
Sharing Page Tables in the Linux Kernel

Dave McCracken
IBM Linux Technology Center

Austin, TX

dmccr@us.ibm.com

Abstract

An ongoing barrier to scalability has been the
amount of memory taken by page tables, es-
pecially when large numbers of tasks are map-
ping the same shared region. A solution for this
problem is for those tasks to share a common
set of page tables for those regions.

An additional benefit to implementing shared
page tables is the ability to share all the page
tables duringfork in a copy-on-write fashion.
This sharing speeds upfork immensely for
large processes, especially given the increased
overhead introduced by rmap.

This paper discusses my implementation of
shared page tables. It covers the areas that are
improved by sharing as well as its limitations.
I will also cover the highlights of how shared
page tables was implemented and discuss some
of the remaining issues around it.

This implementation is based on an initial
design and implementation done by Daniel
Phillips last year and posted to the kernel mail-
ing list. [DP]

1 Introduction

The Linux® memory management (MM) sub-
system has excellent mechanisms for minimiz-
ing the duplication of identical data pages by
sharing them between address spaces when-

ever possible. The MM subsystem currently
does not, however, make any attempt to share
the lowest layer of the page tables, even though
these may also be identical between address
spaces.

Detecting when these page tables may be
shared, and setting up sharing for them is fairly
straightforward. In the following sections the
current MM data structures are described, fol-
lowed by an explanation of how and when the
page tables would be shared. Finally some is-
sues in the implementation and some perfor-
mance results are described.

2 Major Data Structures

To understand the issues addressed by shared
page tables it is helpful to understand the struc-
tures that make up the Linux MM.

2.1 Themm_structStructure

The anchor for the memory subsystem is the
mm_structstructure. There is onemm_struct
for each active user address space. All
memory-related information for a task is found
in themm_structor in structures it points to.

2.2 Thevm_area_structStructure

The address layout is contained in two par-
allel sets of structures. The logical lay-
out is described by a set of structures called



Linux Symposium 316

vm_area_structs, or vmas. There is onevma
for each region of memory with the same file
backing, permissions, and sharing character-
istics. Thevmas are split or merged as nec-
essary in response to changes in the address
space. There is a single chain ofvmas attached
to themm_structthat describes the entire ad-
dress space, sorted by address. This chain also
can be collected into a tree for faster lookup.

Each vma contains information about a vir-
tual address range with the same characteris-
tics. This information includes the starting and
ending virtual addresses of the range, and the
file and offset into it if it is file-backed. The
vma also includes a set of flags, which indi-
cate whether the range is shared or private and
whether it is writeable.

2.3 The Page Table

The address space page layout is described by
the page table. The page table is a tree with
three levels, the page directory (pgd), the page
middle directory (pmd), and the page table en-
tries (pte). Each level is an array of entries con-
tained within a single physical page. The entry
at each level contains the physical page num-
ber of the next level. The pte entries contain
the physical page number of the data page.

For the architectures that use hardware page ta-
bles, the page table doubles as the hardware
page table. This use of the page table puts con-
straints on the size and contents of the page ta-
ble entries when they are in active use by the
hardware.

2.4 Theaddress_spaceStructure

In addition to the structures for each address
space, there is a structure for each file-backed
object called structaddress_space(not to be
confused with an address space, which is rep-
resented by anmm_struct). Theaddress_space

structure is the anchor for all mappings related
to the file object. It contains links to every
vmamapping this file, as well as links to ev-
ery physical page containing data from the file.

All shared memory uses temporary files as
backing store, so each shared memoryvma is
linked to anaddress_spacestructure. The only
vmas not attached to anaddress_spaceare the
ones describing the stack and the ones describ-
ing the bss space for the application and each
shared library. These are called the ’anony-
mous’ vmas and are backed directly by swap
space.

2.5 ThepageStructure

All physical pages in the system have a struc-
ture that contains all the metadata associated
with the page. This is called a “structpage.”
It contains flags that indicate the current usage
of the page and pointers that are used to link
the page into various lists. If the page contains
data from a file, it also has a pointer to thead-
dress_spacestructure for that file and an index
showing where in the file the data came from.

3 How Memory Gets Mapped

Memory areas are created, modified, and de-
stroyed via one of the mapping calls. These
calls can map new memory areas, change the
protections on existing memory areas, and un-
map memory areas.

3.1 Creating A Memory Mapping

New memory regions are created using the
callsshmget/shmmapor mmap. Both calls cre-
ate a mapped memory region, either backed
by an open file passed as an argument or by
a temporary file created for the purpose. The
newly mapped memory region is represented
by a new or modifiedvma that is attached to



Linux Symposium 317

the tasḱs mm_structand to theaddress_space
structure for the file. The page table is not
touched during the mapping call.

Various flags are passed in when a page is
mapped. These flags specify the characteristics
of the mapped memory. Two of the key char-
acteristics are whether the area is shared or pri-
vate and whether the area is writeable or read-
only. For read-only or shared areas, the file
data is read from and written back to the file.
Private writeable areas are treated specially in
that while the data is read from the file, mod-
ified data is not written back to the file. The
data is saved to swap space as an anonymous
page if it needs to be paged out.

Pages are actually mapped when a task at-
tempts to access a virtual address in the
mapped area. The page fault code first finds
thevmadescribing the area, then finds thepte
entry that maps a data page for that address. A
page is then found based on the information in
thevma.

3.2 Locks and Locking

The MM subsystem primarily relies on three
locks. Two locks are in themm_struct. First is
the mmap_sem, a read/write semaphore. This
semaphore controls access to thevma chain
within themm_struct.

The second lock in themm_struct is the
page_table_lock. This spinlock controls access
to the various levels of the page table.

The third lock is in theaddress_spacestruc-
ture. This lock controls the chain ofvmas
that map the file associated with thatad-
dress_space. In 2.4, it is a spinlock and is
called i_shared_lock. In 2.5, it was changed
to a semaphore and is calledi_shared_sem.

During a page fault themmap_semsemaphore
is taken for read at the beginning of the fault

and is held until the fault is complete. The
page_table_lockis taken early in the fault, but
is released as necessary when the fault needs
to block. Holding themmap_semsemaphore
for read allows other tasks with the same
mm_structto take page faults but not change
their mappings.

4 Sharing the PTE Page

Normally the overhead taken up by page tables
is small. On 32 bit architectures, there is typ-
ically a maximum of one pgd page, three pmd
pages, and one pte page for every 512 or 1024
data pages. This ratio may be somewhat higher
for sparsely populated address spaces, but vir-
tual addresses are typically allocated in order
so pte pages tend to be filled in fairly densely.

This ratio changes for shared memory areas.
A shared memory region that covers an entire
pte page may be shared among many address
spaces. This sharing means there will be 1 pte
page for each address space for every 512 or
1024 mapped data pages. Note that the pte
pages, once allocated, are not freed even if the
data pages have been paged out, so the pte page
overhead is fixed even under memory pressure.

Shared memory is a common method for many
applications to communicate among their pro-
cesses. It is possible for a massively shared ap-
plication to use over half of physical memory
for its page tables.

Each address space in this scenario has an iden-
tical set of pte pages for its shared areas, with
all its entries pointing to the same physical data
pages. The premise behind shared page tables
is to only allocate a single set of pte pages and
set the pmd entry for each address space to
point to it.

A beneficial side effect of sharing the pte page
is once a data page has been faulted in by one



Linux Symposium 318

task, the page appears in the address space of
all other tasks mapping that area. Without shar-
ing, each task would have to take its own page
fault to get access to that page.

There are clearly some constraints on when pte
pages can be shared. The shared area must
span the virtual memory mapped by the entire
pte page. All address spaces must map the area
at the same virtual address. While in theory
the mapped areas only need to be aligned per
pte page, the current implementation requires
that the virtual addresses be the same.

4.1 Finding PTE Pages to Share

For sharing to work, it is necessary to find an
existing pte page if one exists. Finding this
page is accomplished at page fault time when
there is not already a pte page for the faulting
address.

First, the currentvma is checked to see if it is
eligible for sharing. It needs to be either share-
able or read-only, and needs to span the entire
address range for that pte page.

Next, the code searches for an existing pte page
that can be shared. This search is done by go-
ing to theaddress_spacefor the current mem-
ory area, then walking itsvmachain. Eachvma
is checked for compatibility. Thevmaneeds to
be at the same file offset and virtual address
as the faultingvmaand needs to also span the
entire pte page. For each matchingvma, its
corresponding page table is checked for a pte
page. If a pte page is found, it is installed in
the pmd entry and its use count is incremented.
While in theory it should be possible to share
pte pages between anyvmas whose mappings
have the same pte page alignment, the current
rmap implementation limits sharing to those
that map to the same virtual address.

4.2 Copy On Write

On some architectures there is a second use for
shared page tables. Duringfork, every pte en-
try is copied to the new page table. Data pages
that can’t be fully shared are marked as “copy
on write.” Marking a page as copy on write in-
volves setting both the parent and the child pte
entry to point to the same data page, but with
write disabled. When either task tries to write
to that page, the page is then duplicated and
write access is enabled.

Some architectures (including x86) support
disabling write access in the pmd entry, and in-
terpret this to mean disabling write to all the
data pages mapped by that entry. Disabling
write allows the copy on write concept to be ex-
tended to shared page tables. Instead of copy-
ing each pte entry atfork time, each pmd entry
is set to point to the same pte page and write
access is disabled. When a write fault occurs, a
new pte page is allocated and all the pte entries
are copied in the same fashion as duringfork in
the non-shared version.

4.3 Locking Changes for Shared PTE Pages

When page tables have shared pte pages, the
existing locking scheme becomes inadequate.
The page_table_lockin the mm_structcan no
longer protect the entire page table, since pte
pages may be shared with other page tables.

There is a spinlock in the page struct that is
normally used forpte_chains in data pages.
Since pte pages have nopte_chains, the lock in
the pte page’s page struct can be used to con-
trol access to it. For pte pages this lock be-
comes thepte_page_lock. This change means
thepage_table_lockprotects the pgd and pmd
levels and thepte_page_lockprotects the pte
page.

Using this lock changes the locking protocol in



Linux Symposium 319

the page fault path. Thepage_table_lockmust
still be taken to until the pte page is found and
selected. Thepte_page_lockis taken for that
page, at which point thepage_table_lockcan
be released. The rest of fault resolution is done
under thepte_page_lock.

5 Complications

While making pte pages shared seems like a
simple task in theory, there are several things
that complicated the task.

Part of pte_chain-based reverse mapping is a
pointer in the pte page’sstruct pagethat points
to the mm_structthe page belongs to. Shar-
ing the pte page means it can belong to sev-
eral mm_structs. It was necessary to add an
mm_chainstructure which points to a chain of
mm_structsthat use the pte page.

There are various memory management-
related system calls that can modify existing
mappings. These includemremap, mprotect,
remap_file_pages, and mmap itself. These
calls can all change the mappings for an ad-
dress space such that the pte page can no longer
be shared. Each of those system calls was mod-
ified to identify shared pte pages and unshare
them as necessary.

6 Performance

Shared page tables are primarily intended to
reduce the space overhead of page tables, but
there are some performance benefits, as well.

The primary performance gain is duringfork
because of copy-on-write sharing. Instead of
duplicating a reference to each data pagefork
only needs to duplicate a reference to each pte
page. This can improvefork performace by up
to a factor of 10.

Fork speedup is balanced, however, by the cost
of unsharing each pte page when one of its data
pages is written to. Typically, three pte pages
are unshared after everyfork due to the user
space layout. Since small programs generally
only have three pte pages, only larger programs
benefit from the improvement. In fact, the cost
of sharing the pte, then unsharing it on page
fault, has a small but measureable cost com-
pared to copying. The simple solution to this
is to copy the pte pages onfork if the address
space only has 3 pte pages.

There is a corresponding performance im-
provement forexit and execwhen they tear
down the address space. Any pte pages that are
shared can be detached simply by decrement-
ing their reference count. For each pte page
that is not shared, the code must examine each
entry to determine what to do with its data page
or swap page.

7 Conclusion

Shared page tables achieves its primary objec-
tive of dramatically improving the scalability
of massively shared applications, as well as
also improving thefork andexit performance
of large tasks. While there is some cost in
added complexity, the benefits far outweigh the
cost.

Legal Statement

This paper represents the views of the author, and
not the IBM Corporation.

IBM® is a registered trademark of International
Business Machines Corporation.

Linux® is a registered trademark of Linus Torvalds.

Other company, product or service names may be
the trademarks or service marks of others.



Linux Symposium 320

References

[DP] Daniel Phillips.
http://nl.linux.org/
phillips/page.table.sharing



Proceedings of the
Linux Symposium

July 23th–26th, 2003
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Review Committee

Alan Cox,Red Hat, Inc.
Andi Kleen,SuSE, GmbH
Matthew Wilcox,Hewlett-Packard
Gerrit Huizenga,IBM
Andrew J. Hutton,Steamballoon, Inc.
C. Craig Ross,Linux Symposium
Martin K. Petersen,Wild Open Source, Inc.

Proceedings Formatting Team

John W. Lockhart,Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


