
BKL: One Lock to Bind Them All

Rick Lindsley
IBM Linux Technology Center

ricklind@us.ibm.com

Dave Hansen
IBM Linux Technology Center

haveblue@us.ibm.com

Abstract

One ring to rule them all
One ring to find them
One ring to bring them all
And in the darkness bind them.

— The Fellowship of the Ring,
J.R.R. Tolkien

When the topic turns to the Big Kernel Lock
(BKL), the comparison to Tolkien’s one Ring
comes naturally. The BKL was among the first
locks to be created for the Linux(R) kernel,
and many other locks were developed either to
complement or replace instances of it. Despite
this, coders are reluctant to reduce or eliminate
the usage of the BKL so while it may not rule
them all, it continues, in a performance sense,
to “bind them all.”

Once the varied uses of the BKL are under-
stood, the BKL can safely be replaced by other
lock mechanisms, which are more appropri-
ate for each instance. The difficulty lies in
identifying these distinct instances, determin-
ing what protection is provided by the BKL in
each, and carefully replacing the BKL without
perturbing the rest of the system. In this paper,
we examine the history of the BKL, review re-
cent efforts to replace and remove it, and out-
line the work remaining. The One Lock need
not rule nor bind the others any longer.

1 Introduction

Careless locking throughout the Linux kernel
adds unneeded complexity and decreases per-
formance. With the introduction of Robert
Love’s changes1 to implement a preemptive
kernel in 2.5.4, the effects of poor locking now
can affect SMP and uniprocessor machines
alike. Locks such as the Big Kernel Lock
(BKL) have multiple uses and can be confus-
ing to use correctly.

As a result of its overuse, many instances of
the BKL subtly intertwine, causing a single
lock_kernel() call to have several protec-
tive and often unrecognized effects. Until re-
cently, for example, the BKL protected list op-
erations on a webcam list in the CPiA driver
and would lock out the NFS kernel daemon
thread while these operations were being per-
formed. These two activities always executed
exclusively, when absolutely no exclusion was
necessary. In determining how best to release
the BKL’s hold over the rest of the kernel, it is
useful to examine not only how it is currently
used, but how it came to be used that way.

2 History of the BKL

The BKL originated with Linux’s first attempts
to support SMP. The patch for 1.3.26 shows

1Patches available at
http://www.kernel.org/pub/linux
/kernel/people/rml/killbkl/llseek/

Ottawa Linux Symposium 2002 302

the first signs of the BKL’s declaration, but it
was not actually used until 1.3.31. The lock
was simply a bit which was set whenever a
CPU was in kernel context. If another CPU
attempted to enter the kernel at the same time,
it spun. The net effect was to allow only one
process in the kernel at a time. This was a time
well before thespin_lock() functions, so
the authors implemented this spinning behav-
ior themselves in theENTER_KERNELassem-
bly macro. At this point, the lock was acquired
exclusively inENTER_KERNELand released
in EXIT_KERNEL; no device drivers or kernel
subsystems explicitly interacted with it.

1.3.54 brought with it the now-familiar
lock_kernel() andunlock_kernel()
functions defined in C. This opened up the way
for code other than the kernel entry code to
use the BKL. For all of 1.3 and 2.0, this code
was limited to kernel daemons:bdflush ,
kswapd , andnfsd . With the new C defini-
tions, 1.3.54 also introduced one of the BKL’s
most striking features: the ability to be held re-
cursively. In that code, the lock’s spin loop will
terminate if the current processor already holds
the lock:

while (set_bit(0,
(void *)&kernel_flag)) {

if (proc==active_kernel_processor)
break;
<snip...>

}
active_kernel_processor = proc;
kernel_counter++;

This feature made the BKL more obviously a
processor lock rather than a process lock. A
single process was not prevented from grab-
bing it multiple times, but other processors
were blocked. It also greatly simplified the
programmer’s task: there was no worry about
deadlocks with yourself. In cases where a
function’s caller holds the lock, the second

lock_kernel() will never spin waiting for
release.

lock() // spin until acquired
func() {

lock() // kernel_counter++;
unlock() // kernel_counter--;

}
unlock() // kernel_counter--;

// (and release if
// kernel_counter == 0)

However, this convenient feature invites abuse.
With the threat of deadlocks removed, pro-
grammers can take the lock “just to be safe,”
and there is no penalty for not diligently check-
ing or commenting code. The penalty falls
on the inheritors of this code, when they ask,
“What is this guarding?” and try to remove the
BKL.

The 1.3/2.0 development period saw only very
limited spreading of the BKL. As 2.0 develop-
ment continued, the BKL was added in only
one more place, and that was for another ker-
nel daemon.

The BKL as we know it today (a spin-
lock) was introduced in 2.1.23. The old
ENTER_KERNELand EXIT_KERNEL se-
mantics were replaced bylock_kernel()
and unlock_kernel() calls around crit-
ical regions. At this point, only Sparc
and i386 had generic spinlock mechanisms,
which meant that, besides semaphores, the
BKL offered the only SMP mutex mecha-
nism. The scope of this change in Linux’s
SMP support is evident from counting how
many times lock_kernel() is called;
2.1.22 had 9 calls oflock_kernel() and
unlock_kernel() while 2.1.23 had 761!

It might appear that the 2.1.23 patch is the root
of all evil. But it did add a very important fea-
ture: kernel concurrency. Before this point,
no two tasks could be running in the kernel at

Ottawa Linux Symposium 2002 303

once. The modern BKL is perhaps not as one-
sided as it first looks, as it was the price to pay
for kernel concurrency at the time. The current
BKL removal process is just a continuation of
this effort to allow more kernel concurrency.

3 Current state of the BKL

In 2.4.18,lock_kernel() is invoked over
500 times in about 290 files. Determining why
it is invoked in those files is a little tricky, since
comments are rarely present. Sometimes it’s
not clear that even the authors understood why
it was needed; they appear to have invoked
it either because the code they were copying
from invoked it, or simply because they feared
angering the ancient gods of coding by omit-
ting it.

Semantically, we find that in the 2.4.18 kernel
the BKL is used primarily in the following ar-
eas:

• release (or close) routines

• open routines

• mmaproutines

• ptrace system call

• file system code

• module protection

Functionally, however, the intended use in each
case is far less clear. Most of the uses can only
be inferred from code inspection, because usu-
ally the users of the BKL did not create com-
ments describing their changes. After some
research into the 2.4.18 code and old change
logs, however, it is possible to hazard an edu-
cated guess at the uses.

release (or close) routines. These rou-
tines are called when a file descriptor is closed

for the last time. At one time, the BKL was
held across the release call, and when that call
was removed and responsibility for acquiring
the lock was pushed down into those routines,
many authors did not have the time, knowl-
edge, or inclination to determine whether it
was truly needed. Many of them remain today,
even though most are unnecessary, as we’ll see
later.

open routines. These routines are called
when a file descriptor is first created (opened).
As with the release routines, the BKL was orig-
inally held across the generic open call and
thus was held for all devices upon entry to their
open code. When the code acquiring the BKL
was removed, it became the responsibility of
the open routines to acquire it. To avoid break-
ing any code relying on the ability to acquire
the BKL, the patch modified each and every
open routine to grab the BKL itself, and left it
to the driver owners to take it out if it was un-
necessary. Unfortunately, many driver owners
chose not to spend time determining whether it
was necessary.

mmap routines. These routines are called
when ammapcall is made against the file de-
scriptor to map some portion of the underlying
data into memory. While the details of what
is being mapped vary with the device, it seems
to have been generally accepted that the BKL
needed to be held in order to accomplish it.
This remains one of the more mysterious uses
of the BKL, and will be high on the list for fu-
ture work.

ptrace system call.The BKL appears to be
used to lock down the important fields of a pro-
cess whileptrace() (which is architecture-
specific) manipulates them.

file system code. In the file system code,
it’s harder to discern a general pattern of us-
age. Frequently, the BKL seemed to protect
various file-system-specific data structures, as

Ottawa Linux Symposium 2002 304

well as some VFS structures. As noted above,
file system code exploded with BKL usage in
2.1.23, and since then authors have slowly been
weeding it out. What’s left is, in general, the
code hardest to fathom or the most sensitive
to changes, and extricating the BKL from this
code requires thorough knowledge of the file
system being operated on. Some very recent
work has made ext2 much less dependent on
the BKL.2

module protection. The BKL is used to pro-
tect the module list in kernel/module.c. This
use of the BKL has the unusual distinction of
at least being consistent and well-defined. If
it were not for the remote possibility of an un-
expectedly positive interaction with other BKL
usages elsewhere in the kernel, this mechanism
could be replaced with a simple spin lock. As
it is, it needs to be inspected as closely and un-
derstood as well as any other BKL usage before
taking any action.

4 Why does it matter?

It could be argued that “if it ain’t broke, don’t
fix it” and that efforts to reduce or eliminate the
BKL are not only difficult in many cases, but
pointless. The reference to the module code,
above, would be a prime example.

The BKL is not viewed as an obstacle for
many benchmarks or workloads. Certainly
on uniprocessors, many other concerns are of
higher precedence. But when the One Lock
does obstruct some task or benchmark, it is a
daunting task to remove that roadblock. As
mentioned earlier, there are few comments or
other documentation to explain why the BKL
is used in any particular spot, let alone how it
might be excised. Further, because the BKL is

2Patches (for 2.5 only) are available at
http://linus.bkbits.net:8080
/linux-2.5/cset@1.290

used in so many places, the problem may not
lie in the region in which it is contended for.

Imagine this scenario. Functionfoo() grabs
the BKL 500 times during a particular work-
load and holds it for 100ms each. Function
bar() , on the other hand, attempts to grab it
100000 times, but seems constantly thwarted,
waiting an average of 35ms 70% of the time.
When it does finally get it, it holds it for an av-
erage of 10ms before releasing it. One could
mistakenly conclude that reducing or eliminat-
ing the BKL in bar() would make the con-
tention problem go away - and indeed it would.
But the real problem probably lies in holding
the lock an incredibly long time infoo() ,
thus holding up the many instances ofbar() .

Does one fixfoo() to hold the lock a shorter
period of time, or does one fixbar() to ac-
quire it less? It’s bad practice to hold a spin-
lock a long time infoo() , but then it seems
optimization may be needed inbar() to re-
duce the number of times locking is required or
even the number of times the function is called.
Determining the correct answer really requires
that both functions be well understood in pur-
pose and scope. In a given instance, the answer
may be one or the other, or even both or neither.
(Both functions may be completely unneces-
sary upon closer inspection. Equally possible
would be that neither may be able to change
their behavior. For example, iffoo() must
hold the BKL while calling a proprietary func-
tion or performing some hardware operation it
has no control over, it may not be able to re-
duce its hold time. Similarly, the high number
of calls tobar() may be a necessary evil that
keeps an interface definition clean and more
easily supported at the expense of a seemingly
high number of function calls.)

Now recall that the BKL is used in hundreds
of routines, interacting in thousands of ways,
and you’ve answered the question of why its

Ottawa Linux Symposium 2002 305

widespread use and misuse does matter.

5 Recent work

There has already been a great deal of work in
2.5 to remove the BKL where it isn’t neces-
sary. Happily, most of the fixes to remove the
BKL are dirt-simple (once the arduous investi-
gation to prove their simplicity is completed!)
and provide significant, measurable benefits.

5.1 do_exit()

Perhaps the best example of this is
do_exit() . Lockmeter data from that
most-trusted of all benchmarks, the kernel
build, showeddo_exit() holding the BKL
for an average of 8ms, with a maximum
hold time of 55ms. That is an eternity for a
cpu whose time is simply wasted spinning.
On first examination of this code, removing
the BKL appears difficult because so many
complex data structure manipulations are done
here. However, upon closer examination, it is
evident that many of the functions called under
the BKL in do_exit() already have their
own locking implemented.

So what is the BKL really guarding? Li-
nus Torvalds himself mentioned on the linux-
kernel mailing list3 (LKML) that, even in
2.4, few of these functions actually still
need the BKL. The strategy for removal
was simple: only hold the BKL around
the functions where it is really neces-
sary. In this case,sem_exit() and
disassociate_ctty() appeared to be
the most likely candidates for still needing the
BKL. After a suggestion from Linus, the BKL
was moved into those two functions, and out
of do_exit() itself. The amount of time the

3Mailing List Archive:
http://marc.theaimsgroup.com
/?l=linux-kernel&m=101484620020622&w=2

lock was held went from 8ms on average to
only 5.5usin the worst case!

However, this fix was not without its price.
Shortly after the initial do_exit()
patch went into 2.5, posts on LKML re-
ported OOPSes during boot whenever
preemption was enabled. Replacing the
lock_kernel() in do_exit() fixed the
problem, as did a preempt_disable
(which, in a preemptive kernel, all
spin_lock() calls do implicitly). While
the task is exiting,exit_notify() sets
current->state to TASK_ZOMBIE.
However, if a preemption point occurs after
the state is set, the return from preemp-
tion code sets current->state to
TASK_RUNNING. This makes the previously
“zombied” process eligible to run again, in-
stead of being cleaned up. Theschedule()
at the end ofdo_exit() , which is never
meant to return, ends up returning.

The fix is to note the task’s state when it
was preempted and make sure not to make it
runnable again if it was exiting when it was
preempted.do_exit() is a prime example
of why it is very dangerous to derive protection
from a lock without realizing why, especially
from the BKL.

5.2 release() removal

Many device drivers’release and open
functions try to guarantee that only one open
can be done on the device at a time:

static int opened = 0;
open()
{

if(opened)
return -EBUSY;

... do opening stuff
opened = 1;

}

Ottawa Linux Symposium 2002 306

release()
{

opened = 0;
}

This works fine on a uniprocessor machine.
However, on SMP systems a race can allow
two processes to open the device simultane-
ously, as demonstrated in the C code in Fig-
ure 5.2.

Currently, this is not a problem for character or
block devices. The VFS code holds the BKL
over the calls to all char and block open func-
tions:

int chrdev_open(struct inode *inode,
struct file * filp)

{
...
if (filp->f_op->open != NULL) {

lock_kernel();
ret =

filp->f_op->open(inode,filp);
unlock_kernel();

}
...
return ret;

}

There is similar code for block devices, but
misc devices are not afforded this protection.
Also, as good practice, devices should never
depend on the layers above them to protect
against races in their own code especially when
they depend on protection provided by the
BKL. They should be even more careful to
avoid depending on the BKL’s protection with-
out realizing it (seedo_exit() example).

Before the release() removal patches,
many drivers’ open/release combinations
looked like this:

static int opened = 0;

// implicit from VFS code
// for char/block
lock_kernel();
open()
{

if(opened)
return -EBUSY;

... do opening stuff
opened = 1;

}
unlock_kernel();

release()
{

lock_kernel();
opened = 0;
unlock_kernel();

}

In almost all of these cases, the fix is simple:
just use atomic bit operations. No spinlocks or
semaphores are needed; just a simple bit op-
eration. Now the functions are safe to use in
block, char, or misc devices because they don’t
rely on VFS to do any locking for them.

static int opened;
open()
{

if(test_and_set_bit(0,&opened))
return -EBUSY;

// I’m the only opener
... do opening stuff
// success

}

release()
{

clear_bit(0,&opened);
}

6 Notable work, and kudos

Valiant, ongoing efforts by many code warriors
to reduce or eliminate the BKL are worth men-
tioning. This is not a complete list, of course,
but just some recent efforts that have had a sig-
nificant impact.

Ottawa Linux Symposium 2002 307

open
{

if(opened)
return -EBUSY;

// I’m the only opener
... do opening stuff
opened = 1; // success

}

open
{

if(opened)
return -EBUSY;

// Uh-oh, we got in before opened
// was set and there are two of us!
opened = 1;

}

Figure 1: Open Race

VFS has had a difficult struggle with the BKL.
The UNIX(R) “everything is a file” approach
forces perfection from filesystem code. VFS is
also a place where concurrency is important, so
locking must be done carefully and kept finely
grained so as not to adversely affect perfor-
mance. The BKL’s presence in so many other
pieces of code has made its presence in VFS
code troublesome.

Al Viro has done a noteworthy job of freeing
VFS from dependency on the BKL and shift-
ing the responsibility of locking into the un-
derlying code.4 This underlying code is al-
ways closer to the task at hand and can make
more well-informed, finely-grained decisions
than VFS can. He has also worked on doc-
umenting filesystem locking. The BKL still
plays a big part in VFS and Al has done a
good job of documenting that role in Docu-
mentation/filesystems/Locking. He has also
documented the locking changes in Documen-
tation/filesystems/porting.

Richard Gooch has been an exemplary advo-
cate for pushing the BKL out of devfs.5 On
one occasion, he responded within minutes of a
patch being posted which pushed the BKL into
some devfs code, down from the VFS layer. A

4Patches are available (for 2.5) at
http://linux.bkbits.net:8080
/linux-2.5/user=viro

5Patches are available (for 2.5) at
http://marc.theaimsgroup.com
/?l=linux-kernel&m=101787867929523

couple days later, he posted a patch purging the
BKL from his subsystem because it derives ab-
solutely no protection from the BKL.

7 Future Work

There are some specific areas that need to be
addressed, and some were mentioned above:
themmapcode, theptrace code, and the file
system code, for example. Stalwart, knowl-
edgable code warriors are always sought for
this sort of effort.

However, you can join the fellowship and be
a BKL Eliminator even without knowledge in
these areas. Even if you have no time to elim-
inate the BKL from existing code, you, as a
coder, can help prevent it from proliferating by
adopting simple standards for yourself:

• Never submit code that adds the BKL,
anywhere.

• If you need exclusion in your driver, pro-
vide it yourself with your own lock.

• If you need to sleep while holding a lock,
use a semaphore.

• If you still think you need the BKL, ask
somebody else first.

If you are responsible for code that still uses
the BKL, make an effort not to expand where

Ottawa Linux Symposium 2002 308

it is used. The next time you go to rewrite a big
chunk of your code, think about the BKL and
start imagining ways to remove it.

A running scorecard for each release can be
found at http://lse.sourceforge.net

/lockhier/index.html . Listed there are
versions of a locking reference document for
recent releases of both 2.4 and 2.5—in partic-
ular, outlining where the BKL is still found.
Here is a summary for 2.5.8-pre3:

Top users of BKL in 2.5.8-pre3
(excluding filesystems)

1689 .
254 drivers
177 arch
113 sound
107 sound/oss

71 include
71 drivers/usb
47 drivers/char
39 drivers/isdn
32 include/linux
29 arch/sparc64
28 arch/sparc/kernel
28 arch/sparc
23 drivers/usb/core
22 kernel
19 drivers/usb/media
19 arch/alpha/kernel
19 arch/alpha
17 arch/sparc64/solaris
16 arch/ppc64/kernel

Top users of BKL in 2.5.8-pre3
(filesystems only)

1026 fs
76 fs/reiserfs
67 fs/coda
61 fs/ext3
58 fs/intermezzo
58 fs/hfs
54 fs/nfs
51 fs/hpfs
44 fs/affs
43 fs/udf
35 fs/autofs
32 fs/ufs
30 fs/smbfs
28 fs/jffs
24 fs/ntfs
22 fs/bfs
21 fs/vfat
19 fs/ncpfs
19 fs/autofs4
18 fs/qnx4

All maintainers with a subsystem listed above
should take a hard look at their code. In most
cases, the code which uses the BKL does not
actually need it. Understandably, developers
are reluctant to change code which they do
not have great knowledge about. As the main-
tainer, you are the authority , you do have in-
timate knowledge of the code, and you can in-
telligently and safely remove the BKL.

Perhaps the only generic use for the BKL
which is spreading is the use around calls
to daemonize() . Many of them, like this
use fromibmphp_hpc.c , hold the BKL for
short periods of time.

lock_kernel ();
daemonize ();
reparent_to_init ();
...
unlock_kernel ();

However, there are many other cases where
the same operations are performed without the

Ottawa Linux Symposium 2002 309

BKL. The authors would be very interested to
receive any information that readers can add
about this use withdaemonize() .

In general, the kernel would be a better place
if Linus would never accept another patch with
lock_kernel() in it. Truth is, this is not
likely to happen anytime soon. But an in-
creased awareness among the Linux commu-
nity can be almost as useful as eradication in
achieving this goal. Until the BKL is reduced
to one or zero usages, there will remain fear
and uncertainty when it is encountered, and the
One Lock will continue its hold over all of us.

8 Acknowledgements

IBM is a registered trademark of International
Business Machines Corporation in The United
States and other countries.

Linux is a registered trademark of Linus Tor-
valds.

UNIX is a registered trademark of the Open
Source Group.

The opinions expressed are those of the au-
thors, and do not necessarily reflect the opin-
ions of the IBM Corporation.

Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

