
Metanet: Message-Passing Network Daemons

Erik Walthinsen
omega@temple-baptist.com, http://www.omegacs.net/˜omega/

Abstract

MetaNet is a message-passing architecture de-
signed for the construction of network services
daemons. Services are implemented as a series
of mailboxes with attached functions to pro-
vide the functionality. The mailbox namespace
is global across all services, allowing new dae-
mons to hook into existing daemons to mod-
ify their behavior. A simple example is a stock
DHCP daemon hooked by an external applica-
tion that does an LDAP lookup for a machine’s
IP before falling back to the normal DHCP al-
location scheme. This paper covers the archi-
tecture of the MetaNet system, and uses the ex-
ample of a Captive Portal as used for public
wireless network control to show how multi-
ple services can be quite easily tied together to
provide more complex services. Other possible
projects using MetaNet will also be explored.

1 Introduction

Network services on Unix machines are pro-
vided today by separate daemons designed for
each protocol and service. Each has its own in-
ternal structure, configuration files, behaviors,
history, and so on. This works well in most
environments because each service is designed
to be completely standalone, as this is one of
the driving principles behind Unix: “Do one
thing, and do it well.” For the most part, each
of these daemons does indeed do its job rea-
sonably well.
Unfortunately, there are situations where this
myriad of separate daemons can make it dif-

ficult to accomplish the task at hand, or more
likely they are simply too big to fit on the
target device. The platform example used in
this paper is that of an intelligent wireless
access point (AP) running Linux. The M1
from Musenki [Musenki] is just such an access
point, consisting of a Motorola MPC8241 em-
bedded PPC processor, 32MB of RAM, 8MB
of flash, a 10/100 NIC, and a MiniPCI slot for
a wireless card. It runs Linux natively and must
be able to provide all the normal network ser-
vices, as well as be useful to the PersonalTelco
Project [PTP] in its city-wide free networking
projects. This drives some of the more inter-
esting requirements, pushing well beyond the
boundaries of current software.
MetaNet is an attempt at creating an infras-
tructure that enables these services to be not
only small, but capable of extremely complex
interactions. MetaNet itself is only an archi-
tectural design, not a specific implementation.
The reference implementation is currently (as
of this writing) written in Perl for convenience,
but could be and will be implemented in other
languages such as C and Python. More ad-
vanced features ensure that these languages can
be mixed freely in larger systems, allowing
high-speed services to be written in C and other
services or glue code to be written in a scripted
language.

2 Unusual Requirements

The PersonalTelco Project (PTP) has several (4
as of this writing, more on the way) open, pub-
lic access points covering several very public

Ottawa Linux Symposium 2002 557

locations in Portland, OR. The most visible of
these is the node at Pioneer Courthouse Square,
aka “Portland’s Living Room”, in the center of
downtown. A wireless AP covers the Square
and is connected to the Internet by redundant
T-1’s that are otherwise heavily underutilized
by the company donating the space and band-
width. Because the signal is unencrypted and
usable by anyone with a laptop and a wireless
card, some steps are necessary in order to keep
usage under control, and limit or avoid liability.
The solution used is called a “Captive Por-
tal.” The idea behind such a portal is that new
clients on the wireless network are by default
completely firewalled off from the Internet. In
order for the user to gain access to the net-
work they must log in after agreeing to a us-
age policy, etc. Custom client login software is
unworkable because it would have to be dis-
tributed to clients and installed, which most
savvy users wouldn’t even consider. Instead,
the portal uses software the user already has:
a browser. Linux Netfilter [Netfilter] transpar-
ent redirects are used to shuttle all HTTP con-
nections to a web server contained in the por-
tal software itself. When the user successfully
logs in, the firewall is modified to allow that
client access to the Internet.
Once the client is associated and logged into
the portal, there are several other aspects that
have to be dealt with. The first is the fact that
a spammer could trivially send mass quantities
of email through such a wide-open connection,
and could do so untraceably. Another is mak-
ing sure that no single client abuses the up-
stream connection and effectively locks other
clients off the network. Statistics logging and
“Extrusion Detection” are also critical compo-
nents that have to be built into such a system.

3 An Example

Rather than explaining how one might imple-
ment a complete Captive Portal with fully dis-

creet daemons and why it would be nearly im-
possible, a simpler example will suffice to ex-
plain the basic MetaNet concepts.
On many large networks, an LDAP database is
used to hold information about each machine
and user. If this database includes the MAC
address of a machine and the intended IP ad-
dress, this information must be made available
to the DHCP server.
With ISC dhcpd [ISC] as shipped with almost
all Linux distributions, this would have to be
accomplished by extracting the relevant pieces
from the LDAP database and constructing a
dhcpd.conf. This would have to be done ev-
ery time the LDAP database changes, must be
pushed to each DHCP server, and dhcpd has
to be restarted. On a large network this could
become quite a hassle to manage.

4 The MetaNet Approach

MetaNet is designed to split the implemen-
tation of network services into discreet com-
ponents which communicate by passing mes-
sages. The degree to which the software is split
into pieces determines the degree to which it
can be integrated with other services.
The fundamental entity is a “message”, which
is simply a list of tag/type/value tuples sent to a
specific “mailbox”. All control and data trans-
fer takes place via these messages. Objects that
encompass various services such as sockets or
web servers are simply a set of mailboxes with
which other objects interact.
The mailbox names are strings that use
a filesystem-style path syntax, allowing
for an effectively unlimited namespace if
used properly. Common messages include
"/system/socket/new" to create a new
socket, or "/httpd/request" when the
web server gets a remote request. Most such
mailbox names are indeed derived from the
name of the object that created them, such as
in the previous example where the object is

Ottawa Linux Symposium 2002 558

simply named"/httpd" .
In order to capture messages sent to a mail-
box, a “listener” is attached. This is a function
pointer (or reference, in Perl), coupled with
another list of tuples to allow the specific in-
stance of that function pointer to be uniquely
identified. (Mailboxes themselves in fact have
tuples associated with them for the same rea-
son.) Each mailbox maintains an ordered list
of these listeners, so that when a message is
sent to the mailbox, these listeners are called
in order. As a special case, a listener can re-
turn an error code that indicates that no more
listeners should be called.
There are two conceptually different kinds of
mailboxes, with no actual technical difference
between them. The difference lies in who is
listening and who is sending the messages. In
the case of a socket, the"read" message is
sent by the socket code itself, and the nomi-
nal owner of the socket supplies a listener to
catch the data received on the socket. The
"write" request on the other hand works the
other way around, with the owner sending the
message and the socket’s listener responsible
for write()ing the data to the socket. In some
cases both the object and external entities can
provide listeners, for instance as a means of
keeping track of what an object is doing or be-
ing told to do.

5 The Main Loop

At the core of any MetaNet application is the
main loop, which is responsible for dealing
with all the external events the application may
listen for. This is basically a glorified se-
lect() loop capable of sending messages when-
ever a socket is available for reading or writ-
ing, as well as handling timeout routines. In
some cases messages may actually be queued
up for delivery directly from the main loop as
well. The specific implementation details of
the main loop depend entirely on the language

and general program style used to construct the
MetaNet library. The current Perl prototype
does not yet use messages to indicate readable
file descriptors or timeouts, though there is no
technical reason this cannot be changed to a
more consistent style.

6 DHCP and LDAP

In our example scenario, the DHCP server
would be written in such a way as to ex-
pose many mailboxes through which its inter-
nal control passes. Upon creation, it would in-
stantiate a socket to listen for requests. When
a request packet arrives, the socket will send
a "read" message for the server to pick up
and translate from the packed DHCP format
to a more readable set of tuples, which is then
sent as a DHCP-specific message. The DHCP
server then must maintain the whole of the
DHCP state machine internally, likely using
the machine’s MAC address (“chaddr” in dhcp)
as key.
The state machine will at some point need to
find an IP address for the host. Normally
this is done by sending a message to a mail-
box that might be named"lookup" or similar,
which another part of the stock DHCP server
would be listening to. This code would per-
form the usual lookup of a free IP address in
the pool, or find an address recently associated
with that MAC address. It then sends this infor-
mation back to the state machine by sending a
"lookup-response" message, for instance.
This re-engages the state machine and eventu-
ally results in the client being successfully con-
figured.
In order to integrate this DHCP server with and
LDAP database, only a few lines of code must
be written. The first function is attached as a
listener to the"lookup" mailbox, and is re-
sponsible for triggering the LDAP query. It
simply sends a message to a previously instan-
tiated LDAP client object requesting a specific

Ottawa Linux Symposium 2002 559

lookup based on the MAC address of the client.
It then returns an error code that indicates that
it should be the last listener called for this par-
ticular message. Since the listener would have
been prepended to the mailbox, this precludes
the DHCP server’s normal lookup routine from
being called. The second function listens to
the LDAP response mailbox and constructs the
necessary message to be sent back into the
DHCP state machine.
The only thing missing from this design is the
ability for a failed LDAP lookup to fall back
to a lookup from the pool. As a quick hack,
this could be accomplished by triggering the
"lookup" message a second time with a tuple
in place to indicate to the LDAP glue code that
it should not make another attempt to look in
the database, but rather fall through and defer
to the original DHCP server’s listener.

7 Synchronous Operations

The MetaNet architecture as described is obvi-
ously highly asynchronous, since the only way
to return data from a listener is by sending an-
other message. In many cases, such as the
above LDAP attempt, it is very advantageous
to be able to execute certain operations syn-
chronously, waiting for some kind of response.
DNS lookups are an obvious candidate, since a
large system may have to deal with both names
and IP addresses may be doing DNS requests
in many places. A completely asynchronous
system requires that every function that does
a DNS request be split into the part before
and the part after the request. This could very
quickly become a coding nightmare, especially
when error cases are introduced.
The solution is to implement a method for
blocking on the receipt of a given message.
This is done by attaching a special listener to
the mailbox, then sleeping. The listener is re-
sponsible for waking up the suspended code
and providing the tuples from the message that

woke it up.
There are several related mechanisms that can
be used to accomplish this. POSIX threads can
be used to create a new thread into which the
main loop can be "moved" while the original
thread waits on a condition variable. A lis-
tener is attached to the mailbox being waited
on, which wakes up the original thread and en-
sures that one of the threads finishes before the
other continues the main loop. In cases where
threads are rarely created, the initial thread
must be the one to continue, as killing it would
terminate the application.

8 Inter-application Cooperation

If all the services of a given machine were pro-
vided by a single daemon with various objects
to handle different protocols, a bug in any one
service could bring down the entire daemon.
This lack of isolation would be the death of any
such system. To solve this, there must be a way
of separating each service into a separate pro-
cess, while retaining the ability for these dae-
mons to interact with each other.
In order to do this, MetaNet uses IPC in the
form of Unix-domain sockets, with one socket
per daemon, residing in a central location. The
socket is named after the process, avoiding the
pain of having a separate TCP port for each ser-
vice just for message passing. When a given
process needs to send messages to another, it
opens up a connection to that socket, which is
maintained for the life of the processes.
In order to send a message or attach a listeners
to a mailbox in another process, the name of
the process is appended with a colon, such as
"dhcpd:/dhcpd/lookup" . Sending a mes-
sage to that mailbox will cause a packet to be
sent across this on-disk socket to the appropri-
ate application, where it will trigger the listen-
ers in that process. Listeners can be added to
this mailbox remotely as well, which is done
by inserting a dummy listener into the mail-

Ottawa Linux Symposium 2002 560

boxes stack with the necessary code to route
that message back to the originating process.
Using this method, a standalone, fully self-
contained daemon such as dhcpd can have its
behavior modified from the outside. As such,
the dhcpd could be written in a language such
as C, while the glue code to bridge to LDAP
could be written in Python or Perl, assuming
there is a compliant MetaNet implementation
for that language.
Longer term, this IPC mechanism can be ex-
tended to support sending messages between
different daemons on separate machines. This
can be used for statistics gathering, remote
configuration, or even to create prototypes of
new networking protocols.

9 Implementing a Captive Portal

The first test application for the Perl imple-
mentation of MetaNet was a captive portal.
The central piece of the portal is a web server,
which is easily created with:

MetaNet::send("/system/http/server/new",
name => "/captive/server", port => 5280);

A listener is attached to capture the requests
made by remote clients:

MetaNet::append_new_listener(
"/captive/server/request",
\&client_request);

Some firewall tables rules are put in place to
enable this to function:

drop forwarded packets
unless allowed
iptables -P FORWARD DROP
masquerade all the clients
iptables -t nat -A POSTROUTING

-o $pubdev
-s $pubnet -j SNAT --to $extIP

allow any packets that have a
MARK set
iptables -A FORWARD -i $pubdev

-o $extdev
-m mark --mark 0x1 -j ACCEPT

redir all other HTTP connections
to myself
iptables -t nat -A PREROUTING

-i $pubdev -p tcp --dport 80
-m mark ! --mark 0x1
-j REDIRECT --to-port 5280

This blocks all forwarded traffic that doesn’t
have a firewall mark set, except for HTTP con-
nections which are forwarded to the portal dae-
mon on port 5280. Next, an HTTP request han-
dler has to be constructed to handle two cases:
the client requesting a random page from the
Internet, and a client that has been redirected
to the login server:

sub client_request {
my ($mbox, $listener, %tuples) = @_;

if ($tuples{Host} =~
/$tuples{sockhost}:$tuples{sockport}) {

serve_page($tuples{clientname},
$tuples{path});

} else {
my $url =

"http://$tuples{Host}$tuples{path}";
redirect($tuples{clientname},
"http://$tuples{sockhost}:5280/?url=$url");

}

MetaNet::send("$tuples{clientname}/close");
return 1;

}

The first line gathers the arguments that a lis-
tener function gets: the mailbox reference, the
listener reference, and a hash containing all the
tuples sent as part of the message. In this par-
ticular message, the tuples are as follows:

• $tuples{clientname} The base name for
all mailboxes associated with this client
connection

• $tuples{Host} The "Host" HTTP header,
indicating the intended destination

Ottawa Linux Symposium 2002 561

• $tuples{path} The path of the requested
file on the site

• $tuples{sockhost} The host address of
this end of the socket: the portal’s address

• $tuples{sockport} The port connected to
on the portal: 5280

The essence of the code is the check to de-
termine whether the client actually intended to
connect to the captive portal itself or not. If it
did, it serves a page to the client as needed in
order to show the client a login webpage, ac-
ceptable usage policy, logos, etc. If it intended
to go elsewhere, it is redirected to the index
page of the portal:

sub redirect {
my ($client,$newurl) = @_;

print "redirecting browser to ’$newurl’\n";
$headers{code} = 307;
$headers{’Location’} = $newurl;
$headers{’Refresh’} = "1;URL=$newurl";
$headers{’Content-Type’} = "text/html";
$headers{data} =

"<html><head><title>Moved!</title>";
$headers{data} .=

"<meta http-equiv=\"Refresh\"
content=\"1;URL=$newurl\"></head>";

$headers{data} .= "<body>This page has been
moved.</body>
</html>";

MetaNet::send("$client/response", %headers);
}

The redirect function uses several distinct
tricks to try to get the client to jump to the
new page. Once the client has done so, gone
through the login sequence, etc., it is time to
allow the client to surf the web:

sub client_login {
my ($client) = @_;

system("iptables -t mangle
-I PREROUTING 1
-i $pubdev -s $client->{host}
-j MARK --set-mark 0x1");

}

This function obviously assumes the presence
of an object containing various information
about the client, or at least its IP address. A
simple hash of these client objects is stored
globally for quick reference, keyed by the fi-
nal octet of the client’s address.
If that were all there was to the captive portal,
eventually every IP address in the range would
be wide open, and the purpose would be lost.
To avoid this we have to implement a time-
out mechanism to determine if the client is still
actively using their connection, and if they’ve
been idle for some period of time, log them out
automatically. To do this we’ll create a peri-
odic timeout:

MetaNet::add_timeout(time + 5,
\&idle_timeout);

The idle_timeout function is rather too in-
volved in iptables parsing to reproduce
here, but the overall structure is along the lines
of:

sub idle_timeout
foreach client

determine bytes used count
compare to previous count
if current != previous

update last-active time
if (curtime - last-active) >idle_timeout

log client out

The logout function is simply the same as the
login function, with -D instead of -I on the ipt-
ables commandline.
There is a long list of features that can be added
to this basic portal design. The page handler
can support status pages displaying the state of
each client. The traffic statistics can be logged
to an RRDtool database for future graphing. A
DHCP server could be integrated to give the
portal a head-start on new clients. MAC-based
filtering could be done to make sure logged in
IP addresses don’t get hijacked when someone
leaves.

Ottawa Linux Symposium 2002 562

10 Transparent Proxying of POP
and IMAP

The spam problem is a little tougher to solve
while still allowing legitimate users to go about
their normal business. Not having the SMTP
port open for anyone restricts users to web-
mail or perhaps secure SMTP, and that can be
enough of a deterrent to some people to make
the whole experience a waste of time. The goal
would then be to find a way to only open up
SMTP packet forwarding when it is a reason-
ably certainty that spamming is not going to be
done. While this can never be foolproof, the
simple fact that the portal is a complete choke-
point for all traffic makes things much easier to
regulate.
A common technique used by corporate sites
with mobile users, when a VPN is not avail-
able, is to open up SMTP relaying on their
server for a short duration immediately follow-
ing a successful POP or IMAP authentication
from that IP address. This technique relies on
the assumption that remote users will check
their mail before sending mail, or can be eas-
ily trained to do so if their mail client doesn’t
already do this.
The same trick can be used to determine
whether the SMTP port should be opened for a
given client. If it were possible to detect when
the client has made a successful connection at-
tempt to a POP or IMAP server, the port can be
opened. The task of determining whether this
has actually occurred, however, can be prob-
lematic. It requires that the daemon in charge
is able to watch the POP or IMAP traffic gen-
erated by both the client and the server.
The method attempted involves constructing
a transparent proxy for the POP and IMAP
protocols. In HTTP/1.1, transparent proxy-
ing is made possible by the fact that the pro-
tocol requires the host to send the intended
destination of the connection as part of the
connection itself. The proxy acts like a web

server up until the point this information is sent
(which happily is immediately upon connec-
tion), and promptly makes a connection to the
final destination. This is required because ipta-
bles REDIRECT does not in any way give the
server that handles the redirect any indication
of the original destination. Unfortunately, nei-
ther POP nor IMAP (or almost any other pro-
tocol for that matter) are similarly capable of
being transparent proxied as currently defined.
In order to accomplish this, we can take advan-
tage of a feature of the netfilter/iptables called
"ipq", which is an iptables target that sends
packets up to userspace via a netlink socket.
There happens to be a Perl module to interface
with this socket, making interfacing quite triv-
ial. We can start with the necessary firewall
rules:

masquerade all the clients
iptables -t nat -A POSTROUTING -o $pubdev

-s $pubnet -j SNAT --to $extIP
redirect all IMAP connections to our proxy
iptables -t nat -A PREROUTING -i $pubdev

-p tcp --dport 143 -j REDIRECT
--to-port 65143

queue all related SYN packets to userspace
iptables -t mangle -A PREROUTING -s $pubnet

-p tcp --dport 143 --syn -j QUEUE
by default, block all SMTP traffic outbound
iptables -A FORWARD -i $pubdev -p tcp

--dport 25
-j REJECT

To start off the transparent proxy we must cre-
ate a connection to the netlink socket so we can
acquire the SYN packets:

my $queue =
new IPTables::IPv4::IPQueue(

copy_mode => IPQ_COPY_PACKET,
copy_range => 64);

MetaNet::add_fd($queue->get_fd(),
\&ipq_read,
undef, undef, queue => $queue);

The file descriptor for the netlink socket (patch
to IPQueue module required) is added to the
main loop’s list of file descriptors to listen on.

Ottawa Linux Symposium 2002 563

Next, we create a socket to listen for the redi-
rected IMAP connections:

MetaNet::send("/system/socket/new",
name => "/transproxy/socket");

MetaNet::append_new_listener(
"/transproxy/socket/new_client,
\&new_client);

MetaNet::send(
"/transproxy/socket/bind",
protocol => "tcp", port => 65143);

Once the socket is bound and listening, we en-
ter the main loop and wait for something to
happen:

MetaNet::main();

When a packet arrives on the netlink socket,
the ipq_read function is called:

sub ipq_read {
my ($fd, %tuples) = @_;
my ($msg, $ip_header, $src_ip, $dest_ip);

$msg = $tuples->{queue}->get_message(-1);
$ip_header = NetPacket::IP->decode(

$msg->payload());
$src_ip = $ip_header->{src_ip};
$dest_ip = $ip_header->{dest_ip};
$TransProxy::syn_attempts{"$src_ip"} =

$dest_ip;
$queue->set_verdict($msg->packet_id(),

NF_ACCEPT);
}

The client’s IP address and the original in-
tended destination are associated in a global
hash for future reference. The source port
would also be stored, but current experiments
show that the REDIRECT target seems to
cause the source port to change before it gets
to the new destination, making it unusable for
the purpose. This means that multiple connec-
tions on the same port in very close proximity
are likely to be confused with each other.
Almost immediately after the SYN packet is
processed, a connection will be established
with the daemon via the redirect, triggering
new_client:

sub new_client {
my ($mbox, $listener, %tuples) = @_;

$peerhost = $tuples{peerhost};
if (defined($TransProxy::syn_attempts{

"$peerhost"})) {
build_tunnel($tuples{name},

$TransProxy::syn_attempts{"$peerhost"},
143);

undef $TransProxy::syn_attempts{
"$peerhost"};

}
}

If the client address of the socket is found in
the table of previous attempted connections, a
socket tunnel is created between the new con-
nection and the originally intended host. This
is done by creating a new socket, connect-
ing it to the server, then attaching functions to
the two sockets’ "read" mailboxes that send a
"write" to the peer socket.
In order to determine if a successful authen-
tication has occurred, the function that han-
dles incoming packets from the server checks
each packet for the string "OK LOGIN". If the
string is found, the firewall is modified to allow
SMTP traffic for that client:

if ($data =~ /OK LOGIN/) {
system("iptables -I FORWARD 1

-i $pubnet
-p tcp --dport 25
-s $client->{peerhost}
-d $client->{desthost}
-j ACCEPT");

}

A timeout mechanism similar to that used in
the captive portal can be used to close the port
after a certain amount of inactivity. Even more
useful would be interaction between the trans-
parent proxy and the captive portal, automati-
cally closing these holes when the client as a
whole times out.

Ottawa Linux Symposium 2002 564

11 Performance

The primary goal of MetaNet has been flexi-
bility from the very beginning. It is not in-
tended as the basis for large highly-scalable
systems serving hundreds of clients per sec-
ond. The highly unstructured string-based de-
sign doesn’t necessarily lend itself to a highly-
performant implementation, though it is en-
tirely possible that some caching and other lan-
guage tricks could be employed to improve the
speed. If a highly-scalable server is needed
with the ability to send or receive messages,
a small subset could be implemented on top of
an existing architecture.

12 Conclusion

The MetaNet architecture provides the ability
to construct lightweight services very quickly
by building off existing code. More impor-
tantly, it allows separate services to be inte-
grated with a minimum of code. Completely
new services can be built by gluing together
otherwise unrelated subsystems.
The M1 platform from Musenki is the cur-
rent major target of this work, with the goal
of replacing all the software on the machine
with MetaNet-based daemons capable of being
glued together in previously unknown ways.
Such a system would consist of a kernel, init, a
shell and basic utilities, and the MetaNet-based
daemons. Python is a logical choice for this
platform, as the interpreter is less than half a
megabyte, and implicitly allows developers to
script the machine onboard. Such a machine
could then be widely deployed to create the fa-
bled city-wide free wireless network.

13 Acknowledgements

The PersonalTelco group deserves a significant
amount of credit for getting me to think about

these problems, and then actuallydo some-
thing about them. Discussions with Profes-
sor Jim Binkley at Portland State University,
as well as his class on routing protocols, have
been quite helpful. The GStreamer crew also
deserves some credit for being “patient” while
I worked on this project.

References

[Musenki] Musenki
http://www.musenki.com/

[PTP] PersonalTelco Project
http://www.personatelco.net/

[Netfilter] Linux Netfilter
http://netfilter.samba.org/

[ISC] Internet Software Consortium
http://www.isc.org/

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

