
TCPIP Network Stack Performance
in Linux Kernel 2.4 and 2.5

Vaijayanthimala Anand, Bill Hartner
IBM Linux Technology Center

manand@us.ibm.com, bhartner@us.ibm.com

Abstract

We discuss our findings on how well the Linux
2.4 and 2.5 TCPIP stack scales with multi-
ple network interfaces and with the SMP net-
work workloads on 100/1000 Mb Ethernet net-
works. We identify three hotspots in the Linux
TCPIP stack: 1) inter-processor cache disrup-
tion on SMP environments, 2) inefficient copy
routines, and 3) poor TCPIP stack scaling as
network bandwidth increases.

Our analysis shows that the L2 cache_lines_out
rate (thereby memory cycles per instruction-
mCPI) is high in the TCPIP code path
leading to poor SMP Network Scalability.
We examine a solution that enhances data
cache effectiveness and therefore improves the
SMP scalability. Next the paper concen-
trates on is improving the “Copy_To_User”
and “Copy_From_User” routines used by the
TCPIP stack. We propose using the “hand un-
rolled loop” instead of the “movsd” instruction
on the IA32 architecture and also discuss the
effects of aligning the data buffers. The gigabit
network interface scalability workload clearly
shows that the Linux TCPIP stack is not effi-
cient in handling high bandwidth network traf-
fic. The Linux TCPIP stack needs to mimic the
“Interrupt Mitigation” that network interfaces
adopt. We explore the techniques that would
accomplish this effect in the TCPIP stack. This
paper also touches on the system hardware lim-
itation that affects the gigabit NIC’s scalability.

We show that three or more gigabit NICs do not
scale in the hardware environment used for the
workloads.

1 Introduction

Linux is widely deployed in the web server
arena and it has been claimed that Linux net-
working is optimized to a great extent to per-
form well in the server network loads such as
file serving and web serving, and in packet for-
warding services such as firewalls and routers.
Linux scales well horizontally in cluster envi-
ronments which are used for web servers, file
servers etc.; however, our studies on IA32 ar-
chitecture show that the TCPIP network stack
in the Linux Kernel 2.4 and 2.5 lack SMP net-
work scalability as more CPUs are added and
lack NIC scalability on high bandwidth net-
work interfaces when more NICs are added.

1.1 SMP Network Scalability

Cache memory behavior is a central is-
sue in contemporary computer system
performance[6]. Much work has been done
to examine the memory reference behavior
of application code, operating system and
network protocols. Most of this kind of
work on network protocols concentrates on
uniprocessor systems. This paper discusses the
data and instruction memory reference effects
of Linux TCPIP stack in a multi-processor sys-

Ottawa Linux Symposium 2002 9

tem. We examine the L2_cache_line_out rate
and instructions retired rate in the receive path
of TCPIP and Ethernet driver to understand
memory latency.

In IA32 Linux, interrupts from different net-
work interfaces (NICs) are routed to CPUs in a
dynamic fashion. The received data, its associ-
ated structures that deal with a particular con-
nection, and its activities get processed in dif-
ferent CPUs due to the dynamic routing, which
results in non-locality of TCPIP code and data
structures, which increases the memory access
latency leading to poor performance. This ef-
fect is eliminated when the application process,
and the interrupt for the particular network in-
terface are aligned to run on the same CPU. By
binding the process and interrupt to a CPU, a
given connection and its associated activities
including the data processing during the dura-
tion of that connection are guarenteed to pro-
cess on the same CPU. This binding results in
better locality of data and instructions, and im-
proving the cache effectiveness. Affinitizing
process and interrupt to a CPU may be feasi-
ble in a single service dedicated server envi-
ronment, but may not be desirable in all situa-
tions. Therefore, reducing the number of L2
lines that bounce between the caches in the
TCPIP stack code path is a critical factor in
improving the SMP scalability of the TCPIP
stack. We use affinity as a tool to understand
how TCPIP SMP scalability can be improved.

The Inter-processor cache line bouncing prob-
lem can be generally addressed by improv-
ing the data memory references and instruction
memory references. Instruction cache behav-
ior in a network protocol such as TCPIP has a
larger impact on performance in most scenar-
ios than the data cache behavior [6, 2]. Instruc-
tion memory refereces may be solely important
in scenarios where zero copy [1] is used or sce-
narios where less data is used. When zero copy
is not used, reducing the time spent on the data

memory reference considerably improves per-
formance.

In the TCPIP stack, under numerous condi-
tions, the received data is check summed in
the interrupt (softirq) handler and is copied
to user buffer in the process context. These
two contexts, interrupt and process, are fre-
quently executed on different processors due
to the dynamic interrupt routing and how pro-
cesses are scheduled. We proto-typed a patch
that forces the csum and copy to happen on the
same processor for all conditions resulting in
performance improvement. Linux TCPIP does
have routines that fold csum into copy; how-
ever, these routines are not used in all the code
paths. We also show profiling data that sup-
ports the need to improve both data and instruc-
tion memory references in TCPIP stack.

1.2 Efficient Copy Routines

Not only did we consider reducing the mem-
ory reference cycles for data in SMP environ-
ment but we also considered it for uniprocessor
by improving temporal and spatial locality for
data copy. Copying data between user and ker-
nel memory takes a big chunk of network pro-
tocol processing time. Zero copy again is the
mechanism to reduce this processing time, and
improving the packet latency. Even with zero
copy, the copy is eliminated only on the send
side; improving the copy routines in TCPIP
stack would help the receive side processing.
We found that the copy routines used in IA32
Linux TCPIP stack can be made more efficient
by using “unrolled integer copy” instead of the
string operation “movsd.” This paper presents
measurements to show that “movsd” is more
expensive than “unrolled integer mov.” We
also look at the effects of alignment on Pen-
tium III systems. Measurements presented in
section 3 show that “movsd” performs better if
both the source and the destination buffers are
aligned.

Ottawa Linux Symposium 2002 10

1.3 TCPIP Scalability on Gigabit Network

Finally this paper looks at the performance of
the TCPIP stack using gigabit bandwidth net-
work interfaces (NICs). We use NIC hereafter
in this paper to mean Network adapters. In
this paper we concentrate on receive side pro-
cessing to discuss how the TCPIP stack may
be improved for handling high bandwidth traf-
fic. The techniques discussed in this paper
for receive side processing are also applica-
ble to transmit side processing but we have not
evaluated transmit side performance. This pa-
per presents analysis data to show why TCPIP
should process packets in bunches at each layer
rather than one packet at a time. High band-
width network interface cards implement a
technique called “interrupt mitigation” to inter-
rupt the processor for a bunch of packets in-
stead of interrupting for each received packet.
This paper suggests that this “interrupt mitiga-
tion” should be mimicked in higher layer pro-
tocols as “packet mitigation.” We also look at
how the hardware that we used has limitation
that leads to poor gigabit NIC scaling.

The main contribution of this paper is to bring
to light the Linux TCPIP SMP scalability prob-
lem caused by cache line bouncing among mul-
tiple processors in the Linux 2.4.x and 2.5.x
kernels. Second this paper points out that the
Linux TCPIP stack needs to be tailored to more
efficient protocol processing for high band-
width network traffic.

The rest of the Introduction Section discusses
the benchmark, hardware and software envi-
ronments used. Each section includes the
benchmark results, analysis data, description
of the problem if one exists, and a technique or
a patch that could alleviate the bottleneck. Sec-
tion 2 deals with the SMP Scalability problem
that in Linux 2.4 kernel and also shows how
the 0(1) scheduler[8] has improved this scala-
bility to some extent in 2.5 kernel. In section

3 we discuss about efficient copy routines in
the TCPIP stack followed by section 4 that dis-
cusses TCPIP stack scalability on high band-
width networks and hardware limitation that
causes poor gigabit NIC scalability.

BENCHMARK ENVIRONMENT

Netperf [10] is a well-known network bench-
mark used in the open source community to
measure network throughput and packet la-
tency. Netperf is available at www.netperf.org.
Netperf3 is an experimental version of Net-
perf that has multi-thread and multi-process
support. We extended Netperf3 to include
multi-adapter and synchronized multi-client
features to drive 4-way and 8-way SMP servers
and clients. Netperf3 supports streaming, re-
quest response, and connection request re-
sponse functions on TCP and UDP. We used
TCP_STREAM for our work so far.

In this paper we evaluate SMP scalabil-
ity and network NIC scalability using the
TCP_STREAM feature of Netperf3. We used
multi-adpater workloads between a server and
a client for SMP scalability study and used
multiple clients and a server with multiple
NICs for NIC scalability. The TCP_STREAM
test establishes a control socket connection and
a data connection then sends streams of data
using the data connection. At the end of a fixed
time period, the test ends and the total through-
put is reported in Mbits per second. The prin-
cipal metric we used for TCP_STREAM is the
throughput and “throughput scaled to 100%
CPU Utlization.” Vmstat is used to measure
the CPU Utlization at the server. “Throughput
scaled to 100% CPU Utlization” is derived us-
ing the throughput and the cpu Utlization. The
“throughput scaled to CPU” is the throughput
which would result if all CPUs could be de-
voted to the throughput. We refer “throughput
scaled to 100% CPU Utlization” as “through-
put scaled to CPU” in the rest of the paper.

Ottawa Linux Symposium 2002 11

We used isolated Ethernet 100Mbit and
1000Mbit network for our workloads. Open
source profiling tools such as SGI kernprof[7],
and SGI lockmeter[3] were used for analy-
sis. Where necessary, additional tools were de-
veloped to gather profiling data. In addition
to time based profiling of SGI Kernprof, we
used Kernprof’s Pentium performance-counter
based profiling. In performance-counter based
profiling, a profile observation is set to oc-
cur after a certain number of Pentium per-
formance counter events[4]. We used a fre-
quency of 1000 for our profiling, i.e., for ev-
ery 1000 cache_lines_out or 1000 instructions
retired, the profile records the instruction loca-
tion. Thus the profile shows where the kernel
takes most of its cache_lines_out or where the
kernel executes most of its instructions.

HARDWARE AND SOFTWARE
ENVIRONMENT

The 100Mb Ethernet test was run on an 8-
way Profusion chipset, using 700 Mhz Pen-
tium III Xeon with 4 GB memory and 1 MB
L2 cache as our client and a 500 Mhz Pen-
tium III 4-way SMP system with 2.5 GB mem-
ory, and 2 MB L2 cache as our server. The
NIC cards used were Intel Ethernet PRO/100
Server PCI adapters. For 1000Mb Ethernet, we
used the same 8-way system as our server and
Pentium III 2-way clients with 1 GB memory
(4 of them). The NIC cards used were Intel
Ethernet PRO 1000 XF Server PCI adapters.
We used both 2.4.x and 2.5.x Linux kernels.
In both cases the server and client(s) are con-
nected point-to-point using cross over cables.

2 TCPIP SMP Scalability Using
Ethernet 100Mb

2.1 Netperf3 TCP_STREAM results

We measured the SMP scalability of the 2.4.17
and 2.5.3 TCPIP stack using the Netperf3
multi-adapter TCP_STREAM test. The server
used was a 4-way 500 Mhz PIII with four
100 Mb ethernet NICs operating in full duplex
mode with a MTU size of 1500 bytes. The
server NICs (receive side) were connected to
the client NIC (send side) point-to-point. We
used 8-way, 4-way and 2-way clients to drive
4-way, 2-way and 1-way servers respectively.

A single TCP connection was created between
the server and the client on each of the net-
works for a total of four connections. A pro-
cess was created for each of the NICs for a to-
tal of (4) server processes. The test was run
using the application message sizes of 1024,
2048, 4096, 8192, 16384, 32768 and 65536
bytes. The tcp socket buffer size was 65536
bytes and TCP NODELAY OPTION was set
on the socket. Both the network throughput
(Mb/sec) and CPU utilization were measured
on the server. The throughput scaled to CPU
utilization is derived from these two measure-
ments. Especially for the 100 Mb Ethernet
workload, the “throughput scaled to CPU” is
the important measure since the throughput of
each of the 4 adapters reaches maximum media
speed in all tests.

We ran the test with 1, 2, and 4 CPUs enabled
on the server. The 2P and 4P SMP scalablity
factor was calculated by dividing the respective
“throughput scaled to CPU utilization” by the
UP “throughput scaled to CPU utilization.”

In Figure 1 and Figure 2, we report the 2P and
4P SMP scalability factor of the 2.4.17 and the
2.5.3 kernel for the Netperf3 TCP_STREAM
test using the different Netperf3 message sizes.

Ottawa Linux Symposium 2002 12

Note that the 4P scalability factor for the 2.4.17
kernel using the 65536 message size barely
achieves 2/4 scaling. The 4P scalability factor
of the 2.5.3 kernel is much improved reaching
2/4 in most of the cases. The better 4P scala-
bility of the 2.5.3 kernel may be attributed to
the 0(1) scheduler which provides better pro-
cess affinity to a CPU than the 2.4.17 sched-
uler.

Figure 1: SMP Network Scalability on 2.4.17
Kernel

Figure 2: SMP Network Scalability on 2.5.3
Kernel

The SMP TCPIP scalability for 4P and 2P
as shown in Figures 1 and 2 is poor. To

understand this problem we ran some tests.
We choose 4P and 4 adapter cases for our
experiment. First we examined the effects
of IRQ and process affinity on the Netperf3
TCP_STREAM test for the 2.4.17 kernel using
the 4-way server. IRQ affinity involves binding
each of the four network adapter IRQs to one
of the (4) CPUs. For example, the interrupt as-
signed to NIC 1 to CPU 0, NIC 2 to CPU 1
etc. PROCESS affinity involves binding each
of the four Netperf server processes to one the
four CPUs. Both PROCESS and IRQ affin-
ity can be combined by affinitizing the IRQ
for NIC and netperf3 server process servicing
the tcp connection to the same CPU. In table
1, we report the percent improvement of the
Netperf3 TCP_STREAM throughput scaled to
CPU when IRQ affinity, PROCESS affinity and
BOTH affinities were applied to the server.
The percentage improvement is relative to the
throughput scaled to CPU utilization when no
affinity was applied. The higher the percent-
age, better the performance.

For the case of IRQ affinity, throughput scaled
to CPU utilization improved 4 to 21% for the
various message sizes. For the case of PRO-
CESS affinity, throughput scaled to CPU uti-
lization improved 6 to 28%. For the case
of both IRQ and PROCESS affinity applied,
throughput scaled to CPU utilization improved
42 to 74%. The gain in the third case, where
both IRQ and PROCESS affinity are applied,
is much greater than the sum of the results of
these two affinities applied separately.

Figure 3 shows the comparison of the
TCP_STREAM throughput scaled to CPU uti-
lization for the 2.4.17 kernel with 1) no affinity
2) IRQ affinity 3) PROCESS affinity 4) BOTH
affinities, and 5) the 2.5.3 kernel with no affin-
ity applied.

The TCP_STREAM results for the 2.5.3 base
kernel and the 2.4.17 kernel with PROCESS

Ottawa Linux Symposium 2002 13

Msgsize IRQ PROCESS BOTH
Affinity Affinity Affinities

(Bytes) (%) (%) (%)

1024 4.34 12.71 74.53
2048 21.45 21.43 66.56
4096 19.01 28.73 74.68
8192 19.18 25.25 68.03
16384 16.36 14.37 55.22
32768 11.38 11.38 47.45
65536 11.31 6.34 42.09

Table 1: Affinity Comparison using 2.4.17
Kernel ON 4P using 4 NICS

affinity are comparable. Again this is probably
attributable to the fact that the 2.5’s 0(1)sched-
uler achieves better process affinity to CPU
than the 2.4.17 kernel. The best performed test
run in figure 3 is the 2.4.17 kernel with both
Affinities applied.

The throughput for the results presented in the
Figure 3 is mostly constant for most of the
tests, and the difference reflected in CPU idle
time.

Figure 3: IRQ and PROCESS AFFINITY

2.2 Analysis of IRQ and PROCESS Affinity

L2_CACHE_LINES_OUT

Next, we analyzed the 4P TCP_STREAM test
to understand why IRQ and PROCESS affin-
ity together improves throughput and CPU uti-
lization to a great extent (up to 74%). We
used profiling based on Intel Performance
counters [4]. We profiled the server dur-
ing the TCP_STREAM test using the 32K
message size on 2.4.17 kernel using the
L2_cache_lines_out and total instructions re-
tired events.

By using IRQ and PROCESS affinity, each
TCPIPconnection and its activities are bound
to happen in the affinitized CPU. This binding
leads to lower L2 cache lines out as the data
and instructions do not float between CPUs.
The gain we achieved through affinity would
reflect in this event counter. So we decided
to measure L2_cache_lines_out. Because the
throughput and throughput scaled to CPU in-
creased in the IRQ and PROCESS affinity case,
we decided to measure the total instruction re-
tired count also.

In Table 2 we show the results of the perfor-
mance counter profiling taken for the event
“L2_cache_lines_out” on base Kernel 2.4.17
and Kernel 2.4.17+IRQ and PROCESS affin-
ity. The kernel routines with the highest
L2_cache_line_out are listed here. The results
in Table 2 show that using IRQ and PROCESS
affinity has reduced the number of L2 cache
lines out in all of the listed kernel routines.
The kernel routines tcp_v4_rcv, mod_timer,
and tcp_data_wait are the major benefectors of
affinity. Overall the whole of TCPIP receive
code path has less L2_cache_lines_out result-
ing in better performance.

This profile is taken using TCP_STREAM test
on 4P server and 8P client. The test ran on 4
adapters using 4 server processes with the con-
figuration of 64K socket buffer, TCP NODE-
LAY ON using 32k message size on 2.4.17 ker-
nel:

Ottawa Linux Symposium 2002 14

Kernel 2.4.17 Kernel IRQPROCESS
function Baseline AFFINITIES

Frequency Frequency

poll_idle 121743 72241
csum_partial_copy_generic 27951 13838
schedule 24853 9036
do_softirq 9130 3922
mod_timer 6997 1551
TCP_v4_rcv 6449 629
speedo_interrupt 6262 5066
__wake_up 6143 1779
TCP_recvmsg 5199 2154
USER 5081 2573
speedo_start_xmit 4349 1654
TCP_rcv_established 3724 1336
TCP_data_wait 3610 748

Table 2: L2 Cache Lines Out on 2.4.17

INSTRUCTIONS RETIRED

Next we measured the total instructions retired
for the same workload on both baseline 2.4.17
kernel and 2.4.17+IRQ+PROCESS affinity ap-
plied kernel. Figure 3 shows the total instruc-
tions retired for a short period of time running
the TCP_STREAM 4P/4adapter test.

Kernel Instruc. Retired
Function Frequency

2.4.17 Kernel base 32554892
poll_idle on base 19877569

2.4.17 +IRQ+PROCESS 51607249
poll_idle on IRQ+PROCESS 39326958

Table 3: Instructions Retired Count on 2.4.17

The number of instructions executed is high
in the affinity case which also supports the
fact that lining up process/irq with a CPU
brings memory locality and improves instruc-
tion memory references. We also presented the
number of instructions retired in idle loop. The
instructions retired in the idle-loop is doubled
in the affinity case. We gained CPU in Affinity

case as the memory latency for instructions is
decreased. The number of instructions retired
excluding the idle-loop case has not improved
in the affinity case.

The above analysis clearly indicates that the
TCPIP stack SMP scalability can be improved
by fixing the inter-processor cache line bounc-
ing by reducing L2_cache_lines_out.

2.3 Combine_csum_copy Patch to reduce the
cache_lines_out

Affinitizing both the IRQ and PROCESS to a
CPU results in better locality of data and in-
structions for the TCPIP send and receive path
and thus better performance. Because affinity
is not feasible in all situations, we analyzed
the code to determine if there are code opti-
mizations that could provide better cache ef-
fectiveness. It was observed that most of the
time, the incoming frames were checksummed
in the interrupt context and then copied to the
applicatoin buffer in the process context. Of-
ten, the interrupt and process context were
on two different CPUs. A proto-type patch,

Ottawa Linux Symposium 2002 15

csum_copy_patch, was developed to force the
checksum and copy operations to execute more
often in the process context.

Figure 4 shows the results of the
TCP_STREAM test for 1) 2.4.0 kernel
baseline, 2) 2.4.0 +IRQ and PROCESS
affinity and 3) 2.4.0+csum_copy_patch. The
csum_copy_patch improved throughput scaled
to CPU utilization by up to 14%. There is
additional work to be done in order to bridge
the gap between the baseline and the IRQ and
PROCESS affinity case. We will continue
our work to see how we could close the gap
between the non-affinity and affinity case
through code improvement.

Figure 4: Combine CSUM and COPY on 2.4.0

Kernel function Frequency
__generic_copy_to_user: 3127

e1000_intr: 540
alloc_skb : 313

TOTAL_SAMPLES 6001

Table 4: Gigabit PC Sampling of 2.4.17 UNI
Kernel

3 Copy Routines in TCPIP

3.1 One gigabit NIC’s TCP_STREAM Results

We measured the Netperf3 TCP_STREAM
throughput for a single connection over a gi-
gabit ethernet network using a 2.4.17 UNI ker-
nel. The Netperf3 message size was 4096
bytes, MTU size was 1500 bytes, and the
server (receive side) was an 8-way processor
700 Mhz PIII using a UNI kernel. We ob-
served that the resulting throughput did not
achieve maximum media throughput. The
CPU was 19% utilized. A time based profile
of the kernel revealed that 30–50% of the to-
tal ticks were spent in __generic_copy_to_user
routine in the receive path of the TCPIP code.
The __generic_copy_to_user routine is used to
copy data from the network buffers to the ap-
plication buffers. The profiling data for the
TCPIP receive path is given in Table 4

3.2 Copy Routine Analysis

We analyzed the __generic_copy_to_user rou-
tine looking for ways to improve the code.
The copy code was using the move string
(MOVSD) instruction and had no special case
code for handling mis-aligned data buffers. We
looked at some of the fast memory copy work
done previously and in particular the work
done by University of Berkeley during the P5
time frame. The Berkeley study [9] compares
three types of copies

• STRING: MOVSD string copy.

Ottawa Linux Symposium 2002 16

• INTEGER: unrolled/prefetched using in-
teger registers.

• FLOATING POINT: unrolled/prefetched
using floating point registers.

According to their results on P5 machines, the
floating point copy method yielded 100% more
throughput when compared to the string copy
method. The integer copy method yielded 50%
better throughput than the string copy method.
We adopted both integer copy and floating
point copy methods from this technical paper
for improving the copy routines in the TCPIP
stack.

We developed a user level tool to test these
copy methods and found that the integer copy
performs better than the other two methods
if the source and destination buffers are not
aligned on 8-byte boundaries. As shown in Ta-
ble 5, if the source and the destination buffers
are aligned on a 8-byte boundary, the string
copy performed better than the “unrolled in-
teger copy.” We used a Pentium III system
for this test and each test copied 1448 mil-
lion bytes. In Table 5, the MBytes copied is
the throughput and higher the number the copy
method is more efficient.

3.3 CopyPatch for Efficient Copy

We created a copy patch using “unrolled in-
teger copy” for the Linux Kernel and tested
further with and without alignment to further
understand the impact of this patch and buffer
alignment on our workload. We decided to test
the alignment in the receive path of the TCPIP
stack. The gigabit driver was modified to align
the receive buffer (which is the source buffer
for the copy routine). The destination buffer
allocated by netperf3 was already aligned. We
instrumented __generic_copy_to_user to mea-
sure the CPU cycles spent in this routine. We
read the Intel’s TSC counter before and after

execution of the copy routine with HW inter-
rupts disabled. A user level program was writ-
ten to retrieve the value of the cycle counter
during the test run several times and also after
the test is completed.

The results showed in Table 6 are the average
cycles (rounded) spent to copy a buffer size
of 1448 with and without the patch and with
alignment. Lower the cycles better the perfor-
mance of the copy routine.

Method Used Cycles
Spent

movsd copy routine without
alignment

7000

movsd copy routine with 8
byte alignment

3000

IntegerCopyPatch without
alignment

4000

Table 6: Measurement of cycles spent in copy
methods on 2.4.17 Kernel

The data in Table 6 suggests that the MOVSD
instruction has the best performance when the
source and the destination buffer addresses are
aligned on an 8-byte boundary. However, an 8-
byte source and destination alignment may not
be possible in the receive path of the TCPIP
stack for all general purposes and in all het-
rogenous networks. The TCPIP frame header
size is variable due to the TCP and IP op-
tions in the header. For our analysis purpose
we were able to align this as we had a con-
trolled and isolated homogenous network en-
vironment. So we decided to implement the
“unrolled integer copy” replacing the “movsd”
string copy in the copy routines used in this
workload as aligning the buffers is out of ques-
tion in the TCPIP receive path.

Figure 5 and Figure 6 show the baseline and
CopyPatch throughput and “throughput scaled
to CPU” results on 2.4.17 and 2.5.7 kernels
respectively. It is obvious that the unrolled

Ottawa Linux Symposium 2002 17

Method time MBytes dst src aligned
taken (sec) copied address address

MOVSD 0.609 2378 804c000 804f000 YES
Integer 0.898 1613 8051000 8053000 YES

MOVSD 1.172 1235 804c000 804f004 NO
Integer 0.851 1703 8051000 8053004 NO

Table 5: Comparison of movsd, integer copy, alignment

Figure 5: Copy Patch on 2.4.17 Kernel

integer copy routine has improved throughput
scaled to CPU for all the message sizes on
both kernels. On 2.4.17, the raw throughput
improved for all message sizes with the copy-
patch, however on 2.5.7 kernel, copypatch im-
proved raw throughput on messages greater
than 8k.

There is other copy routines combined with
checksum in the TCPIP stack, we have not
modified those routines yet. See appendix for
integer copy patch. Since there are other meth-
ods such as sendfile (only for sendside) and
mmx copies that are applicable to cover some
situations, the scope of this work may look lim-
ited but this kind of string copy is used in other
places of the kernel, glibc etc., So we think this
work is important to improve the Linux perfor-
mance in IA32 architecture and for the future
“string copy instruction - movsd” implementa-

Figure 6: Copy Patch on 2.5.7 Kernel

tion in IA32 architecture.

3.4 Future Work

As part of our future work we will look in to
improving the following:

• Extend this work to other memcopy rou-
tines in the kernel.

• Extend this work to glibc routines.

4 TCPIP GIGABIT NIC SCALA-
BILITY

4.1 Gigabit NIC Scalability Results

The gigabit Ethernet NIC scalability test mea-
sures how well multiple gigabit Ethernet NICs

Ottawa Linux Symposium 2002 18

perform on an 8-way server. We mea-
sured Gigabit Ethernet NIC scalability on the
2.4.7 kernel using the Netperf3 multi-adapter
TCP_STREAM test. The server used was an
8-way 700 Mhz Pentium III Xeon CPUs with
up to seven Gigabit Ethernet NICs operating
in full duplex mode with a MTU size of 1500
bytes. Four 2-way 900 Mhz clients (send side)
with two Gigabit Ethernet NICs on each con-
nected to the server (receive side) Ethernet
NICs.

The test was first run with only one gigabit
NIC, then two NICs, and so on, up to a total
of seven gigabit Ethernet NICs. A single TCP
connection was created between the server and
the client on each of the Ethernet NICs. The
test was run with application message sizes of
1024, 2048, 4096, 8196, 16384, 32768 and
65536. The TCP socket buffer size was set to
64K with TCP NODELAY ON. The Ethernet
NICs default options are used for the configu-
ration parameters; although, tuning these op-
tions did not yield any better results on our
hardware. We used SMP kernels enabling 8
processors on the server and 2 processors on
each of the client.

The throughput results of the NIC scalability
test are found in Figure 7. A single Ether-
net NIC achieved only 604 Mb per second.
Furthermore, adding a second Ethernet NIC
achieved only a total of 699Mb per second for
the pair of NICs (yielding a scaling factor of
only 58% = 699/604*2). Adding successive
Ethernet NIC added minimal throughput. The
results of the gigabit Ethernet NIC scalability
test inidcates that the gigabit Ethernet NICs
tests do not scale on this 8-way system.

4.2 Analysis of TCPIP Scalability on Gigabit
Network

We profiled the kernel to understand what
could be done in the software to improve the gi-

Figure 7: Gigabit NIC Scalability on 2.4.7 Ker-
nel

gabit NICs Scalability. From the TCPIP stack
and kernel perspective, our analysis points out
that the network stack does not efficiently han-
dle the high rate of incoming frames. One of
the main problems we noticed was that the high
rate of incoming frames was being processed at
the protocol level one at a time even though the
NIC mitigates interrupts and causes interrupt
once per configurable interrupt delay. There-
fore the NIC causes interrupts for a bunch of
frames instead of interrupting the processor for
each frame. This interrupt mitigation is not
mimicked in higher layer protocol processing.

Kernprof time based annotated call graph pro-
filing taken with MTU=1500 and MTU=9000

By setting the MTU=9000 (jumbo size), on
a gigabit adapter/TCP_STREAM, we could
reach the max media limit, whereas with MTU
set to 1500, we did not reach the maximum
media limit on our hardware. We used profil-
ing tools to see the difference. Tables 7 and
8 show the annotated call graph for a three
adapter case using 1500 and 9000 MTU sizes.
In MTU=1500 case we received less interrupts
around 275543 times. But the softirq handler
was invoked around 2 million times. There-

Ottawa Linux Symposium 2002 19

Kernel function Times Invoked

e1000_intr 840790
. ProcessReceiveInterrupts 951848
. . netif_rx 758774
. . . get_fast_time 758774
. . . . do_gettimeofday 758774
. . . get_sample_stats 758774
. . . cpu_raise_softirq 758774
. . eth_type_trans 758774
. . RxChecksum 758774
. . _tasklet_schedule 12339
. . . wake_up_process 3
. . . . reschedule_idle 3367
. ProcessTransmitInterrupts 951848
. . cpu_raise_softirq 368286

Table 8: 2.4.7 Kernel Kernprof’s Annotated callgraph for MTU 9000

Kernel Function Times invoked

e1000_intr 275543
. ProcessReceiveInterrupts 312522
. . netif_rx 2291591
. . . get_fast_time 2291591
. . . . do_gettimeofday 2291591
. . . get_sample_stats 2291591
. . . cpu_raise_softirq 2291591
. . eth_type_trans 2291591
. . RxChecksum 2291591
. . _tasklet_schedule 32369
. ProcessTransmitInterrupts 312522
. . cpu_raise_softirq 189394

Table 7: 2.4.7 Kernel Annotated Callgraph for
MTU 1500

fore, we received around 8 frames per inter-
rupt in an average. Whereas in the MTU=9000
case, we received 860970 time interrupts and
softirq handler was invoked for 758774 times.
We received one frame per interrupt on an av-
erage. Therefore, the upper layer protocols are
not invoked more than the interrupts and the
protocol processing latency was less so we re-
ceived 3X more interrupts/frames in case of

jumbo size frame. Therefore, we suspect that
the higher layer protocol processing latency is
causing the throughput to go down in the case
of MTU=1500 as each layer of the protocol is
processing one frame at a time. We propose
using a mechanism such as “gather-receive”
where the bunch of the frames received are
gathered and sent to upper layer protocol for
processing. We have not done any proto-type
yet to prove that this will help.

Kernel Function Times invoked

ReceiveBufferFill 32369
. alloc_skb 2291645
. . kmalloc 2481043
. . . kmem_cache_alloc_batch 63866
. . kmem_cache_alloc 1178633
. . . kmem_cache_alloc_batch 7110

Table 9: 2.4.7 Kernel’s Kernprof Annotated
Callgraph for MTU 1500

We also found a similar problem with the allo-
cation and deallocation of skbs (socket buffers)
and data frame buffers in the receive path. The
Linux gigabit network device driver has a re-
ceive pool of buffers called “receive ring.” Gi-

Ottawa Linux Symposium 2002 20

Kernel function Times Invoked

ReceiveBufferFill 12339
. alloc_skb 758748
. . kmalloc 1127037
. . . kmem_cache_alloc_batch 170
. . kmem_cache_alloc 178716
. . . kmem_cache_alloc_batch 792

Table 10: 2.4.7 Kernel Kernprof’s Annotated callgraph for MTU 9000

Table 11: Two NIC using separate PCI buses
Bus Throughput

NIC 1 Bus A (66 MHz) 385 Mb/sec
NIC 2 Bus B (66 MHz) 387 Mb/sec

Total 782 Mb/sec

gabit driver replenishes this pool by allocat-
ing skb one at a time. Tables 9 and 10 show
that alloc_skb is called 2 million times when
ReceiveBufferFill is called only 32 thousand
times in the case where MTU was set to 1500.
ReceiveBufferFill is the routine that replen-
ishes the receive buffer pool. TCPIP stack
should provide a way to allocate these skbs
bunch at a time. To take this one step fur-
ther, we think that the allocated buffers (receive
ring in the driver) should be recycled instead of
freeing and reallocating them again. We have
started looking into creating a proto-type patch
and this is our on-going effort.

4.3 Analysis of Hardware for Gigabit NIC
Scalability

We performed additional tests in order to un-
derstand why multiple NICs do not scale well
on this 8-way system. We first investigated the
PCI bus. The 8-way server has two 66 Mhz 64-
bit PCI buses (A and B) and two 33 Mhz 64-bit
PCI buses (C and D). We used gigabit Ethernet
NICs on different combinations of PCI busses
and reran the tests.

Tables 4.3 and 4.3 indicate that when two giga-

Table 12: Two NIC sharing the PCI bus
Bus Throughput

NIC 1 Bus A (66 MHz) 355 Mb/sec
NIC 2 Bus A (66 MHz) 342 Mb/sec

Total 697 Mb/sec

Table 13: Three Adapters, Separate vs. Shared
Three adapters using separate PCI bus
NIC Bus Throughput
1 Bus A (66 MHz) 266 Mb/sec
2 Bus B (66 MHz) 257 Mb/sec
3 Bus C (33 MHz) 259 Mb/sec

Total 782 Mb/sec

Three adapters sharing PCI bus
1 Bus A (66 MHz) 197 Mb/sec
2 Bus A (66 MHz) 197 Mb/sec
3 Bus B (66 MHz) 356 Mb/sec

Total 750 Mb/sec

bit Ethernet NICs are used, placing one on bus
A and the other on bus B improved throughput
by 10% compared to having both adapters on
bus A.

Running three adapters on three different buses
yields almost the same throughput as the case
where 3 NICs share the same 66 Mhz bus. The
PCI bus capacity is 532 MByte per second on
66 Mhz and 266 MByte/sec on 33 Mhz [5] But
we are not even getting 800 Mbits/sec total in
the above cases. We are far from hitting the
PCI bus capacity; therefore, we concluded that
the PCI bus is not the bottleneck.

Ottawa Linux Symposium 2002 21

Next we looked at the effects of IRQ and Pro-
cess affinity on the workload. We tested affin-
ity on 2 NICs. Since we have 8 CPUs on our
server system we chose different combinations
of CPUs to see if selecting one CPU from each
side of the Profusion chip set would make a
difference. (The 8-way is composed of two 4-
ways with independent 800 MBytes/sec front
side buses, connected by the Profusion chip to
2 memory cards providing 1600 MBytes/sec
and to the PCI buses via a 800 MByte/sec con-
nection.) We affinitize Netperf3 server pro-
cesses to a combination of CPU sets and the
Ethernet NIC’s IRQs to a combination of CPU
sets. The system is not rebooted between the
tests, so the numbers assigned to CPUs by
the operating system stayed intact between the
tests. The server process was restarted before
each test and the IRQs for the NICs were re-
set after each test. Both the NICs were placed
in Bus A (a 66 Mhz/64 bit bus) and interrupts
23 and 24 were assigned to these two NICs.
Interrupt 23 was bounded to CPU0 for all the
tests and interrupt 24 was affinitized to CPU1,
CPU2 etc. Netperf’s server process 1 is always
affinitized to CPU0 and process 2 is bound to
CPU 1, CPU 2 and so on. The results of the
IRQ and PROCESS affinity test are in Figure
8. The throughput has not improved that much
compared to the baseline. The max through-
put that we get with both affinity is around 730
Mbits/sec and our baseline is 699 Mbits/sec.

4.4 Future Work

Neither the IRQ and PROCESS affinity nor se-
lecting CPUs from different sides of the bus
improved the throughput much. These 2 and
3 adapter cases are neither CPU bound nor net-
work media limited. So we must contnue our
analysis to find the bottleneck. We also did
some preliminary investigation using Intel Per-
formance counter profiling; but, found no con-
clusive leads. We will continue this work fur-

Figure 8: Results of IRQ and Process Affinity
with 2 NICs

ther. However, we have shown that the PCI bus
is not the limiting factor, and IRQ and PRO-
CESS affinity do not help improve the through-
put and scalability. It is not acceptable that
even one adapter does not achieve close to me-
dia speed using MTU 1500 size and that adding
NICs do not scale well. Gigabit NIC scalability
will be a focus of our future investigation.

5 Concluding Remarks

In this paper we have highlighted a few poten-
tial areas for improvement in the Linux TCPIP
protocol.

• SMP Network Scalability: We presented
results showing the SMP network scala-
bility problem and provided analysis to
associate the poor scalability to inter-
processor cache line bouncing due to high
L2_cache_lines_out problem. We believe
that this SMP network scalability is one
of the areas where TCPIP stack needs
to be fixed to improve scalability. We
also showed a proto-type to improve the
data cache reference in the TCPIP stack.
Additionally we examined efficient copy

Ottawa Linux Symposium 2002 22

routines for the IA32 Linux TCPIP stack
and expressed the belief that this may
be a potential area to further investigate
to gain performance improvement in the
IA32 kernel itself and glibc routines.

• TCPIP Scalability on Gigabit: We ex-
amined the effects of using gigabit net-
work on the LINUX TCPIP stack. We
presented various test results and analy-
sis data to show that the hardware that we
used is not good enough to handle more
than 2 NICs. We also emphasized that
the implementation of the Linux TCPIP
stack itself needs modifications to handle
high bandwidth network traffic. As we
move to other types of high bandwidth
networks such as InfiniBand, we need to
keep in mind that the software network
stack should also need to scale to utilize
fully the high network bandwidth. We
conclude that both the system hardware
and the software need improvement to
take advantage of the high network band-
width.

We will be working on fixing the above men-
tioned problems. We look forward to working
with the members of the Linux community to
discuss, design, and implement solutions to im-
prove the LINUX TCPIP SMP scalability and
gigabit network scalability.

6 Acknowledgments

The authors would like to acknowledge the as-
sistance of Fadi Sibai of Intel in interpreting
the Pentium Performance counter data. We
would like to acknowledge Bill Brantley of
IBM and Patricia Goubil-Gambrell of IBM for
improving the quality of the paper. We would
also like to thank Nivedita Singhvi of IBM and
Bruce Alan of IBM for sharing their gigabit

NICs scalability test results. This helped us to
verify our results.

7 About the authors

Vaijayanthimala (Mala) K Anand works in the
IBM Linux Technology center as a member
of the Linux Performance team. Mala has
worked on the design and development of net-
work protocols, network device drivers and
thin clients. Mala is currently working on
Linux TCPIP stack performance analysis. She
can be reached at manand@us.ibm.com.

Bill Hartner is the technical lead for IBM’s
Linux Technology Center performance team.
Bill has worked in software development for
18 years. For the past 8 years, Bill has worked
in kernel development and performance. For
the past 3 years Bill has worked on Linux ker-
nel performance. Bill can be reached at bhart-
ner@us.ibm.com.

References

[1] Jeff Chase Andrew Gallatin and Ken
Yocum. Trapeze IP:TCPIP at Near
Gigabit speeds.
http://www.cs.duke.edu/ari/trapeze
/freenix/paper.html.

[2] Trevor Blackwell. Speeding up protocols
of small messages. ACM SIGCOMM
Symposium on Communications
Architectures and Protocols,Aug 1996.

[3] R. Bryant and J. Hawkes. Lockmeter:
Highly-Informative Instrumentation for
Spin Locks in the Linux Kernel. InProc.
Fourth Annual Linux Showcase and
Conference, Atlanta, Oct 2000.

[4] Intel Corp. Intel Architecture Software
Developer’s Manual Volume 3: Sysytem
Programming. http://www.intel.com.

Ottawa Linux Symposium 2002 23

[5] Adaptec corp’s White Paper. PCI, 64-Bit
and 66 MHz Benefits.
http://www.adaptec.com/worldwide
/product/markeditorial.html.

[6] Jim Jurose Erich Nahum, David Yates
and Don Towsleyr. Cache Behavior of
Network Protocols, June 1997.
http://cs-www.bu.edu/faculty/djy.

[7] John Hawkes et. al (Silicon
Graphics Inc.). Kernprof. Available at
http://oss.sgi.com/projects/kernprof
/index.html.

[8] Ingo Molnar. 0(1) scheduler patch.
http://www.kernel.org/pub/linux/kernel/
people/mingo.

[9] University of Berkeley. Fast Memory
Copy. http://now.cs.berkeley.edu/
Td/bcopy.html.

[10] Hewlett Packard Inc. Rick Jones.
Network Benchmarking Netperf.
http://www.netperf.org.

Ottawa Linux Symposium 2002 24

8 Appendix

8.1 COPY Patch

This patch changes the copy routines used in tcpip stack.

diff -Naur linux-417/arch/i386/lib/usercopy.c \
linux-417a/arch/i386/lib/usercopy.c

--- linux-417/arch/i386/lib/usercopy.c Tue Jan 22 21:29:05 2002
+++ linux-417a/arch/i386/lib/usercopy.c Fri Jan 18 12:50:38 2002
@@ -44,7 +44,6 @@

unsigned long
__generic_copy_to_user(void *to, const void *from, unsigned long n)
{

- prefetch(from);
if (access_ok(VERIFY_WRITE, to, n))

__copy_user(to,from,n);
return n;

diff -Naur linux-417/include/asm-i386/string.h \
linux-417a/include/asm-i386/string.h

--- linux-417/include/asm-i386/string.h Tue Jan 22 21:29:48 2002
+++ linux-417a/include/asm-i386/string.h Wed Jan 23 00:11:29 2002
@@ -196,21 +196,65 @@

return __res;
}

-static inline void * __memcpy(void * to, const void * from, size_t n)
+static inline void * __memcpy(void * to, const void * from, size_t size)

{
-int d0, d1, d2;
+ int __d0, __d1;

__asm__ __volatile__(
- "rep ; movsl\n\t"
- "testb $2,%b4\n\t"
- "je 1f\n\t"
- "movsw\n"
- "1:\ttestb $1,%b4\n\t"
- "je 2f\n\t"
- "movsb\n"
- "2:"
- : "=&c" (d0), "=&D" (d1), "=&S" (d2)
- :"0" (n/4), "q" (n),"1" ((long) to),"2" ((long) from)
- : "memory");
+ " cmpl $63, %0\n\t"
+ " jbe 2f\n\t"
+ " .align 2, 0x90\n\t"
+ "0: movl 32(%5), %%eax\n\t"
+ " cmpl $67, %0\n\t"
+ " jbe 1f\n\t"
+ " movl 64(%5), %%eax\n\t"
+ " .align 2, 0x90\n\t"
+ "1: movl 0(%5), %%eax\n\t"

Ottawa Linux Symposium 2002 25

+ " movl 4(%5), %%edx\n\t"
+ " movl %%eax, 0(%4)\n\t"
+ " movl %%edx, 4(%4)\n\t"
+ " movl 8(%5), %%eax\n\t"
+ " movl 12(%5),%%edx\n\t"
+ " movl %%eax, 8(%4)\n\t"
+ " movl %%edx, 12(%4)\n\t"
+ " movl 16(%5), %%eax\n\t"
+ " movl 20(%5), %%edx\n\t"
+ " movl %%eax, 16(%4)\n\t"
+ " movl %%edx, 20(%4)\n\t"
+ " movl 24(%5), %%eax\n\t"
+ " movl 28(%5), %%edx\n\t"
+ " movl %%eax, 24(%4)\n\t"
+ " movl %%edx, 28(%4)\n\t"
+ " movl 32(%5), %%eax\n\t"
+ " movl 36(%5), %%edx\n\t"
+ " movl %%eax, 32(%4)\n\t"
+ " movl %%edx, 36(%4)\n\t"
+ " movl 40(%5), %%eax\n\t"
+ " movl 44(%5), %%edx\n\t"
+ " movl %%eax, 40(%4)\n\t"
+ " movl %%edx, 44(%4)\n\t"
+ " movl 48(%5), %%eax\n\t"
+ " movl 52(%5), %%edx\n\t"
+ " movl %%eax, 48(%4)\n\t"
+ " movl %%edx, 52(%4)\n\t"
+ " movl 56(%5), %%eax\n\t"
+ " movl 60(%5), %%edx\n\t"
+ " movl %%eax, 56(%4)\n\t"
+ " movl %%edx, 60(%4)\n\t"
+ " addl $-64, %0\n\t"
+ " addl $64, %5\n\t"
+ " addl $64, %4\n\t"
+ " cmpl $63, %0\n\t"
+ " ja 0b\n\t"
+ "2: movl %0, %%eax\n\t"
+ " shrl $2, %0\n\t"
+ " andl $3, %%eax\n\t"
+ " cld\n\t"
+ " rep; movsl\n\t"
+ " movl %%eax, %0\n\t"
+ " rep; movsb\n\t"
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1)
+ : "0"(size), "1"(to), "2"(from)
+ : "eax", "edx","memory");

return (to);
}

diff -Naur linux-417/include/asm-i386/uaccess.h \
linux-417a/include/asm-i386/uaccess.h

--- linux-417/include/asm-i386/uaccess.h Tue Jan 22 21:29:43 2002
+++ linux-417a/include/asm-i386/uaccess.h Tue Jan 22 21:58:11 2002
@@ -256,50 +256,186 @@

Ottawa Linux Symposium 2002 26

do { \
int __d0, __d1; \
__asm__ __volatile__(\

- "0: rep; movsl\n" \
- " movl %3,%0\n" \
- "1: rep; movsb\n" \
- "2:\n" \
- ".section .fixup,\"ax\"\n" \
- "3: lea 0(%3,%0,4),%0\n" \
- " jmp 2b\n" \
- ".previous\n" \
- ".section __ex_table,\"a\"\n" \
- " .align 4\n" \
- " .long 0b,3b\n" \
- " .long 1b,2b\n" \
- ".previous" \
- : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
- : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \
- : "memory"); \
+ " cmpl $63, %0\n" \
+ " jbe 5f\n" \
+ " .align 2,0x90\n" \
+ "0: movl 32(%4), %%eax\n" \
+ " cmpl $67, %0\n" \
+ " jbe 1f\n" \
+ " movl 64(%4), %%eax\n" \
+ " .align 2,0x90\n" \
+ "1: movl 0(%4), %%eax\n" \
+ " movl 4(%4), %%edx\n" \
+ "2: movl %%eax, 0(%3)\n" \
+ "21: movl %%edx, 4(%3)\n" \
+ " movl 8(%4), %%eax\n" \
+ " movl 12(%4),%%edx\n" \
+ "3: movl %%eax, 8(%3)\n" \
+ "31: movl %%edx, 12(%3)\n" \
+ " movl 16(%4), %%eax\n" \
+ " movl 20(%4), %%edx\n" \
+ "4: movl %%eax, 16(%3)\n" \
+ "41: movl %%edx, 20(%3)\n" \
+ " movl 24(%4), %%eax\n" \
+ " movl 28(%4), %%edx\n" \
+ "10: movl %%eax, 24(%3)\n" \
+ "51: movl %%edx, 28(%3)\n" \
+ " movl 32(%4), %%eax\n" \
+ " movl 36(%4), %%edx\n" \
+ "11: movl %%eax, 32(%3)\n" \
+ "61: movl %%edx, 36(%3)\n" \
+ " movl 40(%4), %%eax\n" \
+ " movl 44(%4), %%edx\n" \
+ "12: movl %%eax, 40(%3)\n" \
+ "71: movl %%edx, 44(%3)\n" \
+ " movl 48(%4), %%eax\n" \
+ " movl 52(%4), %%edx\n" \
+ "13: movl %%eax, 48(%3)\n" \

Ottawa Linux Symposium 2002 27

+ "81: movl %%edx, 52(%3)\n" \
+ " movl 56(%4), %%eax\n" \
+ " movl 60(%4), %%edx\n" \
+ "14: movl %%eax, 56(%3)\n" \
+ "91: movl %%edx, 60(%3)\n" \
+ " addl $-64, %0\n" \
+ " addl $64, %4\n" \
+ " addl $64, %3\n" \
+ " cmpl $63, %0\n" \
+ " ja 0b\n" \
+ "5: movl %0, %%eax\n" \
+ " shrl $2, %0\n" \
+ " andl $3, %%eax\n" \
+ " cld\n" \
+ "6: rep; movsl\n" \
+ " movl %%eax, %0\n" \
+ "7: rep; movsb\n" \
+ "8:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "9: lea 0(%%eax,%0,4),%0\n" \
+ " jmp 8b\n" \
+ "15: movl %6, %0\n" \
+ " jmp 8b\n" \
+ ".previous\n" \
+ ".section __ex_table,\"a\"\n" \
+ " .align 4\n" \
+ " .long 2b,15b\n" \
+ " .long 21b,15b\n" \
+ " .long 3b,15b\n" \
+ " .long 31b,15b\n" \
+ " .long 4b,15b\n" \
+ " .long 41b,15b\n" \
+ " .long 10b,15b\n" \
+ " .long 51b,15b\n" \
+ " .long 11b,15b\n" \
+ " .long 61b,15b\n" \
+ " .long 12b,15b\n" \
+ " .long 71b,15b\n" \
+ " .long 13b,15b\n" \
+ " .long 81b,15b\n" \
+ " .long 14b,15b\n" \
+ " .long 91b,15b\n" \
+ " .long 6b,9b\n" \
+ " .long 7b,8b\n" \
+ ".previous" \
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
+ : "1"(to), "2"(from), "0"(size),"i"(-EFAULT) \
+ : "eax", "edx", "memory"); \

} while (0)

#define __copy_user_zeroing(to,from,size) \
do { \

int __d0, __d1; \
__asm__ __volatile__(\

Ottawa Linux Symposium 2002 28

- "0: rep; movsl\n" \
- " movl %3,%0\n" \
- "1: rep; movsb\n" \
- "2:\n" \
- ".section .fixup,\"ax\"\n" \
- "3: lea 0(%3,%0,4),%0\n" \
- "4: pushl %0\n" \
- " pushl %%eax\n" \
- " xorl %%eax,%%eax\n" \
- " rep; stosb\n" \
- " popl %%eax\n" \
- " popl %0\n" \
- " jmp 2b\n" \
- ".previous\n" \
- ".section __ex_table,\"a\"\n" \
- " .align 4\n" \
- " .long 0b,3b\n" \
- " .long 1b,4b\n" \
- ".previous" \
- : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
- : "r"(size & 3), "0"(size / 4), "1"(to), "2"(from) \
- : "memory"); \
+ " cmpl $63, %0\n" \
+ " jbe 5f\n" \
+ " .align 2,0x90\n" \
+ "0: movl 32(%4), %%eax\n" \
+ " cmpl $67, %0\n" \
+ " jbe 2f\n" \
+ "1: movl 64(%4), %%eax\n" \
+ " .align 2,0x90\n" \
+ "2: movl 0(%4), %%eax\n" \
+ "21: movl 4(%4), %%edx\n" \
+ " movl %%eax, 0(%3)\n" \
+ " movl %%edx, 4(%3)\n" \
+ "3: movl 8(%4), %%eax\n" \
+ "31: movl 12(%4),%%edx\n" \
+ " movl %%eax, 8(%3)\n" \
+ " movl %%edx, 12(%3)\n" \
+ "4: movl 16(%4), %%eax\n" \
+ "41: movl 20(%4), %%edx\n" \
+ " movl %%eax, 16(%3)\n" \
+ " movl %%edx, 20(%3)\n" \
+ "10: movl 24(%4), %%eax\n" \
+ "51: movl 28(%4), %%edx\n" \
+ " movl %%eax, 24(%3)\n" \
+ " movl %%edx, 28(%3)\n" \
+ "11: movl 32(%4), %%eax\n" \
+ "61: movl 36(%4), %%edx\n" \
+ " movl %%eax, 32(%3)\n" \
+ " movl %%edx, 36(%3)\n" \
+ "12: movl 40(%4), %%eax\n" \
+ "71: movl 44(%4), %%edx\n" \
+ " movl %%eax, 40(%3)\n" \
+ " movl %%edx, 44(%3)\n" \

Ottawa Linux Symposium 2002 29

+ "13: movl 48(%4), %%eax\n" \
+ "81: movl 52(%4), %%edx\n" \
+ " movl %%eax, 48(%3)\n" \
+ " movl %%edx, 52(%3)\n" \
+ "14: movl 56(%4), %%eax\n" \
+ "91: movl 60(%4), %%edx\n" \
+ " movl %%eax, 56(%3)\n" \
+ " movl %%edx, 60(%3)\n" \
+ " addl $-64, %0\n" \
+ " addl $64, %4\n" \
+ " addl $64, %3\n" \
+ " cmpl $63, %0\n" \
+ " ja 0b\n" \
+ "5: movl %0, %%eax\n" \
+ " shrl $2, %0\n" \
+ " andl $3, %%eax\n" \
+ " cld\n" \
+ "6: rep; movsl\n" \
+ " movl %%eax,%0\n" \
+ "7: rep; movsb\n" \
+ "8:\n" \
+ ".section .fixup,\"ax\"\n" \
+ "9: lea 0(%%eax,%0,4),%0\n" \
+ "16: pushl %0\n" \
+ " pushl %%eax\n" \
+ " xorl %%eax,%%eax\n" \
+ " rep; stosb\n" \
+ " popl %%eax\n" \
+ " popl %0\n" \
+ " jmp 8b\n" \
+ "15: movl %6, %0\n" \
+ " jmp 8b\n" \
+ ".previous\n" \
+ ".section __ex_table,\"a\"\n" \
+ " .align 4\n" \
+ " .long 0b,16b\n" \
+ " .long 1b,16b\n" \
+ " .long 2b,16b\n" \
+ " .long 21b,16b\n" \
+ " .long 3b,16b\n" \
+ " .long 31b,16b\n" \
+ " .long 4b,16b\n" \
+ " .long 41b,16b\n" \
+ " .long 10b,16b\n" \
+ " .long 51b,16b\n" \
+ " .long 11b,16b\n" \
+ " .long 61b,16b\n" \
+ " .long 12b,16b\n" \
+ " .long 71b,16b\n" \
+ " .long 13b,16b\n" \
+ " .long 81b,16b\n" \
+ " .long 14b,16b\n" \
+ " .long 91b,16b\n" \
+ " .long 6b,9b\n" \

Ottawa Linux Symposium 2002 30

+ " .long 7b,16b\n" \
+ ".previous" \
+ : "=&c"(size), "=&D" (__d0), "=&S" (__d1) \
+ : "1"(to), "2"(from), "0"(size),"i"(-EFAULT) \
+ : "eax", "edx", "memory"); \

} while (0)

/* We let the __ versions of copy_from/to_user inline, because they’re often
@@ -577,24 +713,16 @@

}

#define copy_to_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_to_user((to),(from),(n)) : \
- __generic_copy_to_user((to),(from),(n)))
+ __generic_copy_to_user((to),(from),(n))

#define copy_from_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_from_user((to),(from),(n)) : \
- __generic_copy_from_user((to),(from),(n)))
+ __generic_copy_from_user((to),(from),(n))

#define __copy_to_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_to_user_nocheck((to),(from),(n)) : \
- __generic_copy_to_user_nocheck((to),(from),(n)))
+ __generic_copy_to_user_nocheck((to),(from),(n))

#define __copy_from_user(to,from,n) \
- (__builtin_constant_p(n) ? \
- __constant_copy_from_user_nocheck((to),(from),(n)) : \
- __generic_copy_from_user_nocheck((to),(from),(n)))
+ __generic_copy_from_user_nocheck((to),(from),(n))

long strncpy_from_user(char *dst, const char *src, long count);
long __strncpy_from_user(char *dst, const char *src, long count);

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

