel(rchan, flags);
rchan_put(rchan);

In the above code, the first few tasks are
bookkeeping tasks. These involve getting the
channel structure backing the channel handle,
and locking the channel (if applicable—for the



Linux Symposium 505

lockless scheme, this is effectively a no-op).
We then reserve a slot, and using the special
relay_write_direct() low-level method (essen-
tially a memcpy), write fields directly into the
channel buffer. When we are done writing the
fields, we indicate to the channel that the data
is ready by ’committing’ the slot, and then fin-
ish up with a couple more bookkeeping tasks.

See the relayfs web page[1] for code and status.

6.3 Driver debugging

It is straightforward to create and use a relayfs
channel for driver tracing/debugging. Open a
channel with the desired_attributes:

channel = relay_open("channel", ...);

and write to it from within your driver:

relay_write(channel, ...)

Then write a simple user-space program that
loops around read():

fd = open("/mnt/relay/channel", ...);

for(;;)
read(fd, ...);

6.4 rvmalloc/rvfree replacement

At last count there were 9 drivers with sepa-
rate implementations of rvmalloc/rvfree. There
have been discussions in the past of exporting
a single ’blessed’ instance of rvmalloc/rvfree,
but so far that has not happened. Since re-
layfs channels are based on rvmalloc/rvfree,
relayfs provides the equivalent of a public rv-
malloc/rvfree by providing clients a means to
create rvmalloc’ed buffers using degenerate
values to relay_open() e.g. a large frame buffer
could be allocated via relay_open with most
parameters 0/NULL:

int channel_id =
relay_open(

"framebuffer",

bufsize, /* size of sub-buffer */
1, /* one sub-buffer only */
0, /* no flags in this case */,
NULL, /* no callbacks */
0, /* no reserve */
0, /* no reserve */
0, /* no reserve */
0, /* no resize_min */
0, /* no resize_max */
0, /* don’t autoresize */
NULL); /* no special file ops */

The above opens a relay channel with a file-
name of /mnt/relay/framebuffer, assuming re-
layfs is mounted at /mnt/relay.

Information about the channel can be retrieved
using relay_info().

relay_info(channel_id, &rchan_info);

The data contained in rchan_info includes the
virtual address of the buffer allocated for the
channel via rvmalloc. This can be directly used
to write into the buffer memory from the kernel
side.

The file created for the channel can then subse-
quently be mmap()’ed into user space:

int framebuf_file =
open("/mnt/relay/framebuffer",

...);
char * framebuf = mmap(NULL, bufsize,

PROT_READ|PROT_WRITE, MAP_PRIVATE,
framebuf_file);

Note that if a channel is mmap()’ed, it can-
not be resized, but a client wishing to resize
the channel can unmap the file, resize it, then
remap it.

Finally, closing the channel frees the buffer via
rvfree():

relay_close(channel_id);

7 Conclusion

We have presented relayfs, an efficient and uni-
fied mechanism for transferring data from ker-
nel to user space. relayfs addresses the need



Linux Symposium 506

to have a reliable mechanism that can be used
across various kernel subsystems, without hav-
ing to replicate and separately maintain the
functionality for each subsystem. The lock-
less and per-processor techniques allow effi-
cient logging on multiprocessor systems, and
the channels provide flexibility to the clients.
Test results show that relayfs performs well
even under demanding workloads. We pre-
sented several example kernel subsystems that
use relayfs including printk, LTT, and driver
debugging. As relayfs becomes more widely
accepted, other kernel subsystems will be able
to use it, reducing code replication and improv-
ing reliability of the kernel subsystems.

References

[1] relayfs home page,http:
//www.opersys.com/relayfs .

[2] Robert W. Wisniewski and Luis F.
Stevens. A model and tools for supporting
parallel real-time applications in unix
environments. InProceedings of The 12th
IEEE Real-Time Technology and
Applications Symposium, pages 126–133,
Chicago Illinois, May 15-17 1995.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


