
IPv4/IPv6 Translation
Allowing IPv4 hosts to communicate with IPv6 hosts without modifying the software on the

IPv4 or IPv6 hosts

J. William Atwood∗

Kedar C. Das
Xing (Scott) Jiang

Concordia University
Department of Computer Science

Montréal, Québec H3G 1M8

bill@cs.concordia.ca, http://www.cs.concordia.ca/˜faculty/bill

Abstract

As the Internet makes the transition from IP
version 4 to IP version 6, it will be nec-
essary to allow IPv4-based clients to access
IPv6-based servers, and IPv6-based clients
to access legacy services. Network Ad-
dress Translation–Protocol Translation (NAT-
PT) can provide network protocol transla-
tion, and Application Layer Gateways (ALGs)
can handle the cases where peer addresses
are embedded in application-layer messages.
We describe an implementation on a Linux
router/translation server, the necessary config-
uration of the IPv4 and IPv6 environments, and
the operation of ALGs for the File Transfer
Protocol and for the Session Initiation Proto-
col. We will present a demonstration of ba-
sic communication (web client to web server),
and of multimedia communication (based on
the open-source VOCAL project).

∗On leave at Ericsson Research Canada, Open Sys-
tems Research Laboratory, Montréal, Québec, Canada

1 Introduction

IPv6 is the next generation protocol designed
by the IETF to replace the current version
of the Internet Protocol, IPv4. During the
last decade, IP has conquered the world’s net-
works. Most of today’s Internet uses IPv4,
which has been remarkably resilient in spite of
its age, but it is beginning to have problems.

One motivation for developing IPv6 was the
anticipated exhaustion of addresses for indi-
vidual hosts. While the rate of depletion has
been slowed through the use of Network Ad-
dress Translation (NAT) [1], it does continue,
and the other virtues of IPv6 (routing and net-
work autoconfiguration, and enhanced support
for IP Security (IPsec) and IP Mobility (Mobile
IPv6)), will encourage its deployment much
more widely in coming years.

Although a significant percentage of the clients
and servers will bedual stack(i.e., capable of
using either IPv4 or IPv6), there will be a large
number of existing clients and servers (legacy
systems) that will only be capable of using
IPv4, and there will be a growing number of



Linux Symposium 35

clients and servers that will only be capable of
using IPv6. For example, the Third Generation
Partnership Project (3GPP) has mandated that
third generation cellular networks will be “All-
IP,” and that the “IP” will be IP version 6only.

In the same way as NAT has been used to
connect hosts on private networks [2] with
hosts on the public network, Network Address
Translation–Protocol Translation (NAT-PT) [3]
has been standardized as a way of connecting
hosts in the IPv4 address space and hosts in the
IPv6 address space. NAT and NAT-PT work by
altering the IP headers. For NAT, only the ad-
dress fields are replaced; for NAT-PT, the entire
header is changed. This use of NAT-PT solves
the network-layer problem for the IPv4/IPv6
transition, but it requires some auxilliary ser-
vices to operate properly, and it does not solve
a number of application-layer problems associ-
ated with crossing the IPv4/IPv6 boundary.

In this paper, we discuss the auxilliary services
needed, report an experimental validation of
the requirements, outline the solution to some
of the application-layer problems, and specu-
late on the solution to the rest.

2 System Architecture

Figure 1 identifies the typical components that
will be used to support communication be-
tween IPv4 hosts and IPv6 hosts. The IPv4
region represents the entire IPv4-based Inter-
net of today. The IPv6 stub region contains the
hosts that are to be granted the privilege of ac-
cessing legacy (IPv4-based) services. The IPv6
region represents the rest of the IPv6 address
space. The v4/v6 Border Router provides the
connection between the IPv6 stub hosts and the
IPv4 hosts. The v6/v6 Border Router provides
the connection between the IPv6 stub region
hosts and the rest of the IPv6 address space. In
some systems, the v4/v6 Border Router and the

v6/v6 Border Router will be co-located. How-
ever, we leave them separate in the following,
to make the explanations clearer.

DNS6
Server

IPv6 Region

local
DNS Server

IPv6 Host

IPv6 Host

IPv6 Stub Region

v6/v6 Border Router

IPv4 region

DNS4
Server

IPv4 Host

IPv4 Host

v4/v6 Border Router

Figure 1: System Architecture

Each host has ahost nameand ahost address.
The host name is a (globally unique) character
string that is intended to be human-readable.
The host address is a (globally unique) 32-bit
(IPv4) or 128-bit (IPv6) number. A particular
host may have more than one name, and more
than one address, especially if it has multiple
interfaces.

Two address pools are associated with the
v4/v6 Border Router. TheIPv4 address pool
is a sequence of addresses that are associated
(temporarily) with the IPv6 hosts that are com-
municating with IPv4 hosts. Given the scarcity
of IPv4 addresses, this pool will be sized to
correspond to the number of IPv6 hosts (in the
IPv6 stub region) that areactively communi-
cating with IPv4 hosts at a particular time. The
IPv6 address pool is a sequence of addresses
that represent hosts in the IPv4 region. Given
the large size of the IPv6 address space, this



Linux Symposium 36

pool is structured as a 96-bit prefix, catenated
with a 32-bit IPv4 address. A motivation for
this will be presented later, in Section 3.6.

2.1 Translation Requirements

As packets move between the IPv4 region and
the IPv6 region, it is necessary to rebuild their
headers, since the IPv4 and IPv6 packet head-
ers have different formats. This process is
stateless—the necessary mapping information
is determined by tables in the v4/v6 Border
Router (for packets travelling from the IPv4 re-
gion to the IPv6 stub region) or by information
carried in the packet address (for packets trav-
elling from the IPv6 stub region to the IPv4 re-
gion). For NAT-PT, the mapping between an
IPv4 pool address and the corresponding IPv6
host address is one-to-one. When there are in-
sufficient IPv4 pool addresses available, then
NAPT-PT can be used, with a mapping from
(IPv4 address, IPv4 port) to (IPv6 address).
This allows about 65,000 IPv6 hosts to be ser-
viced using a single IPv4 address, as long as
the IPv4 application does not care about the
port that is being used to access it.

Certain packets require special treatment. In
general, these packets contain application data
that have embedded IPv4 or IPv6 addresses.
They are identified when their headers are pro-
cessed (usually by noting which port they are
using), and they are handled by application-
specific code called anApplication Layer
Gateway(ALG). The ALGs are application-
specific, because they need to be able to parse
the packets being exchanged by the application
end-points. The specific ALG then modifies
the contents of the packet, to reflect the address
translation that has just taken place in the head-
ers.

2.2 Centralized Architecture

One approach to handling the entire require-
ment is to co-locate the NAT-PT software and
the set of ALGs needed to support the desired
applications. In this case the interaction be-
tween the ALG and the translation tables in the
NAT-PT software is simplified. However, the
v4/v6 Border Router must provide processing
power for all functions, which could overload
it.

2.3 Distributed Architecture

An alternate approach is to separate the ALGs
from the NAT-PT software. This lowers the
processing requirements for the v4/v6 Border
Router, but it introduces a requirement to de-
fine a protocol for interaction between the ALG
and the NAT-PT. This approach is favoured
when the application makes use of some form
of “proxy” server, because the proxy functions
and the ALG functions can often be advanta-
geously combined in a single host, and sepa-
rated from the v4/v6 Border Router. Commer-
cial systems will need to adopt this approach,
to handle the large number of IPv6 hosts that
will be in a typical IPv6 stub region. However,
our project was concerned with exploring is-
sues relating to establishing the right environ-
ment, and we did not require high performance
at this time.

3 NAT-PT Tool

The experimental system was based on a user-
space NAT-PT implementation developed at
ETRI [4]. The original implementation was
based on a Linux 2.4.0 kernel, and required
modification to make it work on the more re-
cent (2.4.20) Linux kernel.



Linux Symposium 37

3.1 General Flow

To establish communication between IPv4 and
IPv6 using NAT-PT we need interactions of at
least 3 modules. These are-NAT, PT, ALG.

3.2 Network Address Translation (NAT)

The NAT module implements the trans-
port/network layer translation mechanism. It
uses a pool of IPv4 addresses for assigning to
IPv6 nodes dynamically, and this assignment
is done when sessions are initiated across the
v4/v6 boundary.

3.3 Protocol Translation (PT)

As all the fields of IPv6 headers are not the
same as that of the IPv4 header, the PT mod-
ule translates IP/ICMP headers to make end-
to-end communication possible. Due to the ad-
dress translation function and because of pos-
sible port multiplexing, PT also makes appro-
priate adjustments to the upper layer protocol
(TCP/UDP) headers, e.g., the checksum.

The IPv4-to-IPv6 translator replaces the IPv4
header of IPv4 packet with an IPv6 header to
send it to the IPv6 host. Except for ICMP pack-
ets, the transport layer header and data portion
of the packet are left unchanged. In IPv6, path
MTU discovery is mandatory but it is optional
in IPv4. This implies that IPv6 routers will
never fragment a packet—only the sender can
do fragmentation. Path MTU discovery is im-
plemented by sending an ICMP error message
to the packet-sender stating that the packet is
too big. When an IPv6 router sends an ICMP
error message, it will pass through a translator,
which will translate the ICMP error to a form
that the IPv4 sender can understand. In this
case an IPv6 fragment header is only included
if the IPv4 packet is already fragmented. The
presence of df flag in the IPv4 header is the in-
dication of Path MTU discovery.

However, if the IPv4 sender does not perform
path MTU discovery, the translator has to en-
sure that the packet does not exceed the path
MTU on the IPv6 side. The translator frag-
ments the IPv4 packet so that it fits in a 1280
byte IPv6 packet, since IPv6 guarantees that
1280 byte packets never need to be fragmented.
Also, when the IPv4 sender does not perform
path MTU discovery the translator must always
include an IPv6 fragment header to indicate
that the sender allows fragmentation.

3.4 Application Layer Gateway (ALG)

Several applications send IP addresses and host
names within the payload of the IP packet.
Because NAT-PT does not snoop the payload,
it requires some Application Level Gateways
(ALG) to extract that address to replace it ei-
ther by IPv4 or IPv6. That is, ALG could work
in conjunction with NAT-PT to provide support
for many such applications. Two examples are
the FTP-ALG and the SIP-ALG. These are dis-
cussed in Section 3.8 and Section 4.

While the FTP-ALG and the SIP-ALG are op-
tional (provision of a specific ALG depends
on the desire to support that particular appli-
cation), the DNS-ALG is essential, because it
is the trapping of the DNS queries that allows
NAT-PT to discover the need for mapping be-
tween IPv4 addresses and IPv6 addresses.

In the DNS, “A” records represent IPv4 ad-
dresses and “AAAA” or “A6” records represent
IPv6 addresses.

3.5 Communication from V4 to V6

Any packet originating on the IPv4 side des-
tined to the IPv6 stub network should cross the
v4/v6 Border Router, which is the NAT-PT de-
vice. When any packet is received on the IPv4
side, NAT-PT will check the destination ad-
dress. If it is an IPv4 pool address, and if a



Linux Symposium 38

mapping exists to an IPv6 host, then the IPv4
packet header is converted to an IPv6 packet
header, otherwise the packet is dropped. The
IPv6 source address will be the PREFIX cate-
nated with the IPv4 source address; the IPv6
destination address will be the mapped IPv6
host address.

If the packet is a DNS query, then the DNS-
ALG will change the query type from “A” to
“AAAA”, and alter the format of strings end-
ing in “IN-ARPA.ARPA” to the IPv6 format
ending in “IP6.INT”. When the response is re-
turned, then the DNS-ALG will change the
“AAAA” record to an “A” record (if the resolu-
tion was successful), and change the resolved
IPv6 address to the corresponding IPv4 (pool)
address.

When any other response packet is returned to
the NAT-PT, the IPv4 destination address will
be found by removing the PREFIX from the
IPv6 destination address. The source address
to be used in the generated IPv4 packet is the
IPv4 pool address corresponding to the IPv6
host.

3.6 Communication from V6 to V4

When a packet is received from the IPv6 side,
its destination address will consist of the PRE-
FIX catenated with the actual IPv4 destination,
so the IPv4 packet can be created using this
address as the destination, and the IPv4 pool
address corresponding to the IPv6 host as the
source address.

The key to the creation of the mapping is the
DNS queries. If a DNS query is received from
an IPv6 host, it is not knowna priori whether
the target host is a v4 host or a v6 host. The
DNS-ALG will therefore split the query into an
“A” query sent to the v4 DNS, and an “AAAA”
query sent to the v6 DNS. If a v6 response is re-
ceived, then any v4 response is discarded (the

v6 path is preferred). Otherwise, a received v4
response triggers creation of a mapping entry,
and then an “AAAA” response is generated us-
ing PREFIX catenated with the v4 address.

Returning traffic on the IPv4 side will arrive
at a pool address. This is used to determine
the correct IPv6 destination address, so that the
packet can be forwarded. The IPv6 source ad-
dress will be the PREFIX catenated with the
original IPv4 source address.

3.7 TCP/UDP/ICMP Checksum Update

NAT-PT retains the mapping between a spe-
cific IPv6 host address and an IPv4 address
from the pool of IPv4 addresses available.
The mapping between IPv6 address and an
IPv4 from the pool of IPv4 addresses is used
in the translation of packets passing through
NAT-PT. With the translation of IP header,
TCP/UDP/ICMP checksum is also updated in
NAT-PT according to specific algorithm.

3.8 FTP Application Layer Gateway (FTP-
ALG)

Existing FTP works with IPv4 addresses. Two
important FTP commands PORT and PASV
will no longer exist in IPv6. The PORT com-
mand is used to specify a port different from
the default one, and it contains the IPv6 ad-
dress information. So it can’t be used with-
out translation. The PASV command is used to
put the server into passive mode, which means
the server listens on a specific data port rather
than initiating the transfer. This command in-
cludes the host name and address of the FTP
server and therefore does not work over IPv6
without modification. The PORT command is
replaced by the EPRT command, which allows
the specification of an extended address for the
connection. The extended address specifies the
network protocol (IPv6 or IPv4), as well as the
IP address and the port to be used. The EPSV



Linux Symposium 39

command replaces the PASV command. The
EPSV command has an optional argument that
allows it to specify the network protocol, if
necessary. The server reply contains only the
port number on which it listens, but the for-
mat of the answer is similar to the one used for
the EPRT command and has a placeholder for
the network protocol and address information
might be used in the future to provide flexibil-
ity in using FTP through firewalls and NATs.
An FTP control session carries the IP address
and TCP port information for the data session
in its payload; an FTP-ALG provides applica-
tion level transparency.

If a V4 host originates the FTP session and
uses PORT or PASV command, the FTP-ALG
will translate these commands into EPRT and
EPSV commands respectively prior to for-
warding to the V6 node. Likewise, EPSV
response from V6 nodes will be translated
into PASV response prior to forwarding to V4
nodes.

If a V4 host originated the FTP session and
was using EPRT and EPSV commands, the
FTP-ALG will simply translate the parameters
to these commands, without altering the com-
mands themselves.

3.9 Payload Modifications for V6 originated
FTP sessions

If a V6 host originates the FTP session the
FTP-ALG has two approaches:

In the first approach, the FTP-ALG will leave
the command strings “EPRT” and “EPSV”
unaltered and simply translate the <net-prt>,
<net-addr> and <tcp-port> arguments from V6
to its NAT-PT (or NAPT-PT) assigned V4 in-
formation. <tcp-port> is translated only in the
case of NAPT-PT. The same goes for the EPSV
response from V4 node. With this approach,
the V4 hosts must have their FTP application
upgraded to support EPRT and EPSV exten-

sions to allow access from V6 hosts.

In the second approach, the FTP-ALG will
translate the command strings “EPRT” and
“EPSV” and their parameters from the V6 node
into their equivalent NAT-PT assigned V4 node
info and attach to “PORT” and “PASV” com-
mands prior to forwarding to the V4 node.
However, the FTP-ALG would be unable to
translate the command “EPSVALL” issued by
V6 nodes. In such a case, the V4 host, which
receives the command, may return an error
code indicating unsupported function, and this
error response may cause FTP applications to
simply fail. The benefit of this approach is that
is does not impose any FTP upgrade require-
ments on V4 hosts.

3.10 Header updates for FTP control packets

All the payload translations considered in the
previous sections are based on ASCII encoded
data. As a result, these translations may result
in a change in the size of packet. If the new
size is the same as the previous, only the TCP
checksum needs adjustment as a result of the
payload translation. If the new size is differ-
ent from the previous, TCP sequence numbers
should also be changed to reflect the change in
the length of the FTP control session payload.
The IP packet length field in the V4 header or
the IP payload length field in the V6 header
should also be changed to reflect the new pay-
load size. A table is used by the FTP-ALG
to correct the TCP sequence and acknowledge-
ment numbers in the TCP header for control
packets in both directions.

The table entries should have the source ad-
dress, source data port, destination address and
destination data port for V4 and V6 portions
of the session, sequence number delta for out-
bound control packets and sequence number
delta for inbound control packets.



Linux Symposium 40

4 SIP-ALG Operation

Many communication applications on the In-
ternet require a session protocol to negotiate
and maintain the data exchange between end-
points in a session.

Moreover, as the evolution of the mobile com-
puting and wireless networks, a session is re-
quired to handle user mobility, different me-
dia type, and media addition and removal in
an existing session. Upon these requirements,
the Internet Engineering Task Force (IETF) is-
sued the Session Initiation Protocol (SIP) to en-
able the Internet endpoints (called user agents
in SIP) to discover one another and to agree on
the parameters of a session.

4.1 SIP overview

“SIP is an application-layer control protocol
that can establish, modify, and terminate mul-
timedia sessions (conferences) such as Inter-
net telephony calls” [5]. SIP is specified as an
agile and general-purpose tool that works in-
dependently of underlying transport protocols
and without dependency on the various media
types.

SIP establishes sessions by its invitations in
which session descriptions are used to negoti-
ate a set of compatible media types to be shared
among participants. In addition, SIP can in-
vite participants to join in an already existing
session. SIP transparently supports name map-
ping and redirect services. SIP proxy severs
could be used to facilitate routing SIP requests
to the user’s current location. SIP also provides
a registration function that stores users’ current
locations that could be used by proxy servers to
redirect requests.

The characteristics of SIP are simplicity and
flexibility. SIP is not a complete communica-
tion system. SIP is rather a component that can

cooperate with other IETF protocols to provide
complete services to the users. Typically, the
Real-time Transport Protocol (RTP) [6] could
be combined with SIP to support real-time
data transfer and provide QoS feedback; the
Session Description Protocol (SDP) [7] could
be used for describing multimedia sessions;
the Real-Time Streaming Protocol (RSTP) [8]
could be used to control delivery of streaming
media; and the Media Gateway Control Pro-
tocol (MEGACO) [9] could be used for con-
trolling gateways to the Public Switched Tele-
phone Network (PSTN).

It should be noted that SIP does not depend
on any of the protocols above that provide ser-
vices. Rather, SIP provides basic functional-
ities and operations that can be used to im-
plement different services. Furthermore, “SIP
provides a suite of security services, which in-
clude denial-of-service prevention, authentica-
tion (both user to user and proxy to user), in-
tegrity protection, and encryption and privacy
services” [5].

4.2 SIP Messages

SIP defines two distinct types of messages: re-
quests and responses. “A SIP message is either
a request from a client to a server, or a response
from a server to a client. ... Both types of mes-
sages consist of a start-line, one or more header
fields, an empty line indicating the end of the
header fields, and an optional message-body”
[5].

4.3 SIP Behavior

SIP requests can be sent directly from a user
agent client to a user agent server, or they can
traverse one or more proxy servers along the
way. User agents send requests either directly
to the address indicated in the SIP URI or to a
designated proxy (outbound proxy), indepen-
dent of the destination address. The current



Linux Symposium 41

destination address is carried in the Request-
URI. Each proxy can forward the request based
on local policy and information contained in
the SIP request. The proxy may rewrite the re-
quest URI.

4.4 SIP-ALG Behavior

There exists an increasing need of IP address
translation because the networks based on IPv6
addresses have being extended and because the
supply of IPv4 addresses is inadequate.

SIP is an application layer control protocol
for establishing media sessions. It encounters
problems with NAT-like devices, because the
payloads of SIP packets carry the addresses
for the sessions to be established. However,
the NAT function in NAT-PT is application un-
aware and does not snoop the payloads. Along
with NAT-PT and DNS-ALG, a SIP-ALG is
needed on the boundary between IPv4 and
IPv6.

This section describes a simple implementa-
tion of a SIP ALG to enable simple SIP ses-
sions to pass through a NAT-PT box based on
the Vocal system (an open source SIP imple-
mentation created by Vovida.org [10]). Rather
than attempt to make a full specification for
SIP-ALG, we have implemented a subset of the
functionalities that is sufficient for typical use.

An IP packet carrying a SIP message is identi-
fied by NAT-PT box by the characteristic of the
SIP protocol, using the port 5060 as the desti-
nation.

Whenever a Vocal user agent (UA) initiates a
SIP session by the host name of a callee, it
looks up the IP address from DNS services.
DNS servers transparently provide the address
as normal except that the DNS-ALG will setup
an address mapping once the DNS query is
traversing a boundary of IPv4 and IPv6, which
has been described in the previous sections. If

a mapping occurs, the SIP message is sent to
the NAT box. The SIP-ALG in the NAT box
will build a table storing two pairs of the source
address and the corresponding destination ad-
dress for both IPv4 and IPv6 domains. Accord-
ing to the table, the various fields in the SIP
message will be modified. If the Content-Type
is SDP, the SDP message and the Content-
Length will also be adjusted. After that, the
modified message is forwarded to another IP
version of the network. Similarly, the response
messages will be modified back to the original
messages correspondingly when they return to
the NAT box. Thus, it seems as if the IPv4 UA
and the IPv6 UA are communicating with the
NAT-PT box respectively.

5 DNS Considerations

The IPv4 region has a DNS server, which re-
turns Address (A) records when queried about
a host name that exists in the IPv4 region.
The IPv6 stub region has a local DNS server,
which returns IPv6 address (AAAA) records
when queried about a hostname that exists in
the IPv6 stub region. In addition, there is a
“global” IPv6 DNS server.

If any IPv6 hosts in the IPv6 stub region are
to provide services to IPv4 clients (initiated
by the IPv4 clients), the NAT-PT must perma-
nently associate an IPv4 (pool) address to the
IPv6 address of the serving host. In addition,
one of the following must be true:

1. The IPv4 DNS server must map a host
name (probably different from its IPv6
host name) to the associated IPv4 (pool)
address,or

2. The IPv4 DNS server must refer the DNS
request for the associated host name to a
DNS server located at a specific IPv4 pool
address. Queries sent to this address are



Linux Symposium 42

processed by the DNS-ALG at the Bor-
der Router, and sent to the local IPv6 DNS
(in the stub region). The returned reply is
processed by the DNS-ALG, and sent to
the original requesting host as a DNS “A”
record. This record will contain the IPv4
pool address that was assigned to the IPv6
server.

We had to install and configure alocal IPv4
DNS server to filter the requests for resolution
of host names associated with the IPv6 stub do-
main. This was done on the host that would
serve as the client, to minimize the impact on
the rest of the system. Queries about names
ending in “.ip6.lmc.ericsson.se” were sent to
the statically assigned IPv4 pool address that
was associated with the IPv6 DNS server. All
other queries were forwarded to the regular
IPv4 DNS server. (Note: this “extra” DNS
server would be unnecessary in a production
environment. The problem would be addressed
by putting the necessary directives in the IPv4
DNS server itself.)

6 Conclusion and Future Work

We have demonstrated that it is possible to
protect the investment in past hardware and
systems, by installing a NAT-PT on the Bor-
der Router that provides access to IPv6-based
equipment. To do so requires that special care
be taken in configuring the Domain Name Sys-
tem servers (for both IPv4 and IPv6), the NAT-
PT itself, and the IPv6 hosts (so that their DNS
requests are sent to the NAT-PT).

The NAT-PT solution requires one IPv4 pool
address for each IPv6 host that is concurrently
accessing the IPv4 address space. This could
clearly result in exhaustion of the IPv4 address
pool. A potential solution is to use NAPT-PT
[3], where host/port number pairs on the IPv6
side are mapped to a single IPv4 pool address

and multiple port numbers on the IPv4 side.
NAPT-PT bears the same relationship to NAPT
that NAT-PT bears to NAT; the implementation
details are more complex, but the use of NAPT-
PT will be necessary when large IPv6 stub re-
gions are able to use only a small pool of IPv4
addresses to provide the desired services.

7 Acknowledgments

The authors acknowledge the support of Erics-
son Research Canada through the use of its lab-
oratory. The first author acknowledges the sup-
port of the Natural Sciences and Engineering
Research council of Canada, through its Dis-
covery Grants program.

8 Availability

A link to the developed implementation is on
the web site

http:
//www.linux.ericsson.ca/ipv6

References

[1] K. Egevang and P. Francis. The IP
network address translator (NAT).
Request for Comments 1631, Internet
Engineering Task Force, May 1994.

[2] Y. Rekhter, B. Moskowitz,
D. Karrenberg, G. J. De, and E. Lear.
Address allocation for private internets.
Request for Comments 1918, Internet
Engineering Task Force, February 1996.

[3] G. Tsirtsis and P. Srisuresh. Network
address translation - protocol translation
(NAT-PT). RFC 2766, Internet
Engineering Task Force, February 2000.



Linux Symposium 43

[4] ETRI-PEC. User space NAT-PT
implementation. http://www.ipv6.or.kr/
english/natpt-overview.htm.

[5] J. Rosenberg, H. Schulzrinne,
G. Camarillo, A. R. Johnston,
J. Peterson, R. Sparks, M. Handley, and
E. Schooler. SIP: Session Initiation
Protocol. RFC 3261, Internet
Engineering Task Force, June 2002.

[6] Henning Schulzrinne, S. Casner,
R. Frederick, and V. Jacobson. RTP: a
transport protocol for real-time
applications. Request for Comments
1889, Internet Engineering Task Force,
January 1996.

[7] M. Handley and V. Jacobson. SDP:
Session Description Protocol. Request
for Comments 2327, Internet
Engineering Task Force, April 1998.

[8] H. Schulzrinne, A. Rao, and R. Lanphier.
Real Time Streaming Protocol (RTSP).
Request for Comments 2326, Internet
Engineering Task Force, April 1998.

[9] F. Cuervo, N. Greene, A. Rayhan,
C. Huitema, B. Rosen, and J. Segers.
Megaco protocol version 1.0. Request
for Comments 3015, Internet
Engineering Task Force, November
2000.

[10] VOVIDA. VOCAL home page.
http://www.vovida.org.



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


